Recursion

Chapter 9. Recursion

“Well, you sure picked a good subject thistime,” said
Morf, looking a bit puzzled.

“We touched on this before, don’t you remember?”’
replied Logy. “Y ou remember, recursioniswhen aprocedure
uses itself as part of the solution.”

“Say what?”

Y es, strange as that may seem, a
recursive procedure is one that calls itself
as part of the total solution. Y ou saw
examples of thisin earlier chapters.

It is something like the two turtlesin
the picture. Each turtleisusing the other
to draw itself.

Is Life Recursive

Here' safun procedure to help you make some sense out
of recursion, even though it really isn't Logo.

TO GET.THROUGH.LIFE
GET.THROUGH.TODAY
GET.THROUGH.LIFE
END

Think about it for amoment. Thissaysthat to get through
life, you have to get through today. Once you are through
today, you have to move on, right?

But where?

341

Recursion

342

Y ou can't go backward. Y ou can't stop time. You have
to get through life. But to get through life, you have to get
through today. Each day isdifferent. Sowhilethismay look
likeasimpleloop, it really isn't. Have you ever repeated a
day, doing exactly what you did yesterday?

Let's add another twist to this. Let's suppose that when
you're standing in front of the Pearly Gatesto Heaven, you are
asked to take alook at your Book of Life.

Embedded recursion can actually help you with thistask.
Wetalk about different types of recursion in the next section.
Anyway, to see your Book of Life, all you havetodoisadd a
couple of linesto your life procedure.

TO GET.THROUGH.LIFE
IF LIFE = "OVER [STOP]
GET.THROUGH.TODAY
GET.THROUGH.LIFE
PRINT BOOK.OF.LIFE
END

It's like every time you GET.THROUGH.TODAY, you
write apage in your Book of Life. Only the pages are not
printed until LIFE = "OVER. When the procedure stops, all
the pages are printed starting with the last page it saved.

Thismay seemvery confusing right now. Butitwill begin
to make sense very shortly.

Recursion

Tail-end Recursion

Y es, recursion is confusing.

It reminds you of the images you see when you look in
two mirrors — without Morf getting in the way, that is. So
let’ s try it with something we know something about.

TOMAZE N
FD :N RT 90
MAZE:N +5
END

Thisisan example of what you call “tail-end recursion.”
Therecursive call is at the tail-end of the procedure.

To seejust how thisworks, type
MAZE 20

Now watch what happens.

The turtle goes forward 20 steps and then turns right 90
turns. Then the proceduretells:N (that's 20 to us) to become
:N + 5 (that's 25 to us now). Then the procedure says

MAZE 25

343

Recursion
and starts all over again.

MAZE 25 becomesMAZE 30. MAZE 30becomeMAZE
35, and on and on and on. The screen soon looks something
likewhat you seebelow. Anditjust keepson going, gradually
filling up the screen.

Of course, we can put a STOP in there if we want.

TOMAZE :N
IF:N = 200 [STOP]|
FD :N RT 90
MAZE:N +5
END

Thefirst line sets up a conditional test. Each time the
procedure runs, it tests :N to seeif it equals 200. When :N
does equal 200, the procedure stops.

344

Recursion

The Turtle’s Let’stake alook at some other examples
Erector Set

Didyou ever play with an Erector Set? Did you ever build
bridges? Maybe some buildings?

WEell, Logo can help you draw your plans.

TO ERECTORSET :N :X
IF :X =0 [STOF]|
SECTION :N

MOVE :N
ERECTORSET :N :X - 1
END

TO SECTION :N
REPEAT 4 [TRI :N FD :N RT 90]
END

TOMOVE N
RT 90 FD :N LT 90
END

TOTRI:N

FD :N RT 135

FD :N/SQRT 2 RT 90
FD :N/SQRT 2 RT 135
END

345

Recursion

The Italian Do you like Italian food? How about spaghetti?
Turtle

TO SPAGHETTI

CIRCLE 2 (’g AT)}
§;A42H ETTI (@Z@Jé&rf

END LLLL(%/ —_—

TO CIRCLE :N |

REPEAT 36 [FD :N RT 10]
END

Y ou can make the SPAGHETT!I procedure even more
variable with afew changes:

TO SPAGHETTI :N
CIRCLE:N+5
CIRCLE:N+4
CIRCLE:N+3

346

Recursion

CIRCLE:N+2
RT 45
SPAGHETTI :N
END

How about this one?

TO SPAGHETTI :N
CIRCLE :N

IF:N = 0[STOP|
RT 45

SPAGHETTI :N - 1
END

Thisrecursive procedure is like some others you have
used before. Will it draw spaghetti like the other procedures
above? Why? Better yet, why not?

What about this one?

TO SPAGHETTI :N
IF:N > 200 [STOP]|
CIRCLE :N

RT 45

SPAGHETTI :N +5
END

In addition to spaghetti drawings, what €lse can you do
with this circle procedure?

TO CIRCLE :N
REPEAT 36 [FD :N RT 10]
END

347

Recursion

How About a TO SLINKY .
Slinky? LT 90) N -
CIRCLES %
END
L —t-
TO CIRCLES ==
CIRCLE 5
FD 20
CIRCLES
END

Y ou might think that recursion isjust like aloop, that it
just goesaroundincircles. Well, not quite! Sometimesthings
aren’'t what they seem to be.

