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president’s letter

It is a great honor to have been elected ACM 
President. I must say it’s been an interesting 
road to this juncture. My first ACM role was 
volunteering to maintain the mailing list of 

my local SIGGRAPH chapter in Paris in 
the mid-1980s. Over the last 25 years, I 
have continued to volunteer for many 
different roles within the organiza-
tion. I am proud to be the first French 
citizen and the second European to 
hold this position, as it clearly illus-
trates that ACM has become a truly in-
ternational organization. I’m looking 
forward to the day when we can look 
back at this time as the beginning of 
a long chain of volunteer leaders com-
ing from countries throughout every 
region of the world. 

This organization is largely built 
on the energy and devotion of many 
dedicated volunteers. I’d like to 
take this opportunity to share some 
thoughts on the value of volunteering 
at ACM.  When you look at all of the 
activities that make up the offerings 
of our organization, it is amazing to 
note that members who volunteer 
their time to deliver the content we 
provide do the vast majority of the 
work. There are many opportunities 
for members to step forward and 
donate their time to the success of 
ACM’s various endeavors.

I recently attended the annual SIG-
GRAPH conference in Los Angeles 
where volunteer efforts are highly visi-
ble. With a multimillion-dollar budget, 
it is by far the largest conference that 
ACM sponsors, attracting tens of thou-
sands of attendees every year. Though 
a conference of that size calls upon 
many highly skilled professional con-
tractors to implement the vision of the 

conference organizers, the content is 
selected and organized by volunteers. I 
encourage you to visit Communications’ 
Web site (http://cacm.acm.org) to view 
a dynamic visual representation of 
how much work went into the prepa-
ration of the conference over a three-
year period. Created by Maria Isabel 
Meirelles, of Northeastern University, 
Boston, the series of graphs illustrate 
how volunteer involvement increased 
dramatically over the 40-month pre-
paratory period as we got closer to 
the dates of the event. By the time the 
conference took place a total of over 
580 volunteers had put in over 70,000 
hours of work to make the conference 
successful. That’s over eight years of 
cumulated effort!

Not all ACM endeavors require 
as much volunteer effort as the an-
nual SIGGRAPH conference. There 
are a multitude of tasks that you, as a 
member of this organization, can vol-
unteer your services for. You can start 
by checking out the ACM professional 
chapter in your area. We have ACM 
general interest chapters as well as 
more specialized chapters associated 
with any of ACM’s 34 special interest 
groups, (SIGs) that can use volunteer 
support. Tasks cover everything from 
greeting people at an event hosted by 
your local chapter to maintaining a 
Web presence for a particular activity. 
If a chapter does not yet exist in your 
area, you can volunteer to establish 
one. From there you can consider vol-
unteering to help organize a confer-

ence or being a referee to evaluate the 
quality of submitted content to ACM’s 
40+ journals and periodicals or the 
more than 170 conferences and work-
shops that we sponsor. 

By starting off with a task that is 
small and easily manageable, you can 
get a sense of the time requirements 
involved. As you proceed you might 
find you want to take on more. Work-
ing as a volunteer at ACM is extremely 
rewarding. You can see the value of 
your effort in the results of the activity 
you have supported. Little did I imag-
ine, when I first volunteered so long 
ago to manage a mailing list for my 
local SIGGRAPH chapter, that I would 
one day wind up elected to the position 
of president of the organization. 

Over the decades I’ve held mul-
tiple positions including contributing 
to the publication of the SIGGRAPH 
quarterly, serving as director for Chap-
ters on the Local Activities Board, 
chairing the SIG Governing Board, and 
serving on the organizing committee 
of the annual SIGGRAPH conference. 
Each experience has carried with it the 
satisfaction of giving back to the com-
munity that ACM represents. I’d like to 
encourage you to donate your time to 
help make ACM a success. Volunteer-
ism is the core of what makes ACM 
what it is. 	

Alain Chesnais (chesnais@acm.org) heads Visual 
Transitions, a Toronto-based consulting company.

© 2010 ACM 0001-0782/10/1000 $10.00

ACM is Built on  
Volunteers’ Shoulders

DOI:10.1145/1831407.1831408		  Alain Chesnais
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How to Celebrate Codd’s RDBMS Vision 
DOI:10.1145/1831407.1831409		

implement Codd’s rules in their purest form, 
as McGoveran and Date point out. 

Gary Anthes, Arlington, VA 

Past Future Visions of  
Two-Way Cable Television 
The name “PLATO” in “Celebrat-
ing the Legacy of PLATO” by Kirk L. 
Kroeker (Aug. 2010) triggered my own 
memories from the early 1970s when 
I was researching a technology called 
two-way cable television, whereby in-
teractive broadband services would be 
possible by blending computers and 
communications systems. I eventually 
published Talk-Back TV: Two-Way Cable 
Television (Tab Books, 1976), including 
an overview of the PLATO system. 

I was reminded I had good things to 
say about the system, including about 
its plasma-panel display. But in consid-
ering PLATO as something that would 
work in a two-way-television environ-
ment, I suggested there would be a 
problem putting it onto a cable-televi-
sion network because ordinary televi-
sions could not do many things plasma 
panels could do. Leaving wiggle room, 
I added that PLATO researchers had 
produced considerable material that 
would work with ordinary CRTs. 

Kroeker quoted Brian Dear saying 
PLATO was a computer system focused 
on connecting people and an excellent 
predictor of how the Internet would 
evolve. Maybe so, but the same could 
be said about technology being devel-
oped or envisioned as “two-way cable 
television” at the time. 

In the same way an exploration of 
PLATO’s history could “enrich every-
one’s overall perspective” of today’s 
interactive, networked technologies, 
so, too, could a look back at visions of 
interactive broadband originally con-
jured 40 years ago. 

Richard H. Veith, Port Murray, NJ 	

Communications welcomes your opinion. To submit a 
Letter to the Editor, please limit your comments to 500 
words or less and send to letters@cacm.acm.org. 
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W
hile we were pleased 
Communications cel-
ebrated E.F. Codd’s 
seminal article “A Re-
lational Model of Data 

for Large Shared Data Banks” (June 
1970) in “Happy Birthday, RDBMS!” by 
Gary Anthes (May 2010), we were also 
dismayed by its inaccuracies and mis-
representations, including about more 
than just pre-RDBMS history. 

For example, saying “Codd’s rela-
tional model stored data in rows and 
columns…” (emphasis added) is com-
pletely at odds with Codd’s goal that 
“Future users of large data banks must 
be protected from having to know how 
data is organized in the machine.” 
Rows and columns are the canonical 
representation of Codd’s relations, 
not a constraint on physical data struc-
tures. Getting this wrong completely 
undermines Codd’s contribution. 
Moreover, no viable commercial RD-
BMS has stored data purely in rows 
and columns, nor has any vendor com-
pletely implemented the logical and 
physical data independence his theory 
made possible. 

Other inaccuracies and misleading 
statements abound: 

DB2 did not “edge out IMS and IDMS.” 
It took a long time for the transac-
tion rates of any commercial RDBMS 
to compete with those of IMS, which 
remains an important commercial 
DBMS; 

Ingres and its derivatives did not have 
the “DEC VAX market to themselves.” 
Interbase, Oracle, and Rdb/VMS were 
early players (1980s), and Ingres was 
initially available on VAX/VMS but—
like many RDBMS products that pre-
ceded the IBM products—introduced 
on Unix; 

The “database wars” raged for almost 
two decades. Relational repeatedly had 
to prove itself against network, hier-
archical, and object-oriented DBMSs, 
continuing with XML and Hadoop con-
tenders; 

Map/Reduce is a non-declarative pro-
grammer’s distributed query template, 
and the Hadoop Distributed File System 

is a storage model. Neither rises to the 
level of data model or programming 
language; 

Whether it was “easier to add the 
key features of OODBs to the relational 
model than start from scratch with a 
new paradigm” never happened. At best, 
features were added to SQL and SQL-
based products, but these misguided 
additions did violence to the relational 
model’s way of achieving desired ca-
pabilities, namely extensible domain 
support; 

“Querying geographically distrib-
uted relational databases” is not un-
solved. Implementing the relational 
model’s physical data independence 
solved it; 

Since 1980, numerous RDBMS prod-
ucts have provided partial implementa-
tion of physical data independence and 
been widely used in industry. Perhaps 
David DeWitt [cited by Anthes and di-
rector of Microsoft’s Jim Gray Systems 
Laboratory at the University of Wis-
consin-Madison] was referring to the 
problems of querying heterogeneous, 
distributed data with inadequate 
metadata, since he was quoted saying 
databases “created by different orga-
nizations” and “almost but not quite 
alike”; and 

Database scalability has always been 
about numbers of concurrent users and 
locations, user variety, and manage-
ability, not just data volumes. One of 
us (McGoveran) published (late 1980s, 
1990s) studies evaluating scalability 
of commercial products along these 
lines. 

�David McGoveran, Boulder Creek, CA 
C.J. Date, Healdsburg, CA 

Author’s Response: 
E.F. Codd’s model let users “see” their 
data as if it were stored in ordinary tables, 
rows, and columns. This was easier for 
them to understand than the pointers and 
hierarchical trees used in other models. 
Such simplification was one reason the 
RDBMS model edged out IMS and IDMS, 
though IMS is still used in a few narrow (but 
important) niches. Alas, vendors did not 

mailto:letters@cacm.acm.org
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and that recovery from errors has more 
dimensions to consider. We assume a 
typical hardware model of a collection 
of local processing and storage nodes 
assembled into a cluster using LAN 
networking. The clusters, in turn, are 
wired together using WAN networking.

Let’s start with a discussion of what 
causes errors in databases. The follow-
ing is at least a partial list:

1.	 Application errors. The applica-
tion performed one or more incorrect 
updates. Generally, this is not dis-
covered for minutes to hours there-
after. The database must be backed 
up to a point before the offending 
transaction(s), and subsequent activity 
redone.

2.	 Repeatable DBMS errors. The 
DBMS crashed at a processing node. 
Executing the same transaction on 
a processing node with a replica will 
cause the backup to crash. These er-
rors have been termed “Bohr bugs.”2

3.	 Unrepeatable DBMS errors. The 
database crashed, but a replica is like-
ly to be ok. These are often caused by 
weird corner cases dealing with asyn-
chronous operations, and have been 
termed “Heisenbugs.”2

4.	 Operating system errors. The OS 
crashed at a node, generating the “blue 
screen of death.”

5.	 A hardware failure in a local clus-
ter. These include memory failures, 
disk failures, etc. Generally, these 
cause a “panic stop” by the OS or the 
DBMS. However, sometimes these fail-
ures appear as Heisenbugs.

6.	 A network partition in a local 
cluster. The LAN failed and the nodes 

Michael Stonebraker
“Errors in Database 
Systems, Eventual 
Consistency, and  
the CAP Theorem”
http://cacm.acm.org/

blogs/blog-cacm/83396

Recently, there has been considerable 
renewed interest in the CAP theorem1 
for database management system 
(DBMS) applications that span multi-
ple processing sites. In brief, this theo-
rem states that there are three interest-
ing properties that could be desired by 
DBMS applications:

C: Consistency. The goal is to al-
low multisite transactions to have the 
familiar all-or-nothing semantics, 
commonly supported by commercial 
DBMSs. In addition, when replicas are 
supported, one would want the repli-
cas to always have consistent states.

A: Availability. The goal is to sup-
port a DBMS that is always up. In other 
words, when a failure occurs, the sys-
tem should keep going, switching over 
to a replica, if required. This feature 
was popularized by Tandem Comput-
ers more than 20 years ago.

P: Partition-tolerance. If there is a 

network failure that splits the process-
ing nodes into two groups that cannot 
talk to each other, then the goal would 
be to allow processing to continue in 
both subgroups.

The CAP theorem is a negative result 
that says you cannot simultaneously 
achieve all three goals in the presence 
of errors. Hence, you must pick one ob-
jective to give up.

In the NoSQL community, the CAP 
theorem has been used as the justifi-
cation for giving up consistency. Since 
most NoSQL systems typically disallow 
transactions that cross a node bound-
ary, then consistency applies only to 
replicas. Therefore, the CAP theorem is 
used to justify giving up consistent rep-
licas, replacing this goal with “eventual 
consistency.” With this relaxed notion, 
one only guarantees that all replicas 
will converge to the same state even-
tually, i.e., when network connectiv-
ity has been reestablished and enough 
subsequent time has elapsed for rep-
lica cleanup. The justification for giv-
ing up C is so that the A and P can be 
preserved.

The purpose of this blog post is to as-
sert that the above analysis is suspect, 

In Search of  
Database Consistency  
Michael Stonebraker discusses the implications of  
the CAP theorem on database management system applications  
that span multiple processing sites.

doi:10.1145/1831407.1831411			   http://cacm.acm.org/blogs/blog-cacm
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can no longer all communicate with 
each other.

7.	 A disaster. The local cluster is 
wiped out by a flood, earthquake, etc. 
The cluster no longer exists.

8.	 A network failure in the WAN con-
necting the clusters together. The WAN 
failed and clusters can no longer all 
communicate with each other.

First, note that errors 1 and 2 will 
cause problems with any high avail-
ability scheme. In these two scenarios, 
there is no way to keep going; i.e., avail-
ability is impossible to achieve. Also, 
replica consistency is meaningless; the 
current DBMS state is simply wrong. 
Error 7 will only be recoverable if a lo-
cal transaction is only committed after 
the assurance that the transaction has 
been received by another WAN-con-
nected cluster. Few application build-
ers are willing to accept this kind of 
latency. Hence, eventual consistency 
cannot be guaranteed, because a trans-
action may be completely lost if a disas-
ter occurs at a local cluster before the 
transaction has been successfully for-
warded elsewhere. Put differently, the 
application designer chooses to suf-
fer data loss when a rare event occurs, 
because the performance penalty for 
avoiding it is too high.

As such, errors 1, 2, and 7 are exam-
ples of cases for which the CAP theorem 
simply does not apply. Any real system 
must be prepared to deal with recovery 
in these cases. The CAP theorem can-
not be appealed to for guidance.

Let us now turn to cases where the 
CAP theorem might apply. Consider 
error 6 where a LAN partitions. In my 
experience, this is exceedingly rare, 
especially if one replicates the LAN (as 
Tandem did). Considering local fail-
ures (3, 4, 5, and 6), the overwhelming 
majority cause a single node to fail, 
which is a degenerate case of a net-
work partition that is easily survived by 
lots of algorithms. Hence, in my opin-
ion, one is much better off giving up P 
rather than sacrificing C. (In a LAN en-
vironment, I think one should choose 
CA rather than AP.) Newer SQL OLTP 
systems appear to do exactly this.

Next, consider error 8, a partition 
in a WAN network. There is enough 
redundancy engineered into today’s 
WANs that a partition is quite rare. My 
experience is that local failures and 
application errors are way more likely. 

Moreover, the most likely WAN fail-
ure is to separate a small portion of 
the network from the majority. In this 
case, the majority can continue with 
straightforward algorithms, and only 
the small portion must block. Hence, it 
seems unwise to give up consistency all 
the time in exchange for availability of 
a small subset of the nodes in a fairly 
rare scenario.

Lastly, consider a slowdown either 
in the OS, the DBMS, or the network 
manager. This may be caused by a skew 
in load, buffer pool issues, or innu-
merable other reasons. The only deci-
sion one can make in these scenarios 
is to “fail” the offending component; 
i.e., turn the slow response time into a 
failure of one of the cases mentioned 
earlier. In my opinion, this is almost 
always a bad thing to do. One simply 
pushes the problem somewhere else 
and adds a noticeable processing load 
to deal with the subsequent recovery. 
Also, such problems invariably occur 
under a heavy load—dealing with this 
by subtracting hardware is going in the 
wrong direction.

Obviously, one should write software 
that can deal with load spikes without 
failing; for example, by shedding load 
or operating in a degraded mode. Also, 
good monitoring software will help 
identify such problems early, since the 
real solution is to add more capacity. 
Lastly, self-reconfiguring software that 
can absorb additional resources quick-
ly is obviously a good idea.

In summary, one should not throw 
out the C so quickly, since there are 
real error scenarios where CAP does 
not apply and it seems like a bad trade-
off in many of the other situations.
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Readers’ comments 
“Degenerate network partitions” is a very 
good point—in practice I have found that 
most network partitions in the real world 
are of this class.

I like to term certain classes of network 
partitions “trivial.” If there are no clients 
in the partitioned region, or if there are 
servers in the partitioned region, it is then 
trivial. So it could involve more than one 
machine, but it is then readily handled.