Embedded Recursion

To check thisout, let’slook at a procedure that uses
“embedded recursion.” Therecursive call isembedded inthe
middle of the procedure somewhere, like in the
GET.THROUGH.LIFE procedure.

TO TEST.RECURSION :N

PRINT [ISTHIS RECURSION?]

IF READWORD ="YES[TEST.RECURSION :N + 1]
PRINT :N

END

Inthe TEST.RECURSION procedure, the variable :N is
used asacounter. Itisused to keep track of your answersto
the question, IS THIS RECURSION?

Watch and see. Type

348

Recursion
TEST.RECURSION 1

When you start the procedure, the first thing you see on
the screen isthe question:

ISTHISRECURSION?

READWORD tells Logo to stop and wait for you to type
ananswer, whichitthenreads. TypeY ES. Thecounter knows
that thisis your first answer.

Then we cometo atest. If theword you typed was Y ES,
then the procedure callsitself. What happens?

You guessed it! There' sthat question again.
ISTHISRECURSION?

Type YES afew times when you see
the question. Then type NO. What
happens this time?

When you type NO, the procedure
comesto thetest. Thistimetheword you
typed doesn’t match Y ES and so the
computer reads the next line:

Is this what recursion does to you? PRINT N

WOW, what happened then?

Why were so many numbers printed? That’ swhat makes
recursion different from just a ssmple loop.

349

Recursion

Rabbit Trail 22.

350

When you first look at this procedure, it seemsasif itis
going to go around in aloop. Every timeit passes the
TEST.RECURSION :N + 1 line, the counter is going to add
1. Then, when you type NO instead of YES, you'd think the
procedure would simply print the current value of N.

WEell, that isn’t the way recursion works. Morf has one
of hisrabbit trails to show you what happens.

Recursive Pages

Let’slook at this procedure again. You'll need some
blank paper, a pencil, and scissors for this one.

Fold the paper in half. Then fold it in half again. And
again. Then onelast time. Crease the edges nice and sharp
and then open up your piece of paper.

Cut the paper along thefolds. Y ou should end up with 16
small pieces of paper. Now number these “pages’ from 1 to
16 by writing a small number at the bottom of the page.

Get your pencil ready and then type
TEST.RECURSION 1

First, you see the question, IS THIS RECURSION?, on
the screen. So write abig 1 on your first piece of paper and
put that piece off by itself.

Type YES. What happens?

The question appears on the screen and :N becomes :N +
1—or 2. Write2onyour second piece of paper and put that
on the pile with your first piece, the one with the 1 on it.

Recursion
Type YES again.
What does :N become now?

Write 3 on the next piece of paper and put that piece on
the number pile. Do this again three more times, writing the
new number for :N each time. Put each piece of paper on the
top of your growing pile of papers.

Now, when you type NO, what happens on the screen?

You see alist of numbers counting
backward, right? From 7 back to 1.

Why?

Look at the screen. There are seven
guestions shown there. You typed “yes’
sixtimesand*“no” once. Intotal, youtyped
7 answers.

Y ou should havetwo stacksof paper now. Y ouhavesome
blank pages left over in one stack, pages 8 to 16. The other
stack hasthe pages you numbered from 1to 7. Each page has
a big number written on it.

Now put the pages back in order from 1to 16. But how
do you do that?

Y ou put page #7 with the big number 7 on it, on top of
page 8. Y ou put page #6 on top of page #7, page #5 on top of
page #6, and so on until you have all the pagesback inasingle
stack again.

351

Recursion

OK! Picture the memory in your computer like that stack
of pages. Each time the procedure isrun, another pageis
written to memory. When the procedure is stopped, Logo
prints the pages.

Amazing Mazes Remember the M AZE procedure, the exampl e of tail-end
recursion you read about earlier in this chapter?

TO MAZE N
IF:N > 300 [STOP]
FD :N RT 90
MAZE :N +10
END

Now look at this procedure.

TO AMAZE N
IF:N>120[STOP]
AMAZE :N + 10
FD :N RT 90

END

Here' s another example of “embedded” recursion.

Will this procedure produce the same picture as the
MAZE procedure or will it be different?

Try to picture what it will look like before you run it.
Think about how recursion works, about how it reads and acts
on procedures. Then start with :N as 50.

Thisis how Logo reads the procedure the first time.

352

TO AMAZE 50
IF 50 > 300 [STOP]

AMAZE 50 + 10

FD 50 RT 90
END

Next, you have:

TO AMAZE 60
IF 60 > 300 [STOP]

AMAZE 60 + 10

FD 60 RT 90
END

Next, you have:

TO AMAZE 70
IF 70 > 300 [STOP]

AMAZE 80 + 10

FD 70 RT 90
END

and then

Recursion

Since 50 is smaller than 300,

L ogo goes to the next line.
AMAZE 50 becomes AMAZE
60 and AMAZE starts again.
Thislineisheld in memory.

Since 60 is smaller than 300,

L ogo goes to the next line.
AMAZE 60 becomes AMAZE
70 and is called.
Thislineisheld in memory.

Since 70 is smaller than 300,

L ogo goes to the next line.
AMAZE 70 becomes AMAZE
80 and is called.

Thislineisheld in memory.

353

Recursion

TO AMAZE 80
IF 80> 300 [STOP] Since 80 is smaller than 300,
L ogo goes to the next line.
AMAZE 80 + 10 AMAZE 80 becomes AMAZE
90 and is called.
FD 80 RT 90 Thislineisheld in memory.
END

Each time Logo runs the procedure, it doesn’t get to the last
line. That's because the procedure callsitself. So it writes
each last line on a*“page” of the memory stack. It will keep
going, writing pages for each lineit did not run— AMAZE
90, 100, 110, and finally 300. Then it stops.