—Dwight Merriman

I think a lot of the discussion about 
distributed database semantics, much like 
a lot of the discussion about SQL vs. NoSQL, 
has been somewhat clouded by a shortage 
of pragmatism. So an analysis of the 
CAP theorem in terms of actual practical 
situations is a welcome change :-)

My company, GenieDB, has developed 
a replicated database engine that 
provides “AP” semantics, then developed 
a “consistency buffer” that provides 
a consistent view of the database  as 
long as there are no server or network 
failures; then providing a degraded 
service, with some fraction of the records 
in the database becoming “eventually 
consistent” while the rest remain 
“immediately consistent.” Providing a 
degraded service rather than no service 
is a good thing, as it reduces the cost 
of developing applications that use a 
distributed database compared to existing 
solutions, but that is not something that 
somebody too blinded by the CAP theorem 
might consider!

In a similar vein, we’ve provided both 
NoSQL and SQL interfaces to our database, 
with different trade-offs available in both, 
and both can be used at once on the same 
data. People need to stop fighting over X vs. 
Y and think about how to combine the best 
of both in practical ways!

—Alaric Snell-Pym

Michael Stonebraker is an adjunct professor at the 
Massachusetts Institute of Technology.
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The Mobile Road Ahead 

ACM is planning to launch a mobile version of the Communications Web site and 
a series of mobile applications in the coming months. To determine how best to 
proceed, we have been directly and indirectly collecting data from members for 
months to help guide our decision making. We have conducted surveys, met with 
focus groups, and examined usage statistics. 

The following table and pie chart show how users with mobile devices have 
been getting to the Communications Web site. The percentage of users accessing 
the site with mobile devices is small, but the number is trending upward. This 
report is based on sampled data.

Here are some of the key takeaways from our research that will influence our 
decisions going forward:

˲˲ The Time Is Right. There is a growing need to access Communications content 
from mobile platforms. “[This] is the way things are moving,” said one software 
engineer.

˲˲ Keep It Simple. Users want to be able to find the content quickly and easily on 
their devices, from anywhere anytime.

˲˲ Search, Save, Share. Most “small screen” mobile devices are being used 
primarily to find, collect, and share articles.

˲˲ Consumption Devices Are Coming. Media-ready platforms like the iPad will 
create new ways to present and consume content. 

˲˲ This Is The Beginning. We’ve collected valuable data on which mobile devices 
are being used to access Communications content, and that is guiding our path in 
the short term. But for the long term we will remain platform agnostic, and will 
support the systems that are most heavily used and called for by members.

DOI:10.1145/1831407.1831412	 David Roman

ACM 
Member 
News
Supercomputing  
in New Orleans 

The 23rd 
	 meeting of the  
	 world’s largest  
	 conference on  
	 supercomputing,  
	 SC10, takes  
	 place this 
November 13–19 in New 
Orleans. “SC10 will have more 
conference space than any 
previous SC conference,” says 
Barry V. Hess, SC10 general 
chair and deputy chief 
information officer at Sandia 
National Laboratories, “and we 
have expanded our technical 
program sessions, education 
program, and exhibit space to 
showcase the technical 
advances in high-performance 
computing [HPC], networking, 
storage, and analysis, all in one 
location.” 

SC10’s three main thrust 
areas are climate simulation, 
which will explore the latest 
R&D efforts that are taking 
advantage of HPC systems to 
enable climate simulation 
applications and techniques; 
heterogeneous computing, 
which will focus on software 
infrastructure for making 
effective use of accelerator or 
heterogeneous supercomputers; 
and data-intensive computing, 
whose focus will be on how data 
is shared and communicated 
among scientists.

Like the last four SC 
conferences, SC10 will feature a 
disruptive technologies program. 
This year’s focus will be new 
computing architectures and 
interfaces that will significantly 
impact the HPC field.

“New Orleans is about the 
music, the food, the culture, 
the people, and the wonderful 
fusion of all these things,” says 
Hess. “The SC10 committee has 
been meeting in New Orleans 
for three years of planning 
and has enjoyed all aspects 
of the city, from the unique 
food to the historical tours. 
Our recommendation is to get 
out and visit the shops, the 
restaurants, Jackson Square, 
Café Du Monde, take a cemetery 
or swamp tour, and enjoy your 
time in a unique city.”

For more information, visit 
http://sc10.supercomputing.org/.

—Jack Rosenberger

Operating System Percent of Visits

	 iPhone 58.46%

	 Android 15.51%

	 iPad 14.56%

	 iPod 7.76%

	B lackBerry 1.68%

	 SymbianOS 1.19%

	 Windows 0.51%

	 PalmOS 0.13%

	 Samsung 0.08%

	 Other 0.05%

Source: Google Analytics

http://sc10.supercomputing.org/
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n puter science, Girard began to see a way 

out of this “foundational aphoria.” His 
chief insight was that logic could func-
tion without this unspoken assumption 
of perenniality. “This was a big shock,” 
Girard recalls. “The discovery of linear 
logic went completely against all the 
things I had been taught in logic.” 

Linear Logic 
A novel approach to computational logic is reaching  
maturity, opening up new vistas in programming languages,  
proof nets, and security applications.

Science  |  doi:10.1145/1831407.1831413	 Alex Wright

W
h e n  t h e  F r e n c h  lo-
gician Jean-Yves Gi-
rard first visited Xerox 
PARC during a trip to 
Silicon Valley in 1984, 

he knew he was in the right place. See-
ing computer scientists collaborating 
with linguists, ethnographers, and 
other non-programmers, he started to 
consider the possibilities of bridging 
computer science with his own branch 
of philosophy. “What impressed me 
most was the change of spirit,” he re-
calls. “It was a very special time.”

Following his trip to California, Gi-
rard began work on his breakthrough 
paper “Linear Logic,” which postulated 
an entirely new approach to logic, one 
deeply informed by computational 
principles. In the ensuing years, the 
principles of linear logic have found 
their way into a broad range of other are-
nas including programming languages, 
proof nets, security applications, game 
semantics, and even quantum physics. 

In the early 1980s, logicians like Gi-
rard were just starting to take an inter-
est in computer science, while a hand-
ful of computer scientists were starting 
to recognize the potential of logical 
proof systems as a framework for func-
tional programming. Linear logic rep-
resented an important step forward 

for computer science because it chal-
lenged the conceptual limitations of 
traditional classical logic. For thou-
sands of years, the study of logic had 
hinged on the assumption of perma-
nent Aristotelian truths, or unchanging 
essences. A was A, B was B, and would 
ever be thus. Through the lens of com-

French logician Jean-Yves Girard, author of the seminal paper “Linear Logic.”
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to implement a proof-carrying file sys-
tem (PCFS), featuring an access con-
trol policy that is stated as a logical 
theory, wherein file access is granted 
on the condition of a logical proof of 
policy compliance. “Linear logic is tre-
mendously useful here,” he explains, 
“because we can easily represent the 
change of state that takes place, for ex-
ample, when you read or write a file.”  

Working with Symantec, Pfenning 
and CMU postdoctoral researcher 
Deepak Garg have applied PCFS to for-
malize the access control policies of 
the national intelligence community in 
the United States. In collaboration with 
Jamie Morgenstern, an undergraduate 
student from the University of Chicago, 
Pfenning is now working on extending 
the implementation to handle even 
more complex policies. Pfenning feels 
the biggest challenges lie in translating 

complex real-world rule sets into un-
ambiguous logic.  The ideal outcome is 
what he calls “an abstract logical form 
that is theoretically tractable and at the 
same time practically useful.”

Proof Nets
Linear logic has also opened new doors 
in the field of proof nets. Prior to the 
introduction of linear logic, most com-
puter scientists working in the field 
relied on intuitionistic logic, follow-
ing the well-established Curry-Howard 
Correspondence, which suggested that 
formal proof calculi shared a common 
structure with computational models. 
Before the advent of linear logic, this 
model had served as the de facto stan-
dard for types. “Linear logic enriched 
this world greatly,” says Dale Miller, 
director of research at INRIA Saclay, 
who has spent the last several years ap-
plying the principles of linear logic to 
proof systems. 

“Originally, proof systems were 
used to build ‘big-step’ inference rules 
from the ‘small-step’ inference rules 
of linear logic,” Miller explains. Now, 
he is exploring the possibilities of so-
called focused proof systems by using 
those “small-step” inference rules to 
build a range of proof systems for clas-
sical and intuitionistic logic. “If one 
has an interpreter for focused linear 
logic, that interpreter can be used as an 
interpreter for many proof systems,” 
says Miller, citing the examples of em-
ulating sequent calculus and tableaux. 
“Different choices yield different and 

Whereas classical logic might sup-
port an assertion like type A → B, com-
puter programs require a set of concrete 
instructions for transforming A into B, 
such as applications, variables, or excep-
tion handlers. In the eyes of a computer 
program, then, A is not a permanent 
entity but a consumable resource. To 
address this problem, Girard proposed 
a resource-conscious approach to logic, 
laying out an entirely new framework 
capable of describing resources that 
could be used and depleted during the 
course of an operation.  

In the nearly quarter of a century 
since Girard published his seminal pa-
per, most of the foundational theoreti-
cal work in linear logic has been com-
pleted. However, computer scientists 
continue to find new applications of the 
theory across a wide range of disciplines 
like proof nets, categorical semantics, 
and computer security applications.

At Carnegie Mellon University 
(CMU), computer science professor 
Frank Pfenning has been exploring the 
application of linear logic to distrib-
uted security problems. After one of 
his students introduced him to linear 
logic, he became convinced it provided 
the ideal conceptual framework for 
specifying difficult-to-encode rules like 
complex privacy policies or resource 
conservation strategies. “I was most 
interested in characterizing, logically, 
complex properties of distributed sys-
tems,” Pfenning explains.  

Working with a team of students, 
he used the principles of linear logic 

“The discovery  
of linear logic went 
completely against  
all the things I had 
been taught in  
logic,” says  
Jean-Yves Girard.

Obituary

Nicolas Georganas, Multimedia Guru, Dies at 67
Nicolas D. Georganas, a leader 
in multimedia networking, died 
on July 27 at age 67. Georganas 
was founding editor-in-chief, 
in 2004, of ACM Transactions 
on Multimedia Computing, 
Communications, and 
Applications (ACM TOMCCAP). 
He promoted the linking of 
video, audio, and other sensory 
input—lately focusing on 
haptics—for a wide variety of 
distributed interactive systems, 
from telemedicine to high-level 
gaming to security. 

“He is one of the godfathers of 
multimedia,” says Ralf Steinmetz, 

editor-in-chief of ACM TOMCCAP 
and adjunct professor at 
Technical University Darmstadt. 
“Whatever we did in this area, 
particularly with ACM, he was 
from the beginning involved in it.”

“He was incredibly kind 
and very friendly,” says Klara 
Nahrstedt, a computer science 
professor at the University of 
Illinois at Urbana-Champaign, 
who described Georganas as an 
elder statesman in a young field. 
“He truly served many people as 
a mentor.”

Born and educated in 
Athens, Greece, Georganas 

earned a Ph.D. in electrical 
engineering at the University 
of Ottawa, where he served on 
the faculty from 1970 until his 
death. Georganas’ research 
contributions included ambient 
multimedia intelligence systems, 
multimedia communications, 
and collaborative virtual 
environments. He published 
more than 425 technical papers 
and is co-author of Queueing 
Networks—Exact Computational 
Algorithms: A Unified Theory by 
Decomposition and Aggregation. 

Georganas was dedicated 
to building a multimedia 

community, and was known for 
encouraging his students, many 
of whom are now professors in 
Canada and elsewhere. Steinmetz 
said Georganas, who was fluent in 
English, French, and Greek and 
spoke some Spanish and German, 
wanted the community to have 
an international flavor and 
championed tolerance among its 
members. At the same time, he 
demanded people do their share 
of the work, and he’d push to get 
what he wanted. “He tried always 
to be fair,” Steinmetz says. “He 
was also good at twisting arms.”  

—Neil Savage
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Milestones

CS Awards
Nevanlinna Prize
Daniel Spielman, a professor of 
computer science and applied 
mathematics at Yale University, 
won the Rolf Nevanlinna Prize, 
one of the highest honors in 
the field of mathematics, from 
the International Mathematical 
Union. The Nevanlinna Prize 
recognizes researchers under 
the age of 40 for “outstanding 
contributions in mathematical 
aspects of information science.” 
Spielman’s research has 
included smoothed analysis 
of linear programming, 
algorithms for graph-based 
codes, and applications of 
graph theory to numerical 
computing. 

“The same way that 
physicists grow up dreaming 
about winning the Nobel Prize, 
I’ve dreamed of winning the 
Nevanlinna Prize ever since 
I was a graduate student,” 
Spielman said in a statement. 
“I was in shock when László 
Lovász, the president of the 
International Mathematical 
Union, called me up to tell me 
that I had won. I had to hear 
him say it a few times before I 
believed him. It is an incredible 
honor. Many of my heroes have 
won this prize.”

Microsoft Award
Cheryl Arnett from Sunset 
Elementary School in Craig, 
CO, and Rawya Shatila from 
Maskassed Khalil Shehab 
School in Beirut, Lebanon, 
won first place in the 2010 
U.S. Innovative Education 
Forum, a Microsoft-sponsored 
competition for teachers 
who use technology in their 
curriculum to improve 
student learning. Arnett and 
Shatila’s joint project, called 
“Digital Stories: A Celebration 
of Learning and Culture,” 
connected Arnett’s class of 
first- and second-graders in 
Craig, CO, to Shatila’s second-
graders in Beirut. The two 
teachers, who had never met 
prior to their collaboration, 
used wikis, blogs, and online 
mapping tools to share stories 
and activities to help students 
increase their global awareness 
of the similarities and 
differences between children 
from different nations. Arnett 
and Shatila will represent the 
United States at the Worldwide 
Innovative Education Forum in 
South Africa this fall.  

—Jack Rosenberger

from the problems of computing to set 
his sights on more esoteric quanda-
ries. “I would like to understand why 
certain things are difficult, why the 
world is not transparent,” he says. Alas, 
perhaps some questions are better left 
to logicians.	
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often, known proof systems.”
In recent years, linear logic has also 

given rise to a new genre of program-
ming languages like Forum, Lolli, and 
Lygon that incorporate richer forms of 
expression to allow more powerful ap-
proaches to proofs.

Looking ahead, Pfenning believes 
there is still work to do in improving 
the state of automation in linear log-
ic. “We need theorem provers, model 
checkers, and other tools for working 
with linear logic to make its applica-
tion to real-world problems easier.” 
Miller agrees that linear logic has the 
potential to support the automation 
of theorem proving. “Focused proof 
systems give a central role to inference 
rules that are invertible,” he explains. 
“When a formula is introduced by an 
invertible rule, that formula can be dis-
carded. Such information is useful in 
building theorem provers.” 

Miller also sees an opportunity to 
use linear logic and proof search to 
provide specifications of algorithms, 
using proof theory research to help 
in reasoning about such algorithmic 
specifications. He also hopes to see the 
day when a large “logic of unity” might 
take shape that would encompass clas-
sical, intuitionistic, and linear logic in 
one grand system.

Where could linear logic go from 
here? Other active research areas in-
clude concurrency theory, quantum 
computing, game semantics, implicit 
computational complexity, and the ver-
ification of imperative programs with 
heaps using separation logic, a close 
cousin of linear logic.

With the field maturing, the funda-
mental principles of linear logic are re-
ceding into the background as an area 
of active inquiry as computer scientists 
learn to apply the established princi-
ples to emerging computational prob-
lems. “Linear logic is no longer alive as 
a specific subject in which you work,” 
says Girard. “It’s become something 
classical. It is part of the toolbox.”

Pfenning agrees with Girard’s as-
sessment, but thinks linear logic lacks 
the widespread exposure it deserves 
at every level of the computer science 
curriculum. “It should be part of the 
standard toolkit,” he says, “but I don’t 
think it is taught in enough places right 
now, especially in the United States.”

Girard, meanwhile, has moved on 

Active research 
areas for linear 
logic include 
concurrency theory, 
quantum computing, 
game semantics, 
and implicit 
computational 
complexity.
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Personal Fabrication 
Open source 3D printers could herald  
the start of a new industrial revolution. 

Technology  |  doi:10.1145/1831407.1831414	 Graeme Stemp-Morlock

W
h i l e  a t t e n d i n g  a 

health and beauty trade 
show in the fall of 2009, 
Nick Starno watched 
as countless exhibitors 

struggled with cosmetic tubes, vainly at-
tempting to squeeze the last few drops 
out of them. Starno, however, is a me-
chanical design engineer, and familiar 
with 3D printers. When he got home, 
he designed a tube squeezer and posted 
his prototype on a community Web site 
for 3D printer designs. Within hours, 
several 3D printer enthusiasts in Europe 
had downloaded his design and manu-
factured the tube squeezer. Since then, 
Starno’s design has been downloaded 
more than 500 times and people around 
the world have produced his tube 
squeezer at a cost about 30 cents each.