As Logo reads the pages, it puts them back in order
sending the turtle

FD 300, RT 90
FD 290, RT 90
FD 280, RT 90
...back to where she started...
FD 50, RT 90.

S0-0-0, arethe pictures produced by MAZE and AMAZE
the same?

Thepictureslook thesame. Thedifferenceisthat MAZE
starts small and gets larger. AMAZE starts big and gets
smaller.

There' s another example of embedded recursion on the
next page. This procedure produces a crazy drawing.

Why? Can you tell without running it?

354

Recursion

TO TOWER :SIZE
IF :SIZE < 0 [STOP|
SQUARE :SIZE
TOWER :SIZE - 10
SQUARE :SIZE

FD :SIZE

END

TO SQUARE :SIZE
REPEAT 4 [FD :SIZE RT 90]
END

No, thisisnot like the TOWER procedure from Chapter
5 even though it looks something likeit. To seewhat it l0oks
like, type TOWER and a number for the length of one side of
the SQUARE.

How would you change this procedure to make a better
looking drawing? Asareminder, here’sthe TOWER
procedure you saw earlier.

TO SQUARES:S
IF:S<O[STOP]|
REPEAT 4 [FD :SRT 90]
FD :S

SQUARES:S-5

END

TO TOWER:S:T
IF:T =0 [STOP|
SQUARES:S
TOWER:S:T-1
END

355

Recursion

Spirals, Squirals, Polyspis, and Fractals
Do you know what they call thedrawingsthat MAZE and

AMAZE produce?

They're spirals. 2654 Bs
No, you don’'t need a = i;;-;;
telescope to spy on e R
anything.

Spirals, squrials, polyspis, and fractals
draw some of the prettiest drawings you
can make using L ogo.

MAZE and AMAZE produce square
spirals, or squirals.

FD 50 RT 90
FD 60 RT 90
FD 70 RT 90
FD 80 RT 90
FD 90 RT 90
...and on and on and on.

But what about other types of spirals?

Remember that procedure you wrote to draw any kind of
shape?

TO POLYGON :SIDE :REPEATS
REPEAT :REPEATS[FD :SIDE RT 360/ :REPEATS]
END

OK! Here' sachallengefor you. Change this procedure
into arecursive procedure that will draw the same kind of
picture. How about this?

356

Recursion

TO POLYGON :SIDE :REPEATS
FD :SIDE

RT 360/ :REPEATS

POLY GON :SIDE :REPEATS
END

Y ou can make this easier by changing the :REPEATS
variableto an :ANGLE variable.

TO POLYGON :SIDE :ANGLE
FD :SIDE

RT :ANGLE

POLY GON :SIDE :ANGLE
END

OK! If you set :SIDE to 100 and :ANGLE to 120, you
will send the turtle on a continuous trip around atriangle.

But that’sno fun! So here’s one way to handleit.
TO POLYGON :SIDE :ANGLE :AMT

IF:SIDE > 200 [STOP]

FD :SIDE RT :ANGLE

POLYGON (:SIDE + :AMT) :ANGLE :AMT
END

What do you think the AMT variable does?

WEell, here’' s adrawing produced by this procedure.

357

Recursion

Doesit help?
e
“ LF ' e ?-:“'_“1'.'.-4'
o] i — |

AR SinS

Play around with different numbersfor thethreevariables
of thePOLY GON procedure. You' |l besurprised at thethings
you can do.

What happens when you change 120 to 123?
POLYGON 11233

POLYGON 1905

POLYGON 51445

POLYGON 11723

There are some more ideas on the next page.

358

Recursion

Multiple Spirals How would you put more than one spiral on the screen at
the same time?

Hereisaprocedure ayoung student developed. Thegoal
was to create two spirals within the same procedure.

What do you think of it — without running it, that is?

Will the procedure at the top of the next page draw two
spirals?

359

Recursion

360

TO SPIRAL :N
IF:N > 100 [STOP]|
FD :N RT 90
SPIRAL :N+5
FD 200
IF:N>100[STOP]
FD :N RT 90
SPIRAL :N+5
END

It seemed perfectly logical to this student that the turtle
would draw the first spiral, move 200, and then draw the
second one. What that student overlooked isthat therecursive
call sends the turtle back to the beginning. The result of this
procedure is a mess.

But how would you straighten it out?

One of the things this student overlooked was a very
valuable lesson about working with Logo. Y ou need to think
in “chunks.”

L ogo hasto processone“chunk” of information at atime.
Intheproceduresbelow, SPIRAL isonechunk of information.
When you want to process more than one chunk of
information, you needto add aprocedurethat will processyour
chunksin the sequencethat you want. Thisiswhat SPIRALS
doesfor you.

TO SPIRALS:N
SPIRAL :N

PU FD 200 PD
SPIRAL :N
END

Recursion

TO SPIRAL :N
IF:N>100[STOP]
FD :N RT 90
SPIRAL :N+5
END

The SPIRAL S proceduredrawstwo spirals. What would
you haveto doto makeit draw four? Six? A variable number?

Polyspis and POLY SPI and INSPI are variations on the POLY GON
Inspis and SPIRAL procedures. Y ou start withthebasic POLY GON
procedure.