“I knew that as long as I could model 
it on the computer, it could be made,” 
says Starno, who now works with Mak-
erbot, a 3D printer company. “No worry-
ing about tooling costs, post processing, 
surface finishes, packaging, shipping 
quantities, or advertising. Anyone with 
a 3D printer could search for my design, 
download it, and make one on demand 
without ever leaving their house.”

Printing simple devices such as tube 
squeezers might not seem very excit-
ing or sexy, but it heralds the begin-
ning of a technological revolution in-
volving thousands of hobbyists around 
the world who are using 3D printers to 
fabricate wine glasses, toy cars, cooling 
fans, mechanical arms, and countless 
types of nuts, bolts, and gears.

To many observers, this revolution 
mirrors the personal computer revo-
lution, with its kits for hobbyists, of 
the 1970s. “There are many parallels 
between personal computing and per-
sonal fabrication,” says Hod Lipson, an 
associate professor of mechanical and 
aerospace engineering and computing 
and information science at Cornell Uni-
versity. “I think you can look at the histo-
ry of computers and how they changed 
our world, and you can anticipate many 

aspects of 3D printing and how they will 
interface with every aspect of our lives.” 

Open Source Printers
While large-scale, commercial 3D print-
ers have existed for years, personal 3D 
printers are a recent, fast-spreading phe-
nomenon. Dozens of startup companies 
are developing and marketing 3D print-
ers, but two of the most widely used 3D 
printers are open source projects. 

Based at the University of Bath, Rep- 
Rap is the brainchild of Adrian Bowyer, a 
senior lecturer in the department of me-
chanical engineering. The other project 
is Fab@Home, which is led by Lipson.

To design a printable object, a user 
needs a computer equipped with a com-
puter-assisted design (CAD) program. 
The different RepRap and Fab@Home 
3D printers are the size of a standard 
office photocopier, and feature off-the-
shelf components including a chas-
sis, tool heads, and electronics. The 
3D printers work almost the same as a 

standard printer, but instead of using 
multi-colored inks, a printer’s mobile 
arm includes a syringe that ejects melt-
ed plastic, slowly building up the “im-
age,” layer after layer, into a real object. 
Simple objects like a gear, for instance, 
can be completed in less than an hour.

The parts for the latest RepRap print-
er, Mendel, cost about $525, but an 
online network of artists and inventors 
are constantly modifying and improv-
ing Mendel’s design. Moreover, Mendel 
prints about 50% of its own parts, ex-
cluding nuts and bolts, so it is almost a 
self-replicating machine. 

“It’s designed to copy itself because 
that’s the most efficient way of getting 
a large number of them out there,” says 
Bowyer, who estimates more than 4,000 
RepRap printers have been made since 
the plans for the original RepRap Dar-
win printer were first released in 2008. 
“If you’ve got something that copies it-
self, then, in principle, the numbers can 
grow exponentially fast, and that’s fast-

Nick Starno, a mechanical design engineer, in the process of building a 3D printer.
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students the combined power of math, 
science, and engineering. The MacAr-
thur Foundation and Motorola have 
awarded $435,000 to the Fab@School 
group to develop curriculum, build more 
3D printers, and expand the project. 

A Larger Ink Palette
Although Play-Doh and other squishy 
substances can be used in 3D printers, 
melted plastic remains the primary 
material. Other desirable materials, in-
cluding various metals and ceramics, 
are more challenging to use. Progress 
has been made in printing with metal, 
but more experimentation is needed to 
make the process easier and overcome 
fundamental properties in the materi-
als like melting point and viscosity. 

For Lipson’s Fab@Home project, the 
ultimate goal is to design a robot that 
can walk out of the printer. Before that 
can happen, “inks” for batteries, actua-
tors, wires, transistors, and numerous 
other pieces must be developed. How-
ever, Lipson’s lab has already developed 
an actuator that operates with low volt-
age and a printable battery.

Adrian Bowyer at the University of 
Bath has had success making a print-
able conductor that melts at a lower 
temperature than the plastic does. Due 
to the temperature difference, the 3D 
printer can manufacture plastic chan-
nels that do not melt when filled with 
the hot conductor for wires or other 
electrical circuitry. 

“At the moment the way we manu-
facture goods is from economies of 

scale,” says Bowyer. “It is more efficient 
to make lots of one thing in one place 
and that’s how conventional industry 
works all over the world. But there are 
many things we used to do that way that 
we don’t do anymore. For instance, I’m 
old enough to remember my parents 
getting personalized letterhead printed 
at a local printer, whereas now we have 
computer printers. Imagine the idea of 
a whole industry disappearing, and ev-
erybody making what they want in their 
own home. That would be a pretty pro-
found economic change.” 	
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er than any other means of production 
that humanity currently has.”

New Design Frontiers 
In addition to enabling people to manu-
facture objects they never could before, 
3D printers could lead to radically new 
designs that are not possible with tra-
ditional fabrication techniques. “Your 
first instinct when you have one of these 
machines is that instead of making 
something in the machine shop, you are 
just going to print it,” says Lipson. “But 
at some point you realize you can make 
new things with complicated geometry 
that you cannot make any other way. 
You don’t have to stick to straight edges 
and flat surfaces that can be easily ma-
chined or thin walls that can be injec-
tion molded. You can make absolutely 
any shape that you want.” 

For instance, Lipson’s team has ex-
perimented with printing objects with 
both hard and soft materials. When the 
materials are printed at a random 50%-
50% ratio, the results are ordinary. How-
ever, when the dots of hard and soft ma-
terial are printed in special patterns, the 
material, when stretched like an elastic, 
actually gets thicker. 

Indeed, one of Lipson’s favorite 3D 
printer materials is Play-Doh. He re-
cently used it to create miniature copies 
of the U.S. space shuttle during a school 
visit as part of the Fab@School project, 
led by himself and Glen Bull, a professor 
of instructional technology at the Uni-
versity of Virginia. The Fab@School’s 
goal is to use 3D printers to show K–12 

Crowdsourcing

Foldit Research Paper’s 57,000+ Co-authors
Since May 2008, tens of 
thousands of Foldit video 
game players have competed 
online against each other, 
and a computer program, in 
figuring out how 10 different 
proteins fold into their three-
dimensional configurations. In 
the end, the players managed 
to outperform the computer 
program—and are cited as co-
authors on the resulting paper, 
which was published in Nature.

While scientists understand 
the general process of how the 
primary structure of a protein 
is transformed into a three-

dimensional structure, the 
method of using statistical and 
related software algorithms to 
predict protein structures is 
computationally demanding.

“If you were blindfolded and 
all you’re doing is picking pieces 
at random, that’s more or less 
what the computer is doing,” 
says Zoran Popovíc, an associate 
professor of computer science 
at the University of Washington. 
“The computational methods 
are eating up huge amounts of 
resources.” 

Foldit’s top scores are 
posted online, allowing 

the players, who compete 
individually or in groups, to 
compare their scores. In the 
10 separate protein-folding 
puzzles, the players matched 
the results of the computer-
generated solutions in three 
of the puzzles, outscored them 
in five puzzles, and created 
significantly better solutions in 
two puzzles, according to the 
scientists.

When the results were 
published in the August 5 issue 
of Nature, Popovíc and his 
fellow researchers cited “Foldit 
players” at the end of the paper’s 

author list in appreciation of 
the more than 57,000 players’ 
contributions “through their 
feedback and gameplay.”

Such extensive author lists 
will soon become commonplace 
given the increasing online 
collaboration between citizen 
volunteers and scientists, says 
Popovíc, who plans to establish 
a Center for Game Science at the 
University of Washington this 
fall, and will work on problems 
that can be solved with the 
symbiosis of human volunteers 
and computers.   

—Phil Scott
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cancer or study tectonic plates will 
write software code to do a specific task 
in a lab,” Hissam says. “They aren’t 
concerned about the same things that 
computer programmers are, such as 
scalability and design patterns and 
software architecture. So imagine how 
daunting of a task it would be to review 
and try to understand how such a code 
was written.”

U.K.’s Climategate
This issue has gained considerable at-
tention ever since Climategate, which 
involved the illegal hacking of re-
searchers’ email accounts last year at 
the Climate Research Unit at the Uni-
versity of East Anglia, one of world’s 
leading institutions on global climate 
change. More than 1,000 email mes-
sages and 2,000 documents were 
hacked, and source code was released. 
Global warming contrarians have con-
tended the email reveals that scientists 

Society  |  doi:10.1145/1831407.1831415	 Dennis McCafferty

Should Code  
be Released?  
Software code can provide important insights into  
the results  of research, but it’s up to individual scientists  
whether their code is released—and many opt not to. 

O
n any given day, medical re-
searchers at Carnegie Mel-
lon University (CMU) may 
be investigating new ways 
to thwart the development 

of epilepsy or designing an implant-
able biosensor to improve the early 
detection of diseases such as cancer 
and diabetes. As with any disciplined 
pursuit of science, such work is subject 
to rigorous rounds of peer review, in 
which documents revealing methodol-
ogy, results, and other key details are 
examined. 

But, assuming software was created 
for the research, should a complete 
disclosure of the computer code be 
included in the review process? This 
is a debate that doesn’t arrive with 
any ready answers—not on the cam-
pus grounds of CMU or many other 
institutions. Scott A. Hissam, a senior 
member of the technical staff at CMU’s 
Software Engineering Institute, sees 
validity in both sides of the argument.

“From one perspective, revealing the 
code is the way it should be in a perfect 
world, especially if the project is taking 
public money,” says Hissam, who, as 
a coauthor of Perspectives on Free and 
Open Source Software, has explored the 
topic. “But, in practice, there are ques-
tions. The academic community earns 
needed credentialing by producing 
original publications. Do you give up 
the software code immediately? Or do 
you wait until you’ve had a sufficient 
number of publications? If so, who de-
termines what a sufficient number is?”

Another dynamic that adds com-
plexity to the discussion is that scien-
tific researchers are not software devel-
opers. They often write their own code, 
but generally don’t follow the same 
practices, procedures, and standards 
as professional software programmers.

“Researchers who are trying to cure 

manipulated data, among other charg-
es. Climate Research Unit scientists 
have denied these allegations and in-
dependent reviews conducted by both 
the university and the House of Com-
mons’ Science and Technology Select 
Committee have cleared the scientists 
of any wrongdoing. 

Still, Darrel Ince, professor of com-
puting at the U.K’s Open University, cit-
ed the Climate Research Unit’s work as 
part of his argument that code should 
be revealed. He wrote in the Manchester 
Guardian that the university’s climate-
research team depended on code that 
has been described as undocumented, 
baroque, and lacking in data needed 
to pass information from one program 
and research team to another.

Ince noted that Les Hatton, a pro-
fessor at the Universities of Kent and 
Kingston, has conducted an analysis of 
several million lines of scientific code 
and found that the software possessed 
a high level of detectable inconsisten-
cies. For instance, Hatton found that 
interface inconsistencies between 
software modules that pass data from 
one part of a program to another hap-
pen, on average, at the rate of one in  
every seven interfaces in Fortran and 
one in every 37 interfaces in C. 

“This is hugely worrying when you 
realize that one error—just one—will 
usually invalidate a computer pro-
gram,” Ince wrote. Those posting 
comments on the Guardian Web site 
have been largely supportive of his ar-
guments. “The quality of academic 
software code should absolutely be 
scrutinized and called out whenever 
needed,” wrote one commenter. “It 
should be the de facto criteria for ac-
cepting papers,” wrote another. 

Still, not all were in agreement. “I 
work in scientific software,” wrote one 
commenter. “The sort of good pro-
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ited with the work. But in order to be 
trusted, much of the work should be 
released. If they can’t release key por-
tions, then the rest is suspect.”

While ethical considerations and 
those conveyed in the greater interest 
of science are often made to encourage 
more information sharing, those same 
considerations can be used to state 
the case that some information needs 
to remain undisclosed. Had the Man-
hattan Project happened today, for in-
stance, surely few people would call for 
an open dissection of its software DNA, 
says Mike Rozlog, developer tools prod-
uct manager at Embarcadero Technol-
ogies.

Also, science is a highly competitive 
endeavor, and funding is often based 
on a track record of success. “If you’re 
forced to release proprietary [code],” 
Rozlog says, “this could give a signifi-
cant advantage to rogue organizations 
that don’t follow the same rules.” 

Opening Up Science
For the past seven years, researchers 
at Purdue University have attempted 
to resolve this issue, especially with 
the study of nanotechnology. Funded 
by the National Science Foundation, 
nanoHUB.org has been established 
as a site where scientists and educa-
tors share simulation and modeling 
tools and run their code on high-per-
formance computer resources, says 
software architect Michael McLennan, 
a senior research scientist at Purdue. 
A toolkit called Rappture standard-
izes the input and output for the tools 
and tracks details about execution, 
such as which user ran which version 
of the code, the computer used, and 

the date of the usage. Simulations run 
in a cloud of computing resources, 
and the most demanding computa-
tions are sent to national grid comput-
ing resources such as the TeraGrid. 
nanoHUB.org now has a core group of 
110,000 users from more than 170 na-
tions, who launch more than 340,000 
online simulations each year. 

The project encourages users to 
release their work as open source or 
under a creative commons license, 
McLennan says. “But even if the codes 
are not open source, the unique mid-
dleware allows scientists to run the 
tools and test the behavior of the mod-
els,” McLennan says. Since launching 
it, Purdue has developed other hubs 
using the same software platform to 
study cancer research and care, bio-
fuels, environmental modeling, phar-
maceutical engineering, among other 
pursuits. It’s now constructing a dozen 
more hubs as well, and some are for 
outside agencies, such as the Envi-
ronmental Protection Agency. And re-
searchers at Notre Dame are using the 
software to build their own hub for bio-
logical adaption to climate change.

“Having our software as open 
source allows these other sites to pick 
this up and create their own hubs in 
their own machines,” McLennan says. 
“It shows that this kind of effort can 
go far beyond nanoHUB.org, and take 
hold across a wide variety of science 
and engineering disciplines.”	

Further Reading

Feller, J., Fitzgerald, B., Hissam, S.A.,  
and Lakhani, K.R.  
Perspectives on Free and Open Source 
Software. MIT Press, Cambridge, MA, 2005.

Ince, D. 
If you’re going to do good science, release 
the computer code too. Manchester 
Guardian, Feb. 5, 2010.

McLennan, M. and Kennell, R. 
HUBzero: a platform for dissemination and 
collaboration in computational science 
and engineering. Computing in Science and 
Engineering 12, 2, March/April 2010.

PurdueRCAC 
HUBzero Cyberinfrastructure for Scientific 
Collaboration. 
http://www.youtube.com/watch?v=Mr0GA_
TluGY

Dennis McCafferty is a Washington, D.C.-based 
technology writer.

© 2010 ACM 0001-0782/10/1000 $10.00

gramming practices you talk about are 
things … [that are] absolutely useless 
for one person wanting do a calcula-
tion more quickly. That’s all the com-
puter models are, fancy calculators. 
I’ve seen plenty of Fortran and VB code 
to do modeling written by academics 
and it’s mostly awful but it also nearly 
always does the job.”

To Share or Not
Efforts to encourage scientists to reveal 
software code stem from philosophies 
that began with the birth of comput-
ers. Because the big, clunky invention 
was so expensive, software was freely 
shared. “There wasn’t much that peo-
ple had written anyway,” says John 
Locke, manager of Freelock Comput-
ing, an open-source business services 
firm. “Sharing code was like sharing 
scientific ideas, and was treated in the 
same way.” 

The U.S. Constitution provides pat-
ent and copyright protection to scien-
tists and their sponsors so they can 
place their work in the public domain 
while still being able to profit, Locke 
argues. And this, he says, provides 
enough protection to open up the code.

“Not sharing your code basically 
adds an additional burden to others 
who may try to review and validate your 
work,” Locke says. “If the code is instru-
mental in testing a hypothesis, keeping 
it closed can prevent adequate peer re-
view from taking place. After all, source 
code is nothing more than a very spe-
cific set of steps to achieve a desired re-
sult. If those steps cannot be reviewed 
in detail, the whole test is suspect.”

There is often hesitancy, however, 
for these very reasons. Opening up the 
code essentially throws “the books” 
open. It further peels away the curtain 
to reveal how the work was done. These 
days, scientists are wary of providing 
additional fodder that could impede 
their work or damage their reputations.

“There are downsides [to revealing 
code],” says Alan T. DeKok, a former 
physicist who now serves as CTO of 
Mancala Networks, a computer se-
curity company. “You may look like a 
fool for publishing something that’s 
blatantly wrong. You may be unable 
to exploit new ‘secret’ knowledge and 
technology if you publish. You may 
have better-known people market your 
idea better than you can, and be cred-

“Not sharing your 
code basically adds 
an additional burden 
to others who may  
try to review and 
validate your work,” 
says John Locke.

http://nanoHUB.org
http://nanoHUB.org
http://www.youtube.com/watch?v=Mr0GA_TluGY
http://www.youtube.com/watch?v=Mr0GA_TluGY
http://nanoHUB.org
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Each nomination shall be forwarded by the thesis advisor 
and must include the endorsement of the department 
head. A one-page summary of the signifi cance of the 
dissertation written by the advisor must accompany 
the transmittal.

Publication Rights
Each nomination must be accompanied by an assignment to 
ACM by the author of exclusive publication rights. (Copyright 
reverts to author if not selected for publication.)

Publication
Winning dissertations will be published by Springer.

Selection Procedure
Dissertations will be reviewed for technical depth and 
signifi cance of the research contribution, potential impact 
on theory and practice, and quality of presentation. 
A committee of fi ve individuals serving staggered fi ve-year 
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dissertation.

The selection committee will select the winning dissertation 
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The Doctoral Dissertation Award is accompanied by a prize 
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by a prize of $10,000. Financial sponsorship of the award 
is provided by Google.
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Historical Reflections 
Victorian Data 
Processing 
Reflections on the first payment systems.  

doi:10.1145/1831407.1831417	 Martin Campbell-Kelly

I
A m  one of  those individuals 
known as a “historian of com-
puting.” Perhaps we are stuck 
with that appellation, but it 
can lead one to suppose that 

all the most significant and important 
things in information processing hap-
pened after the invention of the digital 
computer. Of course, we usually give 
a nod to Charles Babbage’s calculat-
ing engines and Herman Hollerith’s 
punched card machines. But this, too, 
is misleading because it suggests that 
machinery was always central to data 
processing. The fact is that the Victo-
rian world was awash with data and 
with organizations that processed it; 
and they usually used nothing more 
technologically advanced than pen and 
paper. The Bankers’ Clearing House—
the first payment system—is just one 
of many examples.

The Bankers’ Clearing House was es-
tablished in London in the early 1800s. 
Interestingly, we owe the first descrip-
tion of the Bankers’ Clearing House 
to Charles Babbage. Today we think of 
Babbage primarily as the inventor of 
calculating machines, but in his life-
time he was better known as a scien-

tist and an economist of international 
standing. In 1832 he published the first 
economic treatise on mass production, 
The Economy of Machinery and Manu-
factures.1 It is there that he published 
his account of the Bankers’ Clearing 
House. When Babbage wrote his book, 
the Bankers’ Clearing House was a se-

cretive organization that was practical-
ly unknown to the general public (not 
least because the organization handled 
very large sums of cash). It happened, 
however, that Babbage was on good 
terms with Sir John Lubbock, a partner 
of Lubbock’s Bank and a founder of 
the Clearing House. Lubbock was an 

London bankers’ clerks meet at the Clearing House in Post Office Court, Lombard Street, to 
exchange cheques and settle accounts, circa 1830.
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amateur scientist in his spare time and 
both he and Babbage were members of 
the Royal Society. Using this connec-
tion, Babbage talked his way in. 

Walk Clerks 
The origins of the Bankers’ Clearing 
House are obscure, but they date back 
to at least the late 1700s.3 At that time, 
when a firm or an individual received 
a check (still spelled “cheque” in the 
U.K.), it would be deposited in the 
recipient’s bank. It was then neces-
sary for a clerk to physically present 
the check to the originating bank, ex-
change it for cash, and return with the 
money to his home bank. As the volume 
of checks grew, each bank employed a 
“walk clerk” whose job it was to take all 
the checks due for payment, visit each 
bank in turn, obtain payment, and re-
turn to his bank with a large amount of 
cash. Walking through the City of Lon-
don with a large bag of money was, to 
say the least, unwise, although it went 
on for many years. 

Around 1770, the walk clerks made 
an informal arrangement to aban-
don their walks and instead meet at 
an agreed time in the Five Bells pub-
lic house in Lombard Street. There 
they could perform all their financial 
transactions within the safe confines 
of four walls. In the early 1800s, the 
proprietors of the banks at last recog-
nized the merit of this arrangement 
and formally created the Bankers’ 
Clearing House. When Babbage wrote 
his account in 1832, it had already 

been running for a quarter of a cen-
tury. Babbage described the opera-
tion of the Bankers’ Clearing House 
almost in terms of an algorithm—
though one executed by people, not 
machinery. He wrote: “In a large room 
in Lombard Street, about 30 clerks 
from the several London bankers take 
their stations, in alphabetical order, 
at desks placed round the room; each 
having a small open box by his side, 
and the name of the firm to which 
he belongs in large characters on the 
wall above his head. From time to 
time other clerks from every house 
enter the room, and, passing along, 
drop into the box the checks due by 
that firm to the house from which this 
distributor is sent.”

Thus during the day each bank 

dropped off the checks on which it was 
owed payment and received checks on 
which it was due to make payment. By 
adding up all the checks on which it 
owed money, and all those on which it 
had to pay out, a bank could calculate 
exactly the total amount it would have 
to pay out or would receive that day. At 
5 p.m. precisely, the Inspector of the 
Clearing House took his place on a ros-
trum, and the debtor banks went up 
one-by-one to pay what they owed on 
the day. When this was complete, the 
banks that were owed money stepped 
up to the rostrum for payment. When 
the last bank had been paid, the Inspec-
tor was left with a balance of exactly 
zero. That, of course, assumed that no 
one had made an arithmetic error. A pa-
per trail of preprinted forms completed 
by each bank enabled any errors to be 
traced—but this was a rare occurrence. 

Transaction Processing
The amount of money flowing through 
the Bankers’ Clearing House was stag-
gering. In the year 1839, £954 million 
was cleared—equivalent to $250 bil-
lion in today’s currency. However, one 
of the benefits of the system was that 
the banks now needed to bring only a 
relatively small amount of money to 
the Clearing House. On any day, the to-
tals of checks received and checks paid 
out would tend to cancel each other 
out, so that a bank needed only the dif-
ference between these two amounts. 
For example, on the busiest single day 
of 1839, when £6 million was cleared, 
only approximately £1/2 million in 
bank notes was used for the settle-
ment. In his account of the Clearing 
House, Babbage noted that if the banks 
were to each open an account with the 
Bank of England, no money in the form 
of cash would be needed at all. All that 
the Clearing House would have to do 
would be to adjust the account that 
each bank held with the Bank of Eng-
land at the close of the business day. 
This innovation was instituted in 1850, 
and the physical movement of money 
was entirely replaced by pen-strokes in 
an accounting ledger. It was a key mo-
ment in both fiscal and information 
processing history, and Babbage rec-
ognized it as such.

The U.S. quickly adopted—and 
improved on—the British clearing 
system. The first clearing house was 

The New York Clearing House circa 1853. 

Babbage described 
the operation of the 
Bankers’ Clearing 
House almost in terms 
of an algorithm—
though one executed 
by people, not 
machinery.
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opened in New York in 1853, located 
on the fourth floor of the Bank of New 
York on the corner of Wall Street and 
William Street. One of the difficulties 
of the New York clearing operation was 
that there were over 50 banks in the city 
and it was realized that the exchanging 
of checks—as described by Babbage—
would create too much confusion and 
foot traffic. Some nameless genius 
came up with the brilliant solution 
depicted in the image on the preced-
ing page of this column. The New York 
Clearing House constructed a very large 
oval table, approximately 70 feet in 
length, with enough working space for 
each bank. According to a contempo-
rary account,2 at 10 o’clock precisely, 
two clerks from each bank took their 
places at the table—one seated inside 
the table and the other standing out-
side, facing his colleague. At the man-
ager’s signal, the clerks outside the 
table would take one pace forward and 
perform the day’s transactions with 
the bank they now faced. The process 
was then repeated, the circle of clerks 
advancing one pace at a time to the 
next station “resembling in its move-
ment a military company in lockstep.” 

After about six minutes the clerks 
were back in their original positions, 
the distribution process completed. 
After that, it was just a matter of bal-
ancing the books. If there was a failure 
to get a zero balance, then there was 
a system of checks and double-entry 
accounting so that the error could be 
detected. Another Yankee innovation, 
which reputedly cut down on the num-
ber of errors, was a system of fines. If 
an error was found quickly there was 
no fine, but if it was not detected with-
in an hour a fine of two or three dollars 
was imposed on the offender, which 
doubled and quadrupled, the longer it 
took to find. 

The New York Clearing House flour-
ished, and other American financial 
centers established their own clearing 
houses—Boston in 1856, Philadelphia 
in 1858, followed by Chicago and St. 
Louis some years later.

Persistence of System
You might wonder what happens when 
you write a check today. In terms of the 
system, the process is not very different 
from that of the 19th century. Of course, 
the technology employed has changed 

beyond recognition. In the 1960s the 
great innovation was check-reading 
machines—for which MICR and OCR 
fonts were designed, and these still ap-
pear on the face of a check. Once data 
had been extracted from the check, it 
was transferred to magnetic tape for 
computer processing. It was said at 
the time that without banking automa-
tion it would not have been possible for 
millions of ordinary Americans to have 
checking accounts, or to write checks 
for very small sums of money. By the 
1980s, electronic data transfer elimi-
nated much of the physical handling of 
data. But again, the underlying infor-
mation system was little altered.

The longevity of information sys-
tems is one of the great lessons of com-
puter history. Although new layers of 
technology are constantly applied to 
information systems, making transac-
tions faster and cheaper, the underly-
ing systems are remarkably stable and 
persistent, although of course they do 
gently evolve over time. We may glory 
in today’s information technology, but 
one day it will be swept aside—and 
when it is, and we have logged off for 
the last time, these venerable systems 
will survive for another generation 
of technology. Those Victorian office 
makers perhaps built better than they 
knew, and we should salute them.	
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Technology Strategy  
and Management  
Platforms and Services: 
Understanding  
the Resurgence of Apple
Combining new consumer devices and Internet platforms  
with online services and content is proving to be a successful strategy. 

doi:10.1145/1831407.1831418	 Michael A. Cusumano

O
n May 27, 2010 the technol-
ogy world experienced a 
remarkable passing of the 
baton: Apple went beyond 
Microsoft to become the 

world’s most valuable technology com-
pany in terms of stock market value. It 
was also on that day the second most 
valuable U.S. company overall, behind 
only Exxon Mobil.a Given Apple’s strug-
gles with operating losses and a steep 
decline in market value in the early 
2000s, this resurgence is extraordinary. 
It reflects not only a series of product 
innovations but also a shift in strategy 
that takes advantage of two important 
trends in the world of high technology: 
the rising importance and value of an 
industrywide platform company with 
a large and growing global ecosystem 
for complementary innovation (versus 
a standalone product company that has 
to do the lion’s share of innovation on 
its own); and the rising importance 
and value of services, especially auto-
mated services that deliver the digital 
content and software applications that 
make these hardware products and 
platforms so valuable to users. 

a	  M. Helft and A. Vance, “Apple is No. 1 in Tech, 
Overtaking Microsoft,” New York Times, May 
27, 2010, p. B1.

In terms of platform leadership, 
Apple has become more like archri-
val Microsoft, but Apple remains a 
far more innovative and pioneering 
product company as Steve Jobs and 
his team have successfully blended 
computers with consumer electronics 

and telephony. The latest transforma-
tion began during 2001–2003 with the 
iPod and iTunes music service. Apple 
then gained speed from 2007 with the 
iPhone and App Store. In 2010, the 
innovations continued with the iPad, 
which can run existing iPhone ap-

Microsoft and Apple financial comparison, 2000–2009. Units: $million, %

Microsoft Apple

Revenues
Operating  
Profits (%)

Year-End  
Market Value Revenues

Operating  
Profits (%)

Year-End  
Market Value 

2009 $58,437 34.8% $267,323 $36,537 21.0% $190,980

2008 60,420 37.2 149,769 32,479 19.3 118,441

2007 51,122 36.2 287,617 24,006 18.4 74,499

2006 44,282 37.2 251,464 19,315 12.7 45,717

2005 39,788 36.6 233,927 13,931 11.8 29,435

2004 36,835 24.5 256,094 8,279   3.9 8,336

2003 32,187 29.7 252,132 6,207 (loss) 4,480

2002 28,365 29.2 215,553* 5,742   0.3 4,926

2001 25,296 46.3 258,033* 5,363 (loss) 7,924

2000 22,956 47.9 302,326* 7,983   6.5 5,384

1995 5,937 35.3 34,330* 11,062   6.2 4,481

Notes: Fiscal year data. Market value is for calendar year, except when marked with asterisk, then 
fiscal year, and except for 2009, when market value is as of February 12, 2010.

Source: M. Cusumano, Staying Power: Six Enduring Principles for Managing Strategy and Innovation 
in an Unpredictable World (Oxford University Press, 2010), p. 38. Derived from company Form 10-K 
annual reports.
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plications as well as elegantly display 
digital content, including books, mag-
azines, and video.b 

Access, Control,  
and the User Experience
We have seen Apple rise even though 
its products and services remain under 
tight corporate control compared to 
more “open” platforms championed 
by Microsoft and Intel (the Win-Tel OS 
and PC device), the Linux community 
(Linux OS), Nokia and the Symbian al-
liance (mobile OS and cellphones), 
and Google (Android, Chrome, and 
the Open Handset Alliance for mo-
bile applications as well as the Google 
OpenSocial APIs for social networking 
applications). For example, Apple has 
barred some applications from run-
ning on the iPhone, including Google 
Voice. It does not permit its devices 
to run the most common technology 
for handling video on the Internet—
Adobe Flash. Legal use of the iPhone 
remains limited to official Apple part-
ners such as AT&T in the U.S. Google 

b	 This article is based on Chapter 1 of M. Cu-
sumano, Staying Power: Six Enduring Principles 
for Managing Strategy and Innovation in an Un-
certain World (Oxford University Press, 2010), 
30–31, 34–44.

also has criticized Apple’s program-
ming rules for the iPhone and iPad that 
prohibit application developers from 
using Google’s advertising technolo-
gy.c In my terminology, these kinds of 
restrictions make Apple‘s platforms 
neither fully open (such as Linux) nor 
fully closed (such as a propriety system 
owned and dominated by one compa-
ny), but rather “closed, but not closed,” 
or perhaps “open, but not open.” That 
is, the platforms are based on proprie-
tary technology, and Apple controls the 
user experience as well as what appli-
cations or content or service contracts 
can operate on its devices. At the same 
time, though, Apple has been gradually 
loosening up access for outside appli-
cation developers and content provid-
ers, especially during 2009–2010. 

In an earlier column (‘The Puzzle 
of Apple,” September 2008), I admit-
ted to being frustrated by Apple’s 
historical reluctance to open up the 
programming interfaces to its new 
products and provide easier access 
to its services or to license its supe-
rior software operating system. It 
pursued this “closed” approach most 

c	 S. Morrison and I. Sherr, “Google Blasts Apple 
over iPhone Ad Changes,” Wall Street Journal, 
June 9, 2010; http://online.wsj.com/

famously with the Macintosh, intro-
duced in 1984, but continued this 
strategy with the initial versions of 
the iPod, iTunes, the iPhone, and the 
App Store. Nevertheless, the Apple 
ecosystems are now as vibrant as any 
in high technology. Not only are there 
thousands of applications and acces-
sories available for the iPod made by 
a wide variety of companies. There 
were also some 225,000 applications 
for the iPhone as of mid-2010, many 
of which work on the iPod and iPad 
as well as the Macintosh. Apple also 
was receiving some 15,000 submis-
sions for iPhone applications each 
week in 30 languages and approving 
about 95% within seven days.d By con-
trast, Google’s Android community 
had only built approximately 50,000 
applications as of mid-2010. To be 
sure, Apple and Google both trail by 
far the millions of applications built 
for Microsoft Windows since the early 
1990s. But most computing devices 
are now mobile phones, and that is 
where the action lies in software ap-
plications development.

d	 G. Hora, “95% iPhone Apps Approved in 
7 Days,” Cooltechzone.com, June 7, 2010; 
http://www.cooltechzone.com/2010/06/07/95-
iphone-apps-approved-in-7-days/Ill
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Synergies and Network Effects
It is possible that Steve Jobs planned 
all along to open up the iPod and 
iPhone programming interfaces and 
allow more open use of the iPhone be-
yond a few select partners. The reality 
is that Apple finally seems to have fig-
ured out how to create synergies and 
powerful network effects across its 
products and complementary services 
(see my earlier column “The Evolution 
of Platform Thinking,” January 2010). 
The iPod,   iPhone, and iPad devices, 
as well as the iTunes service, all work 
particularly well with the Macintosh 
computer, and have some interoper-
ability with Windows. And providing 
its own essential complements—like 
Microsoft has always done for DOS 
and Windows—has become critical to 
Apple’s success. Apple’s products, de-
spite their elegant designs and unique 
user interfaces, are not very valuable 
without external digital content such 
as music and video files and a variety 
of applications and accessories. Apple 
cleverly found a way to provide the key 
complementary platforms itself—the 
iTunes Store and the Apple App Store, 
and now an iBooks store. Moreover, 
these are automated services, with low 
costs and high potential profit mar-
gins. Apple is being smart and encour-
aging the ecosystem development by 
sharing most (about 70%) of these rev-
enues with the content owners and ap-
plication developers. 