TO POLYGON :SIDE :ANGLE
e FD :SIDE RT :ANGLE
Sl e s T POLYGON :SIDE :ANGLE

Let’s change this a bit.

TO POLYSPI :SIDE :ANGLE
FD :SIDE RT :ANGLE
POLYGON :SIDE + 3:ANGLE
END

What does POLY SPI do to the POLY GON procedure?

It adds another variable so that you change how much the
:SIDE changes.

TO POLYSPI :SIDE :ANGLE :INC

FD :SIDE RT :ANGLE

POLY GON :SIDE + :INC :ANGLE :INC
END

361

Recursion

Try thisprocedurewith variousinputs. Thenlet’schange
the procedure again. Thistime, we won’t change the :SIDE.
WEe'll change the :ANGLE.

TO INSPI :SIDE :ANGLE :INC.
FD :SIDE RT :ANGLE

INSPI :SIDE :ANGLE + :INC :INC
END

Now try these. Can you predict what they’ Il look like?

INSPI 100 15
INSPI 745 17
INSPI 104 20
INSPI 100 8

INSPI 345 30

Now try your ownideas. But before we moveon, here's
one more variation to explore.

Here'sthe POLY 1 procedure.

TOPOLY1:SIDE:ANGLE

FD :SIDE RT 90 FD :SIDE RT :ANGLE * 2
POLY1:SIDE :ANGLE

END

How’ s that different from this one?
TOPOLY2:SIDE:ANGLE
FD :SIDE RT 90 FD :SIDE RT :ANGLE

POLY2:SIDE :ANGLE * 2
END

362

Rabbit Trail 23.

Recursion

String and Wire Art
Have you ever seen string or wire art?

These are beautiful patterns created by wrapping colored
string or wire around pins or small nails hammered into afelt-
covered board. Y ou canfind somevery colorful string or wire
art kits at alocal hobby store.

What’ seven morefunisto transfer the art patternsto the
screen. Thereyou can begin to seetherelationshipsthat work
together to create the pattern.

First, let’s start with a shoe box. Paint the inside of the
top using flat black paint. This creates a dull background to
show off your string patterns.

The next job isto create an even pattern that you will use
to punchtiny holesevenly around the edge of thebox top. You
can do this very easily on the computer. Here'sarecursive
procedure that should be pretty easy for you by now.

TO PATTRN :DIST :MARKS T
IF :MARKS = 0[STOP] N
FD :DIST MARK :DIST

MAKE "MARKS :MARKS - 1
PATTRN :DIST :MARKS 2
END 1

TO MARK :DIST

RT 90 FD :DIST /10
BK :DIST/5FD :DIST/10LT 90 T
END

363

Recursion

Curves From
Straight Lines

364

This procedure divides the task of drawing a pattern into
easily understood chunks. The big chunk is drawing the
pattern. The little chunk draws the actual marks.

Thevariableslet you set the number of marks (MARKYS)
and the distance (:DIST) between them. For example, if you
want to print 20 horizontal marksthat are 25 turtle steps apart,
type PATTERN 25 20 and press Enter.

Print the patterns and cut them into narrow strips. Then
paste or tape them to the edge of your painted box top.

Now there are lots of things you can do. For one thing,
you can use colored yarn and a needle to make curves from
straight lines.

Here' s abox top pattern.

1. Start at the lower left hand corner.

2. Push the needle through the corner mark into the box top
and then out through the mark at the lower right corner.

3. Move up to thefirst mark up the right side and push the
needle from the outside into the box top.

4. Go to thefirst mark in from the left corner and push the
needle from the inside to the outside of the box top.

Recursion

Soon you will have a pattern that looks like this, a curve
made from straight lines.

There are lots of other patterns you can make.

Why not try these?

365

Recursion

There are all sorts of patternsyou can make. If you want
to dressthem up abit, try different colors of yarn for different
parts of the design.

Whenyou’ ve used up all your old shoe boxes, you cantry
other designs on the Logo screen.

But, wait aminute! How are you going to do that?

Rabbit Trail 24. Curves From Straight Lines

366

Well, let’ s start with a pencil, a piece of paper, and a
straightedge. A ruler makes a good tool for this project.

1. Put theruler on the paper in avertical position, so that it’s
going straight up and down.

2. Draw aline from the bottom of the ruler up to about six
inches and back to one-half inch from the bottom.

3. Hold your pencil in place and turn the ruler about 10
degrees.

4. Repeat steps 2 and 3 severa times.

Doesyour drawing
look something like
this?

Not bad! Here's
how you candothat on
the computer.

TO FANLEFT :DIST :ANGLE
IF :DIST < 0 [STOP|

FD :DIST BK :DIST - 10LT :ANGLE
FANLEFT :DIST - 5:ANGLE

END

Recursion

What do you think would happenif you changed theangle
and the distance each time aline was drawn?

TO LETSFINDOUT :DIST :ANGLE

IF :DIST < 0 [STOP|

FD :DIST BK :DIST - 10LT :ANGLE
LETSFINDOUT :DIST - 5 :ANGLE + 2
END

If you can’t seethe
difference here, try \
changing the number —

added to the ANGLE.

Here' s achallenge for you.
How would you create this drawing?

Here' sahint. Takealook at theangles
between the lines.

Here are afew more ideas to play with. How about a

FANRIGHT procedure? What wouldthat onedo? How would
it be different?

What would happen if you combined them?