Apple’s financial break with its past 
is truly astounding (see the table on 
the preceding page of this column). In 
1995, Apple was nearly twice the size of 
Microsoft in annual revenues (approxi-
mately $11 billion to $6 billion) but its 
market valuation was only about 40% of 
revenues. By contrast Microsoft’s value 
was nearly six times revenues—reflecting 
Microsoft’s greater growth prospects as 
well as operating profit margins that 
were also about six times Apple’s (35% 
versus 6%). Indeed, Apple shrunk in 
subsequent years whereas Microsoft’s 
sales exploded as Windows 95 became 
the basis for a new generation of desk-
top PCs as well as Internet-enabled con-
sumer and enterprise products. 

When iPod sales began to surge in 
2005, Apple’s revenues, profits, and 
valuation also began to surge. In fact, 
by moving beyond the computer busi-
ness and into consumer electronics 

and then mobile phones, Apple’s rev-
enues have risen several times faster 
than the overall PC industry. Its sales 
jumped from $6.2 billion in 2003, with 
an operating loss, to over $36 billion 
in 2009, with a 21% operating profit 
margin. In addition, Macintosh com-
puters in 2009 made up only 38% of 
Apple’s revenues, down from 72% in 
2003. The iPod accounted for 22% of 
2009 revenues, music products 11%, 
and the iPhone approximately 18%. 
Software and services as well as hard-
ware peripherals generated the other 
12% of sales. It is striking how Apple’s 
market value remained less than its 
annual revenues for so many years 
while Microsoft’s market value was 
8 to 13 times revenues. But here too, 
by 2005, the tide had turned. Apple’s 
value has continued to rise, reaching 
five times revenues by the end of 2009 
and then finally surpassing Microsoft, 
whose value has been flat or dropping 
for a decade due to commoditization 
of PC hardware and software and its 
inability to move much beyond the PC. 
In particular, Microsoft’s attempts to 
emphasize tablet computers as well 
as copy the iPod with the Zune digital 
media player and compete in smart-
phones with Windows devices have 
failed miserably. 

Current Situation
Not everything is completely smooth for 
Apple, however. The company has been 
clashing with Google and its rival mo-
bile OS (Android). Google is the cham-
pion of open systems and always tries 

to force semi-open or semi-closed plat-
forms to “open up” so that it can get un-
restricted access to information on user 
behavior through searches and thereby 
sell more and better targeted ads. Apple 
is also clashing with Adobe, refusing 
to support the Flash technology on the 
iPhone or the iPad, even though Flash 
is used for the vast majority of videos 
and advertisements on the Web. The 
U.S. Department of Justice and the Fed-
eral Trade Commission are reportedly 
reviewing Apple’s restrictive policies to 
see if they violate antitrust laws.e Apple 
has near-monopoly shares (approxi-
mately 70% or so of the market) for both 
digital devices (iPod) and digital con-
tent services (iTunes). But, for the mo-
ment, users continue flocking to Apple 
products because of their elegance and 
the superior user experience.

Apple is still less profitable than Mi-
crosoft because hardware devices are 
more expensive to replicate than soft-
ware products. Apple also has dropped 
its prices to counter copycat smart-
phone products from Nokia, Samsung, 
HTC, and other firms. In the long run, 
the most valuable part of the Apple 
franchise might end up being its online 
services and content platforms (iTunes 
and App Store). The hardware products 
may simply become platforms to drive 
revenue from selling or aggregating 
high-margin automated digital prod-
ucts. Apple’s acquisition in December 
2009 of Lala, the streaming Web mu-
sic service, also provides “cloud-like” 
technology that could enable Apple 
customers to store their music, photos, 
or videos and listen to or view their con-
tent from different devices, anywhere 
and anytime. In short, rather than in a 
Microsoft world, we are clearly now liv-
ing much more in a world defined by 
Apple as well as Google, Facebook, and 
other firms that have successfully mar-
ried new consumer devices and Internet 
platforms with a variety of online servic-
es and content. 	

e	  J. Kosman, “An antitrust app: Apple may be in 
the eye of a regulatory storm,” New York Post, 
May 3, 2010; http://www.nypost.com/

Michael A. Cusumano (cusumano@mit.edu) is a 
professor at the MIT Sloan School of Management and 
School of Engineering and author of Staying Power: Six 
Enduring Principles for Managing Strategy and Innovation 
in an Uncertain World (Oxford University Press, 2010).
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In the long run,  
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Inside Risks  
Risks of Undisciplined 
Development
An illustration of the problems caused by a lack of discipline in software 
development and our failure to apply what is known in the field.  

doi:10.1145/1831407.1831419	 David L. Parnas

T
h e  b r a n c h e s  of   engineer-
ing (such as civil, electrical, 
and mechanical), are often 
referred to as disciplines 
for good reason. Associated 

with each specialty is a set of rules 
that specify: 

˲˲ checks that must be made; 
˲˲ properties that must be measured, 

calculated, or specified; 
˲˲ documentation that must be pro-

vided;
˲˲ design review procedures;
˲˲ tests that must be carried out on 

the product; and 
˲˲ product inspection and mainte-

nance procedures. 
Like all professional education, 

engineering education is designed to 
prepare students to meet the require-
ments of the authorities that regulate 
their chosen profession. Consequently, 
most graduates are taught they must 
carry out these procedures diligently 
and are warned they can be deemed 
guilty of negligence and lose the right to 
practice their profession if they do not. 

Because they are preparing stu-
dents for a career that can last many 
decades, good engineering programs 
teach fundamental principles that will 
be valid and useful at the end of the 
graduate’s career. Engineering proce-
dures are based on science and math-
ematics; and graduates are expected to 
understand the reasons for the rules, 
not just blindly apply them. 

These procedures are intended to 

assure that the engineer’s product: 
˲˲ will be fit for the use for which it 

is intended; 
˲˲ will conform to precise stable  

standards; 
˲˲ is robust enough to survive all 

foreseeable circumstances (including 
incorrect input); and

˲˲ is conservatively designed with 
appropriate allowance for a margin of 
error. 

In some areas, for example building 
and road construction, the procedures 

are enforced by law. In other areas, and 
when engineers work in industry rather 
than selling their services directly to the 
public, employers rely on the profes-
sionalism of their employees. Profes-
sional engineers are expected to know 
what must be done and to follow the 
rules even when their employer wants 
them to take inappropriate shortcuts.  

Anyone who observes engineers at 
work knows that exercising due dili-
gence requires a lot of “dog work.” The 
dull, but essential, work begins in the 
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design phase and continues through 
construction, testing, inspection, 
commissioning, and maintenance. Li-
censed engineers are given a unique 
seal and instructed to use it to signify 
the acceptability of design documents 
only after they are sure the required 
analysis has been completed by quali-
fied persons.  

Real-World Experience
Recent experiences reminded me that 
the activity we (euphemistically) call 
software engineering does not come 
close to deserving a place among the 
traditional engineering disciplines. 
Replacing an old computer with a new-
er model of the same brand revealed 
many careless design errors—errors 
that in all likelihood could have been 
avoided if the developers had followed 
a disciplined design process. None of 
the problems was safety critical, but 
the trouble caused was expensive and 
annoying for all parties.  

My “adventure” began when the 
sales clerk scanned a bar code to ini-
tiate the process of creating a receipt 
and registering my extended warranty. 
There were three codes on the box; not 
surprisingly, the sales clerk scanned 
the wrong one. This is a common oc-
currence. The number scanned bore 
no resemblance to a computer serial 
number but was accepted by the soft-
ware without any warning to the clerk. 
The nonsense number was duly print-
ed as the serial number on my receipt. 
My extended warranty was registered 
to a nonexistent product. I was billed, 
and no problem was noted until I 
phoned the customer care line with a 
question. When I read the serial num-

ber from the receipt, I was told that I 
had purchased nothing and was not 
entitled to ask questions. After I found 
the correct number on the box, I was 
told that my computer was not yet 
in their system although a week had 
passed since the sale.  

Correcting the problem required 
a trip back to the store and tricking 
the company computer by returning 
the nonexistent machine and buying 
it again. In the process, my name was 
entered incorrectly and I was unable 
to access the warranty information on-
line. After repeatedly trying to correct 
their records, the help staff told me it 
could not be done.  

A different problem arose when 
I used the migration assistant sup-
plied with the new computer to trans-
fer my data and programs to the new 
machine. Although the description of 
the migration assistant clearly states 
that incompatible applications will 
be moved to a special directory rather 
than installed, a common software 
package on the old machine, one that 
was not usable or needed on the new 
one, was installed anyway. A process 
began to consume CPU time at a high 
rate. Stopping that process required 
searching the Internet to find an in-
staller for the obsolete product.  

The next problem was an error 
message informing me that a device 
was connected to a USB 1.1 port and 
advising me to move it to a USB 2.0 
port. My new computer did not have 
any 1.1 ports so I called the “care” line 
for advice. They had no list of error 
messages and could not guess, or find 
out, which application or component 
of their software would issue such a 
message or under what conditions it 
should be issued. They referred the 
problem to developers; I am still wait-
ing for a return call.  

These incidents are so petty and so 
commonplace that readers must won-
der why I write about them. It is pre-
cisely because such events are com-
monplace, and so indicative of lack 
of discipline, that such stories should 
concern anyone who uses or creates 
software. 

As early as the late 1950s, some 
compilers came with a complete list 
of error messages and descriptions of 
the conditions that caused them. To-
day, such lists cannot be found. Often, 

Computer science 
students are not 
taught to work in 
disciplined ways. In 
fact, the importance 
of disciplined analysis 
is hardly mentioned.
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when reviewing a system, I will pick a 
random message or output symbol and 
ask, “When does that happen?” I never 
get a satisfactory answer.  

There are methods of design and 
documentation that facilitate check-
ing that a programmer has considered 
all possible cases (including such un-
desired events as incorrect input or the 
need to correct an earlier transaction) 
and provided appropriate mechanisms 
for responding to them. When such 
methods are used, people find serious 
errors in software that has been tested 
and used for years. When I talk or write 
about such methods, I am often told by 
colleagues, experienced students, and 
reviewers that, “Nobody does that.” 
They are right—that’s the problem! 

Much of the fault lies with our 
teaching. Computer science students 
are not taught to work in disciplined 
ways. In fact, the importance of disci-
plined analysis is hardly mentioned. Of 
course, just telling students to be dili-
gent is not enough. We need to: 

˲˲ teach them what to do and how to 
do it—even in the first course; 

˲˲ use those methods ourselves in ev-
ery example we present;

˲˲ insist they use a disciplined ap-
proach in every assignment in every 
course where they write programs;

˲˲ check they have inspected and test-
ed their programs diligently, and 

˲˲ test their ability to check code sys-
tematically on examinations. 

Many of us preach about the impor-
tance of determining the requirements 
a software product must satisfy, but we 
do not show students how to organize 
their work so they can systematically 
produce a requirements specification 
that removes all user-visible choices 
from the province of the programmer.  

Some of us advise students to avoid 
dull work by automating it, but do not 
explain that this does not relieve an en-
gineer of the responsibility to be sure 
the work was done correctly.  

Innovation and Disciplined Design
It has become modish to talk about 
teaching creativity and innovation. We 
need to tell students that inventiveness 
is not a substitute for disciplined atten-
tion to the little details that make the 
difference between a product we like 
and a product we curse. Students need 
to be told how to create and use check-

lists more than they need to hear about 
the importance of creativity. 

It is obviously important to give 
courses on picking the most efficient 
algorithms and to make sure that stu-
dents graduate prepared to under-
stand current technology and use new 
technology as it comes along, but nei-
ther substitutes for teaching them to 
be disciplined developers.  

Disciplined design is both teachable 
and doable. It requires the use of the 
most basic logic, nothing as fancy as 
temporal logic or any of the best-known 
formal methods. Simple procedures 
can be remarkably effective at finding 
flaws and improving trustworthiness. 
Unfortunately, they are time-consum-
ing and most decidedly not done by se-
nior colleagues and competitors.  

Disciplined software design re-
quires three steps: 

1.	 Determine and describe the set of 
possible inputs to the software.

2.	 Partition the input set in such a 
way that the inputs within each par-
tition are all handled according to a 
simple rule. 

3.	 State that rule. 
Each of these steps requires careful 

review: 
1.	 Those who know the application 

must confirm that no other inputs can 
ever occur. 

2.	 Use basic logic to confirm that ev-
ery input is in one—and only one—of 
the partitions.

3.	 Those who know the applica-
tion, for example, those who will use 
the program, must confirm the stat-
ed rule is correct for every element of 
the partition. 

These rules seem simple, but reality 
complicates them: 

1.	 If the software has internal mem-
ory, the input space will comprise 
event sequences, not just current val-
ues. Characterizing the set of possible 
input sequences, including those that 
should not, but could, happen is diffi-
cult. It is very easy to overlook sequenc-
es that should not happen. 

2.	 Function names may appear in 
the characterization of the input set. 
Verifying the correctness of the pro-
posed partitioning requires knowing 
the properties of the functions named. 

3.	 The rule describing the output 
value for some of the partitions may 
turn out to be complex. This is gener-
ally a sign that the partitioning must be 
revised, usually by refining a partition 
into two or more smaller partitions. The 
description of the required behavior for 
a partition should always be simple but 
this may imply having more partitions. 

Similar “divide and conquer” ap-
proaches are available for inspection 
and testing.  

While our failure to teach students 
to work in disciplined ways is the pri-
mary problem, the low standards of 
purchasers are also a contributing fac-
tor. We accept the many bugs we find 
when a product is first delivered, and 
the need for frequent error-correcting 
updates, as inevitable. Even sophisti-
cated and experienced purchasers do 
not demand the documentation that 
would be evidence of disciplined de-
sign and testing.  

We are caught in a catch-22 situa-
tion: 

˲˲ Until customers demand evidence 
that the designers were qualified and 
disciplined, they will continue to get 
sloppy software. 

˲˲ As long as there is no better soft-
ware, we will buy sloppy software. 

˲˲ As long as we buy sloppy software, 
developers will continue to use undis-
ciplined development methods. 

˲˲ As long as we fail to demand that 
developers use disciplined methods, 
we run the risk—nay, certainty—that 
we will continue to encounter software 
full of bugs.  	

David L. Parnas (parnas@mcmaster.ca) is Professor 
Emeritus at McMaster University and the University of 
Limerick as well as President of Middle Road Software. 
He has been looking for, and teaching, better software 
development methods for more than 40 years. He is still 
looking!  
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Kode Vicious  
Version Aversion
The way you number your releases communicates  
more than you might think.

doi:10.1145/1831407.1831420	 George V. Neville-Neil

Dear KV,
I’m working on a small, open-source 
project in my free time and trying to 
figure out a reasonable way to number 
releases. There are about 10 of us work-
ing on the project right now, and there 
seem to be 10 different opinions about 
when we should roll out the major and 
minor numbers for our project. Since 
the software is only in the alpha stage, 
I thought it was premature to come up 
with a numbering scheme; but once 
someone else posted it on our mailing 
list we decided we should tackle the 
problem now so we don’t have to think 
about it again later. When you’re work-
ing on software, when do you roll out a 
new version number?