367

Recursion

368

TO SWIRL :DIST :ANGLE

START1

FANLEFT :DIST :ANGLE 2

START1 2 A4

FANRIGHT :DIST :ANGLE X

START2 e
e

FANLEFT :DIST :ANGLE el

START2

FANRIGHT :DIST :ANGLE

END

Notethat the FANLEFT and FANRIGHT proceduresare
changed slightly to producethisdrawing. Check therecursive
statement in each procedure.

TO FANLEFT :DIST :ANGLE

IF :DIST < 0 [STOP|

FD :DIST BK :DIST - 5LT :ANGLE
FANLEFT :DIST - 3:ANGLE + 1
END

TO FANRIGHT :DIST :ANGLE

IF :DIST < 0 [STOP|

FD :DIST BK :DIST - 5RT :ANGLE
FANRIGHT :DIST - 3:ANGLE + 1
END

TO START1
PU HOME PD
END

Recursion

TO START2
PU HOME RT 180 FD 50 PD
END

Another thing you might want to try isto add aSTART3
and START4 so that you can havefiguresdrawn at 90 degrees
and 270 degrees. Here'safew simple ones.

String and Wire Remember whenyou did somestring andwireart earlier?
Art Procedures Y ou never did get around to the Logo procedures, did you?
Guesswhat? You will now!

369

Recursion

BOXTOP draws the box top. You define the size of the
short side and the number of marksto appear on that side. For
example:

BOXTOP 300 30

TO BOXTOP :DIST :MARK

PU SETX :DIST - :DIST * 2 PD

REPEAT 2 [MARKER :MARK RT 90 REPEAT 2
[MARKER :MARK] RT 90]

END

The CURVE procedure looks complex. Butitissimply
the turtle doing the sewing that you did with aneedle and
colored yarn.

CURVE 3010-30003000

Y ou draw 30 lines that are 10 steps apart (there’'sa GAP
of 10 steps). You start at : X1 inthe lower left where the X-
coordinateis -300andthe:Y1isO0. Theturtle movesfrom
:X1land:Y1to:X2and:Y2, then back and forth 30 times.

TO CURVE T :GAP:X1:Y1:X2:Y2
IF:T=0[STOP|

PU SETXY LIST :X1:Y1PD

SETXY LIST :X2:Y2
MAKE"X1:X1 + :GAP
MAKE"Y2:Y2+ :GAP
CURVE:T-1:GAP:X1:Y1:X2:Y2
END

TO MARKER :MARK
REPEAT :MARK [FD :DIST / :MARK MARKS]
END

370

Recursion

TO MARKS
LT 90 FD 5BK 10 FD 5 RT 90
END

Go ahead. Play with afew other combinations. Do the
same things on the screen that you did with yarn. What else
can you dream up?

What would you have to do to draw the box top patterns
shown earlier in this chapter?

Once you' ve played with the BOXTOP, the STRING
procedures become a bit easier to understand.

S

o e
e
S

-
St
s

R
L
g

s

T
£l e
L

T

o

£,

s

e

!

STRING 1502 2 STRING 1503 2

371

Recursion

TO STRING :RADIUS :DIST :HEAD
CSHT MAKE"N 1 PU SETX :RADIUS PD
REPEAT 360 [FD :RADIUS* PI/180 LT 1] PU HOME
REPEAT 36 * :HEAD
[
FD :RADIUS MAKE "P POSHOME HDG
FD :RADIUS PD SETXY LIST :PPU
HOME HDG1 MAKE "N :N +1

]
END

TOHDG
SETH REMAINDER (:N * 5* :DIST) 360
END

TOHDG1
SETH REMAINDER (5 * (:N-1)) 360
END

Play with these procedures for awhile, trying different
variables. Not only do they create some beautiful patterns,
they giveyou alook at how positionsand headings can be used.

But beforeweleaverecursion, you can’'t overlook thefun
you can have with fractals.

A Trianglein a Draw atriangle on the computer — any type of triangle
Circle will do.

372

Recursion

Now draw acirclearound that triangle so that the edge of
the circle touches the three points of the triangle.

This problem shows a great use of recursion. The
CHECK.DIST procedure keeps calling itself until it finds the
center of the circle. It then draws the circle touching each
corner of the triangle. Without recursion, thiswould be a
difficult mathematical exercise.

Now let’sget toit. Just remember, the wholeideabehind
Logo isto break aproblem downinto itssimplest parts. Start
with what you know. Determinewhat you don’t know. Then
go find it.

What do you know?

Y ou know that the three points of the triangle are going
to be on the edge, or the circumference of the circle. If you
can find a point that is the same distance from each of those
points, then you have the center of the circle, right?

Tomakethingseasier to understand, | et’ slabel the points
onthecircle. Cal them A, B, and C.

Y ou have to find point D, a point inside the triangle that
Isthe same distance from A asitisfrom B and C.

373

Recursion

If point D is the same distance from A, B, and C, then
point D must bethe center of thecircleand thethreelines, AD,
BD, and CD are each aradius of the circle you are supposed
to draw.

Now, how can you prove that?

Draw theline EF so that it is perpendicular to the middle

of line AB.
B
E F
C
A

Perpendicular meansthat the line EF is at right anglesto
line AB.

What can you learn from this drawing now?

374

The Random
Triangle

Recursion

Y ou have two triangles— ADE and BDE — that share
one side and have two short sides that are equal. Therefore,
the sides AD and BD must be equal.