Averse to Aversion

Dear Aversion,
You have 10 developers and you have 

only 10 opinions? I was expecting you 
to say you had 20 opinions, so right 
from the start it looks like you’re not 
in as bad a shape as you might think. 
Choosing a versioning scheme is more 
important than most programmers 
really understand, in part because a 
versioning scheme is a form of human 
communication, and human commu-
nication…well, let’s just say that many 
programmers don’t get that at all.

A versioning scheme serves a few 

important purposes. The most obvious 
is allowing users to know where they 
are in the evolution of your software, 
but version numbers also communi-
cate a good deal more information. 

A good version-numbering system 
can be used to track the change in func-
tionality of a piece of software. A new 
feature, or a major change to a feature, 
should always result in a new version 
number being assigned. I’ve always 
been happiest, or perhaps least miser-

A good version-
numbering system 
can be used to 
track the change in 
functionality of  
a piece of software.

http://queue.acm.org
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able, with three-number versioning—
Major.Minor.BugFix—where the major 
version changes for large features, the 
minor version changes for small fea-
tures, and the last number is a bug-fix 
release. The bug-fix number is perhaps 
the easiest to understand. After a num-
ber of bugs are fixed, you want to release 
new software into the field so that users 
can benefit from the work your team 
has done. Increase the last number and 
release a new version. Bug fixes should 
never change an API in a library or intro-
duce or significantly change a feature.

The difference between a major and 
a minor version change can be tricky 
depending on the software you are 
writing. Minor versions can be rolled 
out so long as there are no backward-
incompatible changes to the system. 
What this means is that if you have a 
change to your software that will break 
another piece of software that depends 
on your code, or that breaks a user 
assumption about how your system 
works, that requires a major version 
change. Additive changes, such as new 
APIs, or new features that do not break 
backward compatibility can be rolled 
into minor version updates. 

The slippery slope is figuring out 
how many minor changes add up to a 
major change. If your software has 30 
features and you add 10 new ones, even 
if none of them touches the original 30, 
shouldn’t that necessitate a major ver-
sion change? I think it should, but not 
everyone agrees. Of course those who 
don’t agree—well, let’s just leave that 
alone, shall we?

One thing that software versions 
communicate is the rate of change in 
your software. If your software goes 
from 1.0 to 2.0 in a month, then either 
your team is performing miracles, 
which I find highly suspect, or they’re 
claiming major changes when none 
has really occurred. A very high rate of 
minor or bug releases can also indicate 
problems in a project—in particular, 
that it is buggy. Although there is no 
perfect rate for releases, they should 
definitely slow down a bit as a product 
matures. Too-frequent releases often 
mean that a piece of software is imma-
ture and perhaps lacks staying power.

Another pattern, in some projects, 
is never to release a 1.0, but to release 
a lot of 0.x’s. A particularly egregious 
version of this, pun intended, was the 

Ethereal project, which, after more 
than 10 years of development, got to 
the point of releasing a 0.99.5. This was 
just a way, as far as I could tell, of mov-
ing the version number to the right. 
The software itself is quite good and 
widely used, but its versioning system 
was quite odd. Now that the project has 
been renamed Wireshark, it seems to 
have moved to a more traditional Ma-
jor.Minor style of versioning.

Version numbers should also be able 
to correlate related pieces of software. 
One of the banes of my existence is 
the Linux versioning system, although 
I believe this has more to do with the 
way Linux itself is developed. The fact 
that there are now many different 
operating-system kernels that I might 
have to choose from to use a piece of re-
lated software is simply maddening. A 
recent example involves having to find 
the correct bits so I could use a driver 
for a new piece of hardware. The stan-
dard release was 2.6.18-194.3.1.el5, but 
the version I needed was, 2.6.18-164.el. 
And just what do those numbers mean? 
Of course I could work them out with 
some Web searches, but still, the fact 
that kernel APIs have changed enough 
within those minor releases that a 
driver couldn’t work is madness. Even 
looking at kernel.org, the source of all 
things Linux kernel, isn’t much help. At 
the time this column was written these 
are the kernels that are listed as stable 
for the 2.6 version of the kernel:

2.6.34 	 2010-05-16 	
2.6.33.5 	 2010-05-26 
2.6.32.15 	 2010-06-01
2.6.31.13 	 2010-04-01
2.6.27.47 	 2010-05-26

Now, I ask you, how does 2.6.34 
come out 10 days before 2.6.33.5, and 
how can all of these be stable? How do 
they even relate to each other?

Of course, it’s not just open-source 
projects that have problems with ver-
sioning. The biggest software company 
of them all seems to have one of the 
most ridiculous versioning schemes 
of all. Based on the names alone, how 
does one figure the difference between 
Windows 95, Windows 98, Windows 
ME, Windows NT, Windows XP, Win-
dows XP Service Pack 2, and Vista? I 
can list them in order only because I 
have watched them all come and go, 
and, happily, never installed any of 
them on my own machines. Perhaps 
if you hash the names just right, then 
they turn into monotonically increas-
ing version numbers.

One last thing to note is that you 
should not tie yourself down with your 
versioning scheme; remember that you 
may have to be flexible. I once worked 
on a product with a 1.0.1b release. The 
b release was necessitated by a not-so-
amusing mistake, wherein a developer 
decided that if a user saved a file with-
out an extension, the developer would 
provide one. The extension was a four-
letter word that is included in George 
Carlin’s list of seven things you can 
never say on TV, and which one should 
never really have as a file extension ei-
ther. I think you get the idea. The devel-
oper had meant to remove that particu-
lar feature before the code was released 
but forgot, and so, we had 1.0.1 and 
1.0.1b releases. We could have made a 
1.0.2 release, but, really, there was just 
one change—though I do believe we 
should have made the release 1.0.1f.

KV

  Related articles 
  on queue.acm.org

A Conversation with Steve Bourne,  
Eric Allman, and Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1454460

Making Sense of Revision-Control Systems
Bryan O’Sullivan
http://queue.acm.org/detail.cfm?id=1595636

George V. Neville-Neil (kv@acm.org) is the proprietor of 
Neville-Neil Consulting and a member of the ACM Queue 
editorial board. He works on networking and operating 
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doi:10.1145/1831407.1831421	 Michael Hicks and Jeffrey S. Foster

W
orking with and men-
toring Ph.D. students 
is the central activ-
ity in running an aca-
demic research group. 

At the start of our careers as assistant 
professors, we took a fairly typical ap-
proach to managing student interac-
tions: once or twice per week, we met 
with each of our students in presched-
uled sessions of approximately half-
hour or hour-long duration. However, 
this approach started breaking down 
as we gained more students and our 
other responsibilities increased: our 
time became fragmented and ineffi-
ciently used; hard-earned lessons were 
not shared effectively among students; 
and our group lacked any real cohe-
sion or identity. In September 2006, 
we learned about Scrum,1 an “agile” 
software development methodology, 
and realized we might be able to solve 
some of the problems we were having 
by adapting it to our research group.

In this Viewpoint, we briefly describe 
the resulting process, which we call 
SCORE (SCrum fOr REsearch). We have 
been using SCORE for several years, and 
have discovered it has many benefits, 
some we intended and some that sur-
prised us. While every situation is differ-
ent, we hope others may learn from our 
approach, in idea if not in form, and that 
we might inspire further discussion of 
research group management strategies. 
A longer version of this Viewpoint, with 
more information and space for feedback, 
is available at the SCORE Web page.3

SCORE
The major feature of SCORE is its 
meeting structure, which consists of 
two parts:

Regular all-hands status meetings. 
Several times a week (late mornings 
on Tuesdays, Wednesdays, and Fridays 
in our group), the group meets for a 
15-minute, all-hands status meeting, 
modeled after the daily “scrum” meet-
ing for which Scrum is named. During 
the meeting each person gives a brief 
update on what they did since the last 
meeting, what problems they encoun-
tered, and what they plan to do for the 
next meeting. If someone cannot physi-
cally attend the meeting, they may con-
ference-call in, but physical presence is 
much preferred. Everyone stands dur-
ing the meeting, to encourage brevity.

Though brief, status reports are 
information-rich. Students report on a 
wide range of activities, such as prog-
ress in implementing code, carrying 
out an experiment, reading a paper, 
working on a proof, writing up a re-
sult, or preparing a talk. We encourage 

students to present their status to the 
group, rather than just to the faculty. 
Students may also say there has been no 
change in their status, typically because 
of classwork or for personal reasons.

On-demand research meetings. 
Whenever a student or one of us thinks 
a more in-depth, one-on-one meeting 
is needed, we schedule it on demand. 
Since only the status meetings are pre-
scheduled, we are able to reserve large 
blocks of time (most afternoons) for 
holding on-demand meetings, and the 
meetings can be of varying durations—
as long, or as short, as required. We of-
ten schedule  on-demand meetings im-
mediately following a status meeting, 
typically for the same afternoon.

We kicked off SCORE with a “re-
search review day” of conference-style 
talks describing ongoing research proj-
ects, to provide context for the ensu-
ing status reports. As needed, we inject 
some of these talks to inform the group 
of a new project or to “checkpoint” a 
recent major result. To help increase 
group spirit further, we have a weekly 
lunch, and we also hold a reading group 
one day per week.

Why It Works for Us
Though simple, SCORE works remark-
ably well for us. After nine months of 
using SCORE, we surveyed our students 
for feedback, and their responses were 
very positive. Since then, colleagues 
at various institutions have adopted 
aspects of SCORE, and they have of-
fered us feedback. From these and our 

Viewpoint  
SCORE: Agile Research  
Group Management 
Adapting agile software development methodology toward  
more efficient management of academic research groups.
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own assessments, we have identified 
the following list of SCORE’s benefits. 
While none of these benefits is unique 
to SCORE, it is convenient that SCORE 
has them all.

More efficient time use for faculty. 
A major problem we had with prear-
ranged meetings was schedule frag-
mentation. When a student had only 
a quick status update, the meeting 
slot was too long, and the remaining 
chunks of time were difficult to use. 
On the other hand, when a student 
had a deep technical issue to explore, 
the slots were too short. Because we 
had so many prescheduled meetings, 
subsequent discussion might have to 
wait a day or two, slowing progress. 
Moreover, context-switching fre-
quently over the course of many meet-
ings was very draining, reducing the 
meetings’ effectiveness.

SCORE solves these issues very well 
by separating quick status reports 
from in-depth technical discussions. 
On-demand meetings have a clear 
purpose and are therefore much more 
productive than our weekly meetings 
used to be.

Improved productivity for students. 
By our own observations and those of 
our students, frequent student-adviser 
contact at SCORE status meetings has  
improved student morale and produc-
tivity. In response to our survey, one 
student said: “I like the frequency of 
the status meetings. Frequent meetings 
make incremental progress necessary: 
to have something to say at each meet-
ing, you can’t goof off for an extended 
period of time. Also, if you don’t know 
where to go next, there isn’t much time 
before another meeting, when you can 
get back on track. On the other hand, 
the frequency of the meetings means 
that, if something came up and you 
don’t have anything to report for today, 
it’s not a big deal; you’ll have something 
for tomorrow or the next day.”

Most graduate students struggle at 
some point—one study found “At [UC] 
Berkeley, 67% of graduate students said 
they had felt hopeless at least once in 
the last year.”2 With thrice-weekly sta-
tus meetings, we can identify struggling 
students quickly and therefore help 
them much sooner than we would have 
when meeting once per week.

Improved group identity and shared 
knowledge. By giving each person a 

window onto the activities of others, 
participants learn from others’ suc-
cesses and failures, which helps create 
a group sense of momentum and ac-
complishment. One student specifical-
ly commented he liked hearing about 
other students’ progress: “I can follow 
other people’s research and ‘daily re-
search routine.’ That helps because it’s 
interesting and I learn things, but also 
because I can compare my productivity 
and have a better idea of how I fare.”

More than half of the students sur-
veyed specifically cited a “research com-
munity” or “sense of belonging” as a 
benefit of SCORE. The students said 
they feel the joy of their fellows’ suc-
cesses, which then creates further mo-
tivation and enthusiasm for their own 
work. At the same time, one student 
mentioned it was consoling to learn that 
other students hit slow patches, too: “It 
helped me with the realization that ev-
eryone has rough patches and that it is 
not a big deal.” Several students said 
regular social gatherings and proximate 
offices were also important in fostering 
this sense of community. One student 
said, “Status meetings and the office 
atmosphere make it worth my while to 
come to school.” Finally, group meet-
ings remove faculty as the bottleneck to 
developing new ideas or solving techni-
cal problems, as students offer advice 
and begin collaborations with their fel-
low students based on what they hear in 
the meetings.

Can SCORE Work for You?
Every research group is different and 
must find its own process that works 
best. We hope knowing about SCORE 
will prove useful to other groups, either 
as a new process to experiment with or 
as inspiration for other ideas. For ex-

ample, instead of SCORE’s status meet-
ings there may be other good stategies 
to engender frequent contact and cre-
ate opportunities for focused, in-depth 
meetings. Among others, some pos-
sible approaches are regular faculty “of-
fice hours” in a lab-space that co-locates 
many students; less formal “coffee 
hours”; or perhaps co-locating faculty 
with students. Lessons learned might 
be communicated more permanently 
by incorporating group mailing lists, 
wikis, or blogs. Prescheduled research 
meetings may also play a role, for ex-
ample, for external collaborators who 
do not attend status meetings.

SCORE can also be further improved, 
as it is silent about some important el-
ements of running a research group. 
For example, SCORE has no specific 
process for generating and discussing 
research ideas. Currently we explore 
ideas during the on-demand meetings, 
but doing so does not take advantage of 
the perspective of the larger group, nor 
does it give students a broader view of 
this process.

We encourage interested readers to 
read the longer version of this Viewpoint 
at the SCORE Web page,3 and to pro-
vide comments on the ideas and issues 
raised. The long version goes into more 
detail about running SCORE in practice, 
describes elements of SCORE that we 
tried but did not work for us, and reports 
more in-depth responses to our student 
survey. We look forward to further ex-
ploring strategies for mentoring and 
working with graduate students to pro-
duce high-quality academic research.	
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Over the past  two decades, Adobe Photoshop 
has become the de facto image-editing software 
for digital photography enthusiasts, artists, and 
graphic designers worldwide. Part of its widespread 
appeal has to do with a user interface that makes 
it fairly straightforward to apply some extremely 
sophisticated image editing and filtering techniques. 
Behind that façade, however, stands a lot of complex, 
computationally demanding code. To improve the 
performance of these computations, Photoshop’s 
designers became early adopters of parallelism—in 
the mid-1990s—through efforts to access the extra 
power offered by the cutting-edge desktop systems 
of the day that were powered by either two or four 
processors. At the time, Photoshop was one of the 

only consumer desktop applications to 
offer such a capability.

Photoshop’s parallelism, born in the 
era of specialized expansion cards, has 
managed to scale well for the two- and 
four-core machines that have emerged 
over the past decade. As Photoshop’s 
engineers prepare for the eight- and 16-
core machines that are coming, howev-
er, they have started to encounter more 
and more scaling problems, primarily a 
result of the effects of Amdahl’s Law and 
memory-bandwidth limitations. 

In this ACM Case Study, Adobe Pho-
toshop principal scientist Russell Wil-
liams speaks with Clem Cole, architect 
of Intel’s Cluster Ready program, about 
how the Photoshop team is addressing 
these challenges. Although in their cur-
rent positions they represent different 
aspects of the parallel-computing land-
scape, both have long histories of tack-
ling parallelism at the operating-system 
level.

Prior to joining the Photoshop de-
velopment team, Williams had a long 
career as an operating-system designer 
at companies such as Apple, where he 
worked on the Copland microkernel, 
and Elxsi, where he helped develop 
mini-supercomputers. The diversity 
of that background now allows him to 
maintain a well-rounded perspective 
on parallelism at different levels of the 
stack.

Cole is a veteran operating-system 
developer with years of experience in 
Unix kernel and tool development. His 
current efforts to advance methods that 
take advantage of multiple processors—
using Intel’s next generation of multi-
core chips—makes him a fitting inter-
viewer for Williams, whose work in large 
part builds on top of the platforms Cole 
helps to create at Intel.

While Photoshop comes with a 
unique set of problems and constraints, 
many of the engineering challenges it 
presents will undoubtedly seem familiar 
to any software engineer who has ever 
attempted to achieve parallelism in an 
application. Still, to get a handle on the 
issues Photoshop’s engineers are facing 
today, we must first consider the appli-
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cation’s history with parallelism over 
the past 15 years.

COLE: You’ve been writing software for 
a long time, and for the past 11 years 
you’ve been working with Photoshop 
and have become increasingly engaged 
with its parallel aspects. Which parts of 
that have proved to be easy and what has 
turned out to be surprisingly hard? 