OK, if you can find the point on line EF that makes these
two lines equal to line CD, you have found the middle of the
circle you want to draw.

Let'sdo it.

Thefirst step isto create a random triangle, something
like you have already drawn.

TO RANDOM.TRI

MAKE "POINTA POS

FD 100 RT 120 - RANDOM 30

MAKE POINTB POS

MAKE "DIST 250 - RANDOM 100 FD :DIST
MAKE "POINTC POS HOME

END

This procedure starts from HOME, POINT A with
coordinates 0,0. The turtle goes FD 100 and turnsright a
random angle, somewhere between 120 and 90. Thisis
POINTB, coordinates 100,0.

The turtle then goes FD between 150 and 250 and sets
POINTC. Then theturtle goesHOME. The next step isto
draw the perpendicular line.

TO RT.ANGLE
SETPOSLIST :POINTA
FD 100/ 2 RT 90
MAKE "POINTE POS

375

Recursion

FD 200 PU HOME PD

END

B

E F
C

A

Now you have a drawing something like the one at the
bottom of the last page, but without the dotted lines.

What do you need to know now to complete our circle?
Y ouneedtofindthepoint D onlineEFthat isthe samedistance
fromB asitisfrom C. Y ou already know that AD and BD are
going to be equal and that each is going to be aradius of our
circle.

So if you can make one equal to line DC, the other is
automatically equal to DC. Thefirst thing you need for that
Is a distance procedure.

TODIST :X1:Y1:X2:Y2
OPDIST1:X1-:X2:Y1-:Y2
END

TODIST1:DX :DY
OPINT SQRT (:DX * :DX) + (:DY * :DY)
END

The DIST procedure measures the distance between two
sets of coordinates. Logo measures that difference very
precisely. So to keep things simple and easy to compare, the

376

Recursion

output is an integer, awhole number. (It'salot easier to
compare whole numbersthan it isto compare long decimals.)

Now let’'s put the DISTance procedure to work. You'll
use it to calculate two distances. the distance between B and
D andthedistance between Cand D. Whenthesearethesame,
you' |l draw our circle.

TO CHECK.DIST

MAKE "BD DIST FIRST :POINTB LAST :POINTB ~
FIRST :POINTD LAST :POINTD

MAKE "CD DIST INT FIRST :POINTC ~
INT LAST :POINTC FIRST :POINTD ~
LAST :POINTD

TEST :BD =:CD
IFTRUE [HT CIRCLE :POINTD :BD]

IFFALSE [FD 1 MAKE "POINTD POS CHECK.DIST]
END

Here are more new commands: FIRST and LAST. Well,
actually you’ ve seen them before when you made the POS
procedure. Thisuseof FIRST and LA ST sort of explainsitself.

TO POS:LIST
OPLIST FIRST :LIST LAST :LIST
END

That’s adifferent way of writing a POS procedure but it
getsthejob done.

But back to CHECK.DIST. You aready know that
:POINTB isalist of two coordinates. So FIRST :POINTB
must be the first coordinate. And if that’strue, then LAST
:POINTB must be the last element in the list or the y-

377

Recursion

378

coordinate. You'll learn more about characters, numbers,
words, lists, FIRST, LAST, and other good stuff later on.

There' s one more thing in CHECK.DIST. We used the
TEST command:

TEST :BD =:CD
IFTRUE [HT CIRCLE :POINTD :BD]
IFFALSE [FD 1 MAKE "POINTD POS CHECK.DIST]

Y ou can also write that as

IF:BD =:CD [HT CIRCLE :POINTD :BD] [FD 1~
MAKE "POINTD POS CHECK.DIST]

Now let’ srun through the CHECK.DIST procedure. The
first two lines calculate the distances BD and CD. Sothat you
can see how these distances change, the distances are printed
in the Listener or Commander window.

Then Logo tests the two numbers. If :BD =:CD istrue,
if they are equal, Logo draws acircle with :POINTD asthe
center and aradius of :BD.

If the two distances are not equal, the turtle moves FD 1
and checks the distances again.

TO CIRCLE :CENTER :RADIUS
LOCAL "AMT

MAKE"AMT :RADIUS* PI /180
PU SETXY LIST :CENTER

SETX XCOR - :RADIUS SETH O PD
REPEAT 360 [FD :AMT RT 1]

PU SETPOS :CENTER PD

END

Recursion

To put thewholething together, here's
aplace to start.

RI
INTA

\NTD POS
R |

END

Takeyour timewiththisprocedure. Comeback toit when
you'reready. Thisisagood stepping stone to some of the
other procedures you' Il see in the rest of this book.

Fun With Fractals

Fractals were once thought to be math monsters. No one
could figure out what to do with them. But thanksto
computers, we now know that these recursive monsters help
make beautiful computer graphics.

Takealook at the COAST.LGO procedureinthe Projects
directory of the CD that camewith thisbook. That showsyou
how to draw arandom coastline. If you'd like to experiment
abitonyour own, takealook at thisMEDTRI.L GO procedure.