WILLIAMS: The easy part is that Pho-
toshop has actually had quite a bit of 
parallelism for a long time. At a very sim-
plistic level, it had some worker threads 
to handle stuff like asynchronous cursor 
tracking while also managing asynchro-
nous I/O on another thread. Making 
that sort of thing work has been pretty 
straightforward because the problem 
is so simple. There’s little data shared 
across that boundary, and the goal is not 
to get compute scaling; it’s just to get an 
asynchronous task going. 

I should note, however, that even 
with that incredibly simple task of queu-
ing disk I/O requests so they could be 
handled asynchronously by another 
thread, the single longest-lived bug I 
know of in Photoshop ended up being 
nestled in that code. It hid out in there 
for about 10 years. We would turn on 
the asynchronous I/O and end up hit-
ting that bug. We would search for it for 
weeks, but then just have to give up and 
ship the app without the asynchronous 
I/O being turned on. Every couple of 
versions we would turn it back on so we 
could set off looking for the bug again. 

COLE: I think it was Butler Lampson 
who said the wonderful thing about se-
rial machines is you can halt them and 
look at everything. When we’re working 
in parallel, there’s always something 
else going on, so the concept of stop-
ping everything to examine it is really 
hard. I’m actually not shocked your bug 
was able to hide in the I/O system for 
that long. 

WILLIAMS: It turned out to be a very 
simple problem. Like so many other 
aspects of Photoshop, it had to do with 
the fact that the app was written first for 
the Macintosh and then moved over to 
Windows. On the Macintosh, the set file 
position call is atomic—a single call—
whereas on Windows, it’s a pair of calls. 
The person who put that in there didn’t 
think about the fact that the pair of calls 
has to be made atomic whenever you’re 
sharing the file position across threads. 

COLE: Now, of course, you can look 
back and say that’s obvious. 

WILLIAMS: In fact, the person who 
originally put that bug in the code was 
walking down the hallway one of the 
many times we set off looking for that 
thing, smacked his forehead, and real-
ized what the problem was—10 years 
after the fact. 

Anyway, the other big area in Pho-
toshop where we’ve had success with 
parallelism involves the basic image-
processing routines. Whenever you run 
a filter or an adjustment inside Photo-
shop, it’s broken down into a number 
of basic image-processing operations, 
and those are implemented in a library 
that’s accessed through a jump table. 
Early on, that allowed us to ship acceler-
ated versions of these “bottleneck rou-
tines,” as they’re called. In the 1990s, 
when companies were selling dedicated 
DSP (digital signal processor) cards for 
accelerating Photoshop, we could patch 
those bottlenecks, execute our routine 
on the accelerator card, and then return 
control to the 68KB processor. 

That gave us an excellent opportu-
nity to put parallelism into the app in a 
way that didn’t complicate the imple-
mentations for our bottleneck-routine 
algorithms. When one of those routines 
was called, it would be passed a point-
er—or two or three pointers—to bytes 
in memory. It couldn’t access Photo-
shop’s software-based virtual memory 
and it couldn’t call the operating sys-
tem; it was just a math routine down at 
the bottom. That gave us a very simple 
way—prior to getting down to the math 
routine—of inserting something that 
would slice up the piece of memory we 
wanted to process across multiple CPUs 
and then hand separate chunks of that 
off to threads on each CPU. 

COLE: The key there is you had an 
object that could be broken apart into 
smaller objects without the upper-level 
piece needing to worry about it. It also 
helps that you had a nice, clean place to 
make that split. 

WILLIAMS: The other nice aspect is that 
the thing on the bottom didn’t need to 
know about synchronization. It was still 
nothing more than a math routine that 
was being passed a source pointer—or 
maybe a couple of source pointers and 
counts—along with a destination point-
er. All the synchronization lived in that 
multiprocessor plug-in that inserted 

itself into the jump table for the bottle-
neck routines. That architecture was put 
into Photoshop in about 1994. It allowed 
us to take advantage of Windows NT’s 
symmetric multiprocessing architec-
ture for either two or four CPUs, which 
was what you could get at the time on a 
very high-end machine. It also allowed 
us to take advantage of the DayStar mul-
tiprocessing API on the Macintosh. You 
could buy multiprocessor machines 
from DayStar Digital in the mid- to late-
1990s that the rest of the Mac operating 
system had no way of taking advantage 
of—but Photoshop could. 

Photoshop has well over a decade of 
using multiple processors to perform 
the fundamental image-processing 
work it does on pixels. That has scaled 
pretty well over the number of CPUs 
people have typically been able to obtain 
in a system over the past decade—which 
is to say either two or four processors. 
Essentially, no synchronization bugs 
ended up surfacing in those systems 
over all that time. 	

COLE: That’s an amazing statement! 
Is there an insight associated with that 
that you can share? What do you think 
the rest of us can learn from that?

WILLIAMS: I think the big win came 
from not having to write synchroniza-
tion for the processing routines that 
were to be parallelized. In other words, 
people could write convolution kernels 
or whatever else it was they needed to 
do in terms of pixel processing without 
having to worry about getting all those 
synchronization issues right. If acquir-
ing one asynch I/O thread was all it took 
for us to introduce a bug that managed 
to elude us for 10 years, then it’s clear 
that minimizing synchronization issues 
is very important.

That said, the way synchronization 
was approached 10 years ago involved 
the use of far more error-prone synchro-
nization primitives than what we’ve got 
available to us today. Things like “enter 
critical section” and “leave critical sec-
tion” on Windows could be really fast, 
but they were also very error prone. Try-
ing to keep track of whether you’ve put 
critical sections every place you might 
need them, and whether or not you’ve 
remembered to leave as many times as 
you entered, that can all tend to be very 
difficult and error prone.

The nettlesome bug that managed to re-



practice

october 2010  |   vol.  53  |   no.  10  |   communications of the acm     35

main obscured within Photoshop’s syn-
chronization code for 10 years serves to 
illustrate just how tricky parallel pro-
gramming can be. But it also highlights 
how much progress has been made in 
terms of improved resources for man-
aging some of this complexity. Had Pho-
toshop’s synchronization been written 
today using C++’s stack-based locking, 
for example, it’s unlikely a bug of that 
sort would have been introduced. As 
processors get more cores and grow in 
complexity, the need will only intensify 
for new tools and better programming 
primitives for hiding the complexity 
from developers and allowing them to 
code at higher levels of abstraction.

At the same time, software archi-
tects also need to keep an eye on some 
other fundamental issues. For example, 
despite using less-sophisticated syn-
chronization primitives in the original 
design, the Photoshop team was able 
to essentially forget about complex 
thread-synchronization problems, in 
part because the image-processing 
problem itself was so amenable to par-
allelization. Also, however, Photoshop’s 
architecture made it possible to estab-
lish some very clean object boundaries, 
which in turn made it easy for program-
mers to slice up objects and spread the 
resulting pieces across multiple proces-
sors. Indeed, the architects of Photo-
shop were keenly aware of where their 
best opportunities for parallelization 
existed, and they designed the applica-
tion accordingly. 

Generalizing on this, it’s clear that—
with or without advances in tools and 
programming abstractions—in order 
for developers to fully leverage the mul-
ticore architectures that are coming, 
they’ll need to be adept at identifying 
those parts of a program that can ben-
efit most from parallelization. It’s in 
these portions of the code that new 
tools, techniques, and parallel pro-
gramming abstractions are likely to 
have the greatest impact. 

COLE: As operating-system designers, we 
both grew up in a world where we had 
to deal with parallelism. It’s not always 
clear that the solutions we came up with 
for our operating systems proved to be 
the right ones. In an earlier conversa-
tion, you mentioned your experience 
with creating and removing mutexes. 
We’ve gotten smarter over the years. 

We’ve learned how to do things that are 
more efficient, but that doesn’t mean it 
has gotten any easier. What do we have 
up our sleeves to make it easier? 

WILLIAMS: Parallelism remains diffi-
cult in a couple of ways. It’s one thing 
to ask for a new Photoshop filter for 
processing a grid of pixels to do that in 
parallel. It’s quite another thing to say, 
“I’m going to parallelize and thus speed 
up the way that Photoshop runs JavaS-
cript actions.” For example, I’ve got a 
JavaScript routine that opens 50 files 
one after the other and then performs a 
set of 50 steps on each one. I don’t have 
control over that script. My job is just to 
make that—or any other script the user 
has to run—faster. 

I could say, “Rewrite all your scripts 
so we can design a completely new in-
terface that will let you specify that all 
these images are to be processed in par-
allel.” That’s one answer, but it would 
require a lot of work on the user’s part, 
as well as on our part. And it would still 
leave us with the problems associated 
with parallelizing the opening of an 
image, parsing the image contents, in-
terpreting the JavaScript, running the 
key command object through the ap-
plication framework, and updating the 
user interface—all of which typically is 
tied into an app framework and thus 
involves calling some horrendously se-
quential script interpreter. Once you 
start looking at the Amdahl’s Law num-
bers on something like that, it soon be-
comes apparent that trying to get that 
to parallelize eight ways would just be 
completely hopeless. 

At the other end of the spectrum you 
might find, for example, a mathemati-
cal algorithm that conceptually lends 
itself to parallelism simply because it 
has a bunch of data structures it needs 
to share. So how hard would it be to cor-
rectly implement that mathematically 
parallelizable algorithm? 

I think we’ve made some incremen-
tal gains in our ability to deal with par-
allelism over the past 20 years, just as 
we’ve made stepwise progress on all 
other programming fronts. Remember 
that back in the 1970s, there was a lot of 
talk about the “software crisis,” regard-
ing how software was getting more and 
more complicated, to the point where 
we couldn’t manage the bugs anymore. 
Well, in response to that, there was no 
huge breakthrough in software produc-
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tivity, but we did realize a bunch of in-
cremental gains from object-oriented 
programming, improved integrated 
development environments, and the 
emergence of better symbolic debug-
ging and checker tools that looked for 
memory leaks. All of that has helped us 
incrementally improve our productivity 
and increase our ability to manage com-
plexity. 

I think we’re seeing much the same 
thing happen with parallelism. That 
is, whereas the earliest Photoshop syn-
chronization code was written in terms 
of “enter critical section, leave critical 
section,” we now have tools such as 
Boost threads and OpenGL, which es-
sentially are programming languages, 
to help us deal with those problems. If 
you look at Pixel Bender [the Adobe li-
brary for expressing the parallel compu-
tations that can be run on GPUs], you’ll 
find it’s at a much higher level and so 
requires much less synchronization 
work of the person who’s coding the al-
gorithm. 

COLE: The key is that you try to go to a 
higher level each time so you have less 
and less of the detail to deal with. If we 
can automate more of what happens 
below that, we’ll manage to become 
more efficient. You also mentioned that 
we have better tools now than we did be-
fore. Does that suggest we’ll need even 
better tools to take our next step? If so, 
what are we missing?

WILLIAMS: Debugging multithreaded 
programs at all remains really hard. 
Debugging GPU-based programming, 
whether in OpenGL or OpenCL, is still 
in the Stone Age. In some cases you run 
it and your system blue-screens, and 
then you try to figure out what just hap-
pened. 

COLE: That much we’re aware of. 
We’ve tried to build stronger libraries so 
that programmers don’t have to worry 
about a lot of the low-level things any-
more. We’re also creating better librar-
ies of primitives, such as open source 
TBB (Threading Building Blocks). Do 
you see those as the kinds of things de-
velopers are looking to suppliers and 
the research community for? 	

WILLIAMS: Those things are absolutely 
a huge help. We’re taking a long hard 
look at TBB right now. Cross-platform 
tools are also essential. When some-
body comes out with something that’s 
Windows only, that’s a nonstarter for 

us—unless there is an exact-equivalent 
technology on the Mac side as well. The 
creation of cross-platform tools such as 
Boost or TBB is hugely important to us. 

The more we can hide under more 
library layers, the better off we are. 
The one thing that ends up limiting 
the benefit of those libraries, though, 
is Amdahl’s Law. For example, say that 
as part of some operation we need to 
transform the image into the frequency 
domain. There’s a parallel implementa-
tion of FFT (Fast Fourier Transform) we 
can just call, and maybe we even have a 
library on top of that to decide whether 
or not it makes any sense to ship that 
all down to the GPU to do a GPU im-
plementation of FFT before sending 
it back. But that’s just one step in our 
algorithm. Maybe there’s a parallel li-
brary for the next step, but getting from 
the FFT step to the step where we call 
the parallel library is going to require 
some messing around. It’s with all that 
inter-step setup that Amdahl’s Law just 
kills you. Even if you’re spending only 
10% of your time doing that stuff, that 
can be enough to keep you from scaling 
beyond 10 processors. 

Still, the library approach is fabu-
lous, and every parallel library imple-
mentation of common algorithms we 
can lay our hands on is greatly appreci-
ated. Like many of the techniques we 
have available to us today, however, it 
starts to run out of steam at about eight 
to 16 processors. That doesn’t mean 
it isn’t worth doing. We’re definitely 
headed down the library path ourselves 
because it’s the only thing we can even 
imagine working if we’re to scale to 
eight to 16 processors.

For the engineers on the Photoshop 
development team, the scaling limita-
tions imposed by Amdahl’s Law have 
become all too familiar over the past 
few years. Although the application’s 
current parallelism scheme has scaled 
well over two- and four-processor sys-
tems, experiments with systems featur-
ing eight or more processors indicate 
performance improvements that are far 
less encouraging. That’s partly because 
as the number of cores increases, the 
image chunks being processed, called 
tiles, end up getting sliced into a greater 
number of smaller pieces, resulting in 
increased synchronization overhead. 
Another issue is that in between each 
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of the steps that process the image data 
in parallelizable chunks, there are se-
quential bookkeeping steps. Because 
of all this, Amdahl’s Law quickly trans-
forms into Amdahl’s wall.

Photoshop’s engineers tried to miti-
gate these effects by increasing the tile 
size, which in turn made each of the 
sub-pieces larger. This helped to re-
duce the synchronization overhead, 
but it presented the developers with yet 
another parallel-computing bugaboo: 
memory-bandwidth limitations. Com-
pounding the problem was the fact that 
Photoshop cannot interrupt pixel-pro-
cessing operations until an entire tile is 
complete. So to go too far down the path 
of increasing tile sizes would surely re-
sult in latency issues, as the application 
would become unable to respond to 
user input until it had finished process-
ing an entire tile.

Although Williams remains confi-
dent his team can continue to improve 
Photoshop’s scaling in the near future 
through the use of better tools, librar-
ies, and incremental changes to the 
current approach to parallel process-
ing, eventually those techniques will 
run out of steam. This means the time 
has come to start thinking about mi-
grating the application to a different 
approach altogether that involves new 
parallel methods and the increased use 
of GPUs. 

COLE: I think you already have some in-
teresting ways of splitting things apart 
for image processing, but for your base 
application, have you considered other 
programming paradigms, such as MPI 
(message passing interface)? 	

WILLIAMS: No, we haven’t because 
we’ve been occupied with moving from 
the four-core world to the eight- to 16-
core world, and what we see is that Pho-
toshop is just going to be stuck in that 
world for the next few years. Another 
reason we haven’t looked all that seri-
ously at changing to a message-passing-
style interface is that it would require 
such a huge re-architecture effort and 
it’s not at all clear what the win would 
be for us there. 

COLE: The reason I ask is that Intel 
is obviously looking to enable as many 
cores in a box as possible, and you men-
tioned you had previously had prob-
lems with memory bandwidth. That’s 
part of the reason why another division 

of Intel has become interested in the 
NUMA (non-uniform memory architec-
ture) way of putting things together. I 
certainly feel we’re going to have appli-
cations that have both threadish parts 
and heavily parallel parts, and we’re go-
ing to see the processors inside of work-
stations become more cluster-like in 
many ways. We may not necessarily go 
off-chip or out of the box, but we’re go-
ing to break memory up somehow. And 
we’re going to have to do lots of other 
things to give back some memory band-
width just because that’s going to have a 
huge impact for somebody like you. 

WILLIAMS: This comes up in a num-
ber of different ways. We get asked a lot 
about how we’re going to handle some-
thing like Larrabee [the engineering 
chip for Intel’s MIC—Many Integrated 
Cores—architecture]. The answer is: 
basically nothing for now. The reason 
is that any of these future architectures 
that promise to solve some particular 
parallelism problem or some particular 
part of the performance problem are all 
kind of speculative at this point. Photo-
shop, on the other hand, is a mass-mar-
ket application. So, unless we are fairly 
certain there are going to be millions 
of one of these platforms out there, we 
can’t afford to bet our software’s archi-
tectural direction on that. Right now, we 
don’t see desktop architectures moving 
beyond the mild and cache-coherent 
form of NUMA we see today. 