TO MEDIAL.TRIANGLE :X1:Y1:X2:Y2:X3:Y3
COOR.TRIANGLE :X1:Y1:X2:Y2:X3:Y3
MIDPOINT :X1:Y1:X2:Y2

MIDPOINT :X2:Y2:X3:Y3

379

Recursion

MIDPOINT :X3:Y3:X1:Y1
MIDPOINT :X1:Y1:X2:Y2
END

TO COOR.TRIANGLE :X1:Y1:X2:Y2:X3:Y3
SEGMENT :X1:Y1:X2:Y2

SEGMENT :X2:Y2:X3:Y3

SEGMENT :X3:Y3:X1:Y1

END

TO MIDPOINT :X1:Y1:X2:Y2
SETXY (:X1+:X2)/2(Y1+:Y2)/2
END

TO SEGMENT :X1:Y1:X2:Y2
PENUP

SETXY :X1:Y1

PENDOWN

SETXY :X2:Y2

END

This procedure takes any triangle you define and creates
anew triangle drawn from the midpoints of each side.

380

C Curves

Recursion

Here'sachallenge for you — something you may want
to come back to once you' ve read more about fractals.

1. Start with atriangle that is about as big as your screen.

2. Canyou write aprocedure that will draw atriangle at the
midpoints of each new triangle you create?

3. Later in thisbook, you'll get alook at working with three
dimensional space whereyou add aZ axisto X and Y.
Think about changing the Z axis of each new triangle you
create.

Imagine such a procedure run on a graphics workstation
with lotsof memory. Asthetrianglesget smaller and smaller,
and they begintotiltin different directions, the picture begins
tolook likeamountainrange. Add somecolor to makeit more
realistic. What you get isfractalsin action.

There are lots of books on fractals that you canread. So
rather than try to explainfractals, let’ slook at how they work.
Here's the well-known C curve as a Logo procedure.

TOC:SIZE LEVEL

IF:LEVEL =0 [FD :SIZE STOP]
C:SIZE:LEVEL -1RT 90
C:SIZE:LEVEL -1LT 90

END

If you look at the procedure, you seethat :SIZE isthe
variableused by FD. :LEVEL isabit confusing, solet’ swatch
it work first. Type

C510

381

Recursion

Wow! That's some pattern. Clear the screen and try

C203
Automatic OK! Now addthe SEE procedureonthenext page. When
Startup yourun SEE, you*“ see” how theturtlebuildssuch complicated
pictures.
TO SEE

IF:LEVEL =11 [STOP]
C:SIZE :LEVEL WAIT 50 CS
SEE :SIZE :LEVEL +1

END

MAKE"SIZE 10
MAKE"LEVEL O

Hey! Wait a minute.

There' s no procedure there at the end for those MAKE
Statements.

382

Recursion

How can that be?

Don’t you remember? Wetalked about how you can have
proceduresstartup and do thingswhenthey’ reloaded into your
workspace. Inthiscase, you' retellingtell Logowhat youwant
the variables to be without writing a procedure. It savesyou
the trouble of putting the variables in the proceduretitle.

Time out for amoment. Here'saquestion for you. Are
those variables|ocal or global? Just checking to keep you on
your toes.

While you' ve timed out, here's a couple of other things
you can do.

1. Torun SEE when it’'sfirst loaded, add the variables above
and thisline:

MAKE “STARTUP [SEE]

2. Rather than use the SEE procedure, you can type
something like this in the Editor window:

CSC 101 WAIT 60
CSC 102 WAIT 60
CSC 103 WAIT 60
CSC 104 WAIT 60
CSC 108 WAIT 60
CSC510WAIT 60

Now when you load the C procedure, it will run six
examples to show you how it works.

383

Recursion

Figuring Out Now, where were we? Run the SEE procedure. You're
Fractals watching fractals in action.

To help you figure out fractals, here are some tips:

» Write the C and the SEE procedures on pieces of
paper asyou did in Morf’ s Rabbit Trail. Thiswill help
you follow the action.

» Change WAIT to 100 or 150 — long enough so that
you can see the changes from one level to the next.

» Another thing to do ischangethe LEVEL variableto 5
or 6, large enough so you can watch how the
procedure really works. The higher the level, the
more complex the picture.

Dragons, You'll find some other fractal procedures on the CD —
Snowflakes,and SNOWFLAKE, HILBERT, DRAGON, SRPNSK (that's
other Fractals short for Serpinski) and others.

Take alook at the DRAGON procedure.

TO DRAGON :SIZE :LEVEL
LDRAGON :SIZE :LEVEL
END

TO LDRAGON :SIZE :LEVEL
IF:LEVEL =0 [FD :SIZE STOP]
LDRAGON :SIZE :LEVEL -1LT 90
RDRAGON :SIZE :.LEVEL -1

END

384

Tracing the
Dragon

Recursion

TO RDRAGON :SIZE :LEVEL
IF:LEVEL =0 [FD :SIZE STOP]
LDRAGON :SIZE :LEVEL - 1 RT 90
RDRAGON :SIZE :.LEVEL -1

END

Canyou seewhat the DRAGON proceduredoes? What
adrawing would look like?

Here sapicturefor
DRAGON 50 1.

What would DRAGON 50 0 look like? Try it and see.
For a better look at how DRAGON works, turn on TRACE.

With TRACE turned on, type DRAGON 50 1 and press
Enter.

Then check the Commander window to see the sequence
of operations that L ogo went through.

TO DRAGON 50 1
LDRAGON 50 1
END

TO LDRAGON

IF 1=0[FD 50 STOF]|
LDRAGON501-1LT 90
RDRAGON 501 - 1

END

385

Recursion

TO RDRAGON

IF 1=0[FD 50 STOF]|
LDRAGON 50 1- 1 RT 90
RDRAGON 501 - 1

END

(NOTE: You can aso use the STEP command, which
steps you through each command of each procedure. The
command is STEP [<procedures to step through>].)

Now try DRAGON 20 2 _I
DRAGON 203
DRAGON 10 10
I I
R geests
M
I I S I I
l_l II_ _II | 1
L LT
- -t
[l 111
plsasasaaal o
0 1O . 1
DEE% A G %E.u
a0 M 1 11
rlIJl_II II_ | =
I_II___I I_Il__u
[[

386

Snowflakes
Again

Recursion

If you have trouble understanding the list in the Trace
window, use a pad of paper and make stacks of recursivecalls
— the same way you did before.

Now takealook at the SNOWFLAKE procedure. Before
the snowflakeswere made using REPEAT 6to createaunique
six-pointed pattern. These are a bit different.

TO SNOWFLAKE :SIZE :LEVEL
REPEAT 3 [RT 120 SIDE :SIZE :LEVEL]
END

TO SIDE :SIZE :LEVEL
IF:LEVEL =0 [FD :SIZE STOP]
SIDE:SIZE/3:LEVEL -1LT 60
SIDE :SIZE/ 3 :LEVEL - 1 RT 120
SIDE:SIZE/3:LEVEL -1LT 60
SIDE:SIZE/3:LEVEL -1

END

This procedure gets a bit more complex. What would
SNOWFLAKE 50 0 look like. No fair trying it on the
computer!

e
Here sapicture < >

from SNOWFLAKE

100 1 N

Here' s one from
SNOWFLAKE 100 4

387

Recursion

Want to see some colorful snowflakes? Try this
procedure. It on the disk that came with this book.

TO START
CS PU SETPOS[-100 -100] PD
SETPC [0 0 255]
SNOWFLAKE 300 1 WAIT 30
SETPC [128 128 0]
SNOWFLAKE 300 2 WAIT 30
SETPC [128 0 0]
SNOWFLAKE 300 4

END

Hilbert Curve Now take alook at HILBERT.LGO. It'sabit more
complex than SNOWFLAKE or DRAGON — areally good
challenge.

TOHILBERT :SIZE :LEVEL
H:SIZE:LEVEL 1
END

TOH :SIZE:LEV :PAR
IF:LEV = 0 [STOP]|

LT :PAR* 90

H :SIZE :LEV -1 0-:PAR
FD :SIZE

RT :PAR* 90

H:SIZE :LEV -1 :PAR
FD :SIZE

H :SIZE :LEV -1 :PAR
RT :PAR* 90

FD :SIZE

H:SIZE:LEV -1 0-:PAR
LT :PAR* 90

END

388

Taming the
Flicker

Logo Trees

Recursion

The HIL.LGO and LHILBERT.LGO procedures on CD
that camewith thisbook offer another ook at theHilbert curve.

For some more complex drawings, take alook at the
Sierpinski gasket and carpet procedures that are on the CD
(SIERP.LGO). You've got recursive calls embedded all over
the place in these procedures.

These include the use of color, which can produce an
annoying screen flicker asthey are being drawn. An easy way
to get rid of the flicker isto shut down the MSWL ogo Screen
while the fractals are being drawn.

The CARPET procedure givesan example of how you do
this. Before the turtle starts drawing, enter the command

ICON [MSWLOGO SCREEN]

Whenthefractal iscomplete, display thescreenusingthis
command:

UNICON [MSWLOGO SCREEN]

There are anumber of examples of fractalsin the
\projects\chpt9 directory on the accompanying CD, from the
simple to the complex. Also, there are many, many books on
fractals, from the most basic level to the very complex. Take
alook at some of these, especially those that deal with
computer art and landscapes.

RUNNER.LGO, which you'll find on the CD that came
withthisbook, isagreat exampleof recursion. It’salsoagood
example of animating the turtle.

Why not see what you can do with this procedure?

389

Recursion

390

1. Add some color.

2. When the Road Runner reaches the Stop sign, it stops,
looks both ways, and then plays two tones. If you have a
sound card, why not play awavefile?

3. You'll soon read about changing the shape of the turtle.
Why not draw areal Road Runner?

4. Havethe Road Runner change directions and travel the
other road.

Among other interesting things, RUNNER.L GO usesthe
classic TREE procedure. It isone of the better known
examples of recursion.

TO TREE :LENGTH
IF:LENGTH < 2[STOP] LT 45FD :LENGTH

TREE :LENGTH /2 BACK :LENGTH RT 90
FD :LENGTH

TREE :LENGTH /2 BACK :LENGTH LT 45
END

Recursion

If you can’t seem to follow the action here, use Morf’s
pieces of paper to see how it works. It'sreally pretty neat! Or
maybe you'’ Il find these tree procedures easier to deal with.

TO FTREE :SIZE :COUNTER
IF :COUNTER = 0 [STOF]|

LT 30 FD :SIZE * 2

FTREE :SIZE :COUNTER - 1

BK :SIZE* 2 RT 60 FD :SIZE
FTREE :SIZE :COUNTER - 1

BK :SIZELT 30

END

TO TREE :SIZE :LIMIT

IF :SIZE <:LIMIT [STOP]
LT 45 FD :SIZE

TREE :SIZE * 0.61803 :LIMIT
BK :SIZE RT 90 FD :SIZE
TREE :SIZE * 0.61803 :LIMIT
BK :SIZELT 45

END

These are in the TREES.L GO procedure on the CD that
came with thisbook. Y ou’ll also find some good exampl es of
recursion in the next chapter.

391

Recursion

392