As a rule, we avoid writing large 
amounts of processor-specific or man-
ufacturer-specific code, although we do 
some targeted performance tuning. For 
us, life will start to get interesting once 
we can use libraries such as OpenGL, 
OpenCL, and Adobe’s Pixel Bender—or 
any higher-level libraries that take ad-
vantage of these libraries—to get access 
to all that GPU power in a more general 
way. 

We’ve also been looking at the 
change Intel’s Nehalem architecture 
presents in this area. On all previous 
multicore CPUs, a single thread could 
soak up essentially all of the memory 
bandwidth. Given that many of our 
low-level operations are memory-band-
width limited, threading them would 
have only added overhead. Our experi-
ence with other multicore CPUs is that 
they become bandwidth limited with 
only a couple of threads running, so 
parallel speedups are limited by mem-

ory bandwidth rather than by Amdahl’s 
Law or the nature of the algorithm. 
With Nehalem, each processor core is 
limited to a fraction of the chip’s total 
memory bandwidth, so even a large 
memcpy can be sped up tremendously 
by being multithreaded.

COLE: I actually was just trying to 
make more of an architectural state-
ment than anything. Rest assured, 
you’re going to see just as many cores 
as we can possibly get in there, but at a 
certain point, what I refer to as “conser-
vation of memory bandwidth” starts to 
become the big trade-off; that’s when 
other architectural tricks are going 
to have to be used that will have some 
software impact. The question is, if 
you can’t fire a gun and get everybody 
to change software overnight, at what 
point does it become economically in-
teresting for a company such as Adobe 
to say, “OK, if I know I’m going to have 
to deal with a cluster in a box, I’ve got 
to slowly start moving my base so I’ll be 
able to do that”?

WILLIAMS: I suspect we’ll end up see-
ing the same progression we saw with 
SMP. That is, the hardware and operat-
ing-system support will be introduced 
such that these platforms will be able 
to run multiple programs, or multiple 
instances of programs, not yet modi-
fied to take advantage of the new archi-
tecture. This has already proved to be 
true with SMP and GPU use. There will 
be some small handful of applications 
that will absolutely depend on being 
able to leverage the brand-new capa-
bility right away—as was the case with 
video games and 3D rendering applica-
tions and their need to take advantage 
of GPUs as soon as possible. The bulk 
of applications, however, will not start 
to take significant advantage of new ar-
chitectures until: (a) there’s an installed 
base; (b) there’s software support; and 
(c) there’s a clear direction for where 
things are heading. 

I assume the NUMA and MPI stuff 
is at the research-lab level at this junc-
ture. And even though the MIC chip is 
on its way, it’s still unclear to us what 
the programming API will be other than 
OpenGL and DirectX. 

Now, just to throw a question back at 
you: what do you see the progression be-
ing in terms of how the programming 
API and operating-system support is 
going to be rolled out, since people like 
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me are going to need that if we’re to 
take advantage of these kinds of archi-
tectural innovations?

COLE: As we develop specialty hard-
ware, be it GPUs or network engines, 
the machine is becoming essentially 
a federation of processing elements 
designed to handle specific tasks. The 
graphics processor was highly tuned 
for doing its job of displaying pixels and 
performing certain mathematical func-
tions that are important to the graphics 
guys and the gamers. Then other people 
came along and said, “Hey, I want to be 
able to do those same functions. Can I 
get at them?” That’s when engineers 
like me in the operating-systems world 
start scratching our heads and saying, 
“Yeah, well, I suppose we could expose 
that.” 

But I wonder if that’s what you re-
ally want. My experience has been that 
every time we’ve had a specialty engine 
like that and we’ve tried to feed it to the 
world, you may have been able to write 
an application library as you did with 
Photoshop that was able to call some 
graphics card, but that typically lived for 
only a couple of generations. That is, it 
proved to be cost-effective for only that 
one particular application. So I think 
the GPU will continue to get smarter 
and smarter, but it will retain its focus 
as a graphics engine just the same. 
That’s really where it’s going to be most 
cost-effective. 

The rest of the box needs to be more 
general, maybe with a bunch of spe-
cialty execution engines around it that 
you’re able to call up and easily exploit. 
Then the question becomes: how can 
the operating system make all those en-
gines available? 

Having been one of the early micro-
kernel guys, I smiled when I learned 
about the early microkernel work you 
were doing. Many of us in the operating-
system community have thought that 
would be the right way to go. 

WILLIAMS: Elxsi was a message-based 
operating system. It was similar to the 
GNU Hurd of independent processes 
in that it talked via messages. One of 
the things that really hit us hard and is 
showing up today with GPUs in a differ-
ent context—and, in fact, was the very 
first thing I thought of when I started 
looking at NUMA—is that message-
based operations are horrendously ex-
pensive relative to everything else you 

do. This is something the video apps 
have run into as well. They went down 
this path of doing a rendering graph to 
represent the stack of effects you had 
on your video frames, and then they 
would go down and start rendering and 
compositing those things. As soon as 
they got to anything they could do on 
the GPU, they would send it down there 
to get processed, and then they would 
work on it until they hit a node in the 
compositing stack graph that couldn’t 
be handled on the GPU, at which point 
they would suck it back into the CPU. 

What they found was that even with 
the fastest-bandwidth cards on the fast-
est-bandwidth interfaces, one trip was 
all you got. Anything beyond that meant 
you would have been better off just stay-
ing on the CPU in the first place. When 
you start moving data around, the band-
width consumption associated with 
that can quickly overwhelm the cost of 
doing the computation. But the GPU 
vendors are continually improving this.

COLE: That’s part of why I asked about 
MPI. I come back to that now only be-
cause it seems to be today’s popular 
answer. I’m not saying it is the answer; 
it’s just a way of trying to control what 
has to get shifted and when and how to 
partition the data so you can write code 
that will be able to exploit these execu-
tion units without having to move lots 
of data around. 

This is why companies such as Intel 
are exploring interfaces such as RDMA 
(remote direct memory access), which 
is something you find inside of IB (In-
finiBand). About a year ago, Intel pur-
chased one of the original iWARP (Inter-
net Wide Area RDMA Protocol) vendors, 
and the company is also heavily com-
mitted to the OpenFabrics Alliance’s 
OFED (OpenFabrics Enterprise Distri-
bution) implementations, so we’re now 
exposing that same RDMA interface 
you find with InfiniBand in both Ether-
net form and IB. I certainly think that 
kind of hardware is going to start show-
ing up inside the base CPU and will be-
come available to you as you try to move 
those objects around. So you’re going to 
have computational resources and data 
movement resources, and the process-
ing power will become the federation of 
all that stuff underneath. 

That means the operating system 
has got to change. And I think you’re 
right: what will happen then is that the 

apps will become richer and will be able 
to exploit some of those pieces in the 
hardware base, provided that the op-
erating system exposes it. That’s also 
when you guys at Adobe will want to 
start exploiting that, since you’ll have 
customers who already have machines 
with those capabilities built in. 

WILLIAMS: When we started to look at 
NUMA, we ran into some issues with 
predictability. Ideally, on a big NUMA 
system, you would want your image to 
be spread evenly across all the nodes 
so that when you did an operation, you 
would be able to fire up each CPU to 
process its part of the image without 
having to move things around. 

What actually happens, however, is 
that you’ve got a stack of images from 
which somebody makes a selection, 
and maybe selects some circle or an 
area from a central portion of the image 
containing pixels that live on three out 
of your 10 nodes. In order to distribute 
the computation the user then invokes 
on that selection, you now have to copy 
those things off to all 10 nodes. You 
quickly get to a point where your data 
is fragmented all over the place, and 
any particular selection or operation is 
unlikely to get nicely distributed across 
the NUMA nodes. Then you pay a huge 
cost to redistribute it all as part of start-
ing up your operation. This, along with 
the more general issue of bandwidth 
management, is going to prove to be an 
even harder parallelism problem than 
the already well-documented problem 
people have with correctly locking their 
data structures. 

COLE: Yes, we’re in violent agreement 
on that score. Locking your data struc-
tures is truly only the beginning. The 
new tuning problem is going to be exact-
ly the nightmare you just described. 	
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In Part 1  of this article (Communications, Sept. 2010,
p. 55), I covered some of the fundamentals of perfor-
mance. Performance is a relation between a task and 
the time it consumes. That relation is measurable 
either as throughput or response time. Because users 
feel variance in performance more than they feel 

the mean, it’s good to express perfor-
mance goals in a percentile format, such 
as “Task T must have response time 
of R seconds or less in P proportion or 
more of executions.” To diagnose a per-
formance problem, you need to state 
your goals objectively, in terms of either 
throughput or response time, or both.

A sequence diagram is a helpful 
graphical tool for understanding how a 
task’s execution consumes your time. A 
profile is a table that shows details about 
response time for a single task execu-
tion. With a profile,  you can learn ex-
actly how much improvement to expect 
for a proposed investment, but only if 
you understand the pitfalls of making 
incorrect assumptions about skew.

Minimizing Risk. As mentioned in 
Part 1, the risk that repairing the per-

formance of one task can damage the 
performance of another reminds me of 
something that happened to me once in 
Denmark. It’s a quick story:

Scene: The kitchen table in Måløv, 
Denmark; the oak table, in fact, of Oak 
Table Network fame, a network of Or-
acle practitioners who believe in using 
scientific methods to improve the de-
velopment and administration of Ora-
cle-based systems.8 Roughly 10 people 
sit around the table, working on their 
laptops and conducting various conver-
sations.

Cary: Guys, I’m burning up. Would 
you mind if I opened the window for a 
little bit to let some cold air in?

Carel-Jan: Why don’t you just take off 
your heavy sweater?

The End.

Thinking 
Clearly About 
Performance, 
Part 2
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There is a general principle at 
work here that humans who optimize 
know: when everyone is happy except 
for you, make sure your local stuff is in 
order before you go messing around 
with the global stuff that affects every-
one else, too.

This principle is why I flinch when-
ever someone proposes to change a 
system’s Oracle SQL*Net packet size 
when the problem is really a couple 
of poorly written Java programs that 
make unnecessarily many database 
calls (and, hence, unnecessarily many 
network I/O calls as well). If everybody 
is getting along fine except for the user 
of one or two programs, then the saf-
est solution to the problem is a change 
whose scope is localized to just those 
one or two programs.

Efficiency. Even if everyone on the 
entire system is suffering, you should 
still focus first on the program that the 
business needs fixed. The way to begin 
is to ensure the program is working as 
efficiently as it can. Efficiency is the in-
verse of how much of a task execution’s 
total service time can be eliminated 
without adding capacity and without 
sacrificing required business function.

In other words, efficiency is an in-
verse measure of waste. Here are some 
examples of waste that commonly oc-
cur in the database application world:

˲˲ A middle-tier program creates a 
distinct SQL statement for every row it 
inserts into the database. It executes 
10,000 database prepare calls (and 
thus 10,000 network I/O calls) when it 
could have accomplished the job with 
one prepare call (and thus 9,999 fewer 
network I/O calls).

˲˲ A middle-tier program makes 100 
database fetch calls (and thus 100 net-
work I/O calls) to fetch 994 rows. It could 
have fetched 994 rows in 10 fetch calls 
(and thus 90 fewer network I/O calls).

˲˲ A SQL statement (my choice of ar-
ticle adjective here is a dead giveaway 
that I was introduced to SQL within the 
Oracle community) touches the data-
base buffer cache 7,428,322 times to re-
turn a 698-row result set. An extra filter 
predicate could have returned the seven 
rows that the end user really wanted to 
see, with only 52 touches upon the data-
base buffer cache.

Certainly, if a system has some glob-
al problem that creates inefficiency for 
broad groups of tasks across the sys-

tem (for example, ill-conceived index, 
badly set parameter, poorly configured 
hardware), then you should fix it. Do 
not tune a system to accommodate pro-
grams that are inefficient, however. (Ad-
mittedly, sometimes you need a tour-
niquet to keep from bleeding to death, 
but do not use a stopgap measure as a 
permanent solution. Address the ineffi-
ciency.) There is a great deal more lever-
age in curing the program inefficiencies 
themselves. Even if the programs are 
commercial off-the-shelf applications, 
it will benefit you more in the long run 
to work with your software vendor to 
make your programs efficient than it 
will to try to optimize your system to run 
with an inherently inefficient workload.

Improvements that make your pro-
gram more efficient can produce tre-
mendous benefits for everyone on the 
system. It is easy to see how top-line 
reduction of waste helps the response 
time of the task being repaired. What 
many people do not understand as 
well is that making one program more 
efficient creates a side effect of per-
formance improvement for other pro-
grams on the system that have no ap-
parent relation to the program being 
repaired. It happens because of the in-
fluence of load upon the system.

Load is competition for a resource 
induced by concurrent task executions. 
It is the reason the performance test-
ing done by software developers does 
not catch all the performance problems 
that show up later in production. 

One measure of load is utilization, 
which is resource usage divided by re-
source capacity for a specified time 
interval. As utilization for a resource 
goes up, so does the response time a 

user will experience when requesting 
service from that resource. Anyone who 
has ridden in an automobile in a big city 
during rush hour has experienced this 
phenomenon. When the traffic is heav-
ily congested, you have to wait longer at 
the tollbooth.

The software you use does not actual-
ly “go slower” as your car does when you 
are going 30mph in heavy traffic instead 
of 60mph on the open road. Computer 
software always goes the same speed no 
matter what (a constant number of in-
structions per clock cycle), but certainly 
response time degrades as resources on 
your system get busier.

There are two reasons that systems 
get slower as load increases: queuing de-
lay and coherency delay. 

Queuing delay. The mathematical re-
lationship between load and response 
time is well known. One mathematical 
model, called M/M/m, relates response 
time to load in systems that meet one 
particularly useful set of specific re-
quirements.7 One of the assumptions of 
M/M/m is the system you are modeling 
has “theoretically perfect scalability.” 
This is akin to having a physical system 
with “no friction,” an assumption that 
so many problems in introductory phys-
ics courses invoke.

Regardless of some overreaching as-
sumptions such as the one about per-
fect scalability, M/M/m has a lot to teach 
us about performance. Figure 1 shows 
the relationship between response time 
and load using M/M/m.

In the figure, you can see mathemati-
cally what you feel when you use a sys-
tem under different load conditions. At 
low load, your response time is essen-
tially the same as your response time at 

Figure 1. This curve relates response time as a function of utilization for an M/M/m system 
with m = 8 service channels.
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throughput is maximized with mini-
mal negative impact to response times. 
(I am engaged in an ongoing debate 
about whether it is appropriate to use 
the term knee in this context. For the 
time being, I shall continue to use it; 
see the sidebar for details.) Mathemat-
ically, the knee is the utilization value 
at which response time divided by uti-
lization is at its minimum. One nice 
property of the knee is it occurs at the 
utilization value where a line through 
the origin is tangent to the response-
time curve. On a carefully produced 
M/M/m graph, you can locate the knee 
quite nicely with just a straight-edge, 
as shown in Figure 2.

Another nice property of the M/M/m 
knee is that you need to know the val-
ue of only one parameter to compute 
it. That parameter is the number of 
parallel, homogeneous, independent 
service channels. A service channel is 
a resource that shares a single queue 
with other identical resources, such 
as a booth in a toll plaza or a CPU in 

no load. As load ramps up, you sense a 
slight, gradual degradation in response 
time. That gradual degradation does 
not really do much harm, but as load 
continues to ramp up, response time 
begins to degrade in a manner that’s 
neither slight nor gradual. Rather, the 
degradation becomes quite unpleasant 
and, in fact, hyperbolic.

Response time (R), in the perfect scal-
ability M/M/m model, consists of two 
components: service time (S) and queu-
ing delay (Q), or R = S + Q. Service time 
is the duration that a task spends con-
suming a given resource, measured in 
time per task execution, as in seconds 
per click. Queuing delay is the time 
that a task spends enqueued at a given 
resource, awaiting its opportunity to 
consume that resource. Queuing delay 
is also measured in time per task execu-
tion (for example, seconds per click).

In other words, when you order 
lunch at Taco Tico, your response time 
(R) for getting your order is the queuing 
delay time (Q) that you spend in front 
of the counter waiting for someone to 
take your order, plus the service time 
(S) you spend waiting for your order to 
hit your hands once you begin talking 
to the order clerk. Queuing delay is the 
difference between your response time 
for a given task and the response time 
for that same task on an otherwise un-
loaded system (don’t forget our perfect 
scalability assumption).

The Knee
When it comes to performance, you 
want two things from a system:

˲˲ The best response time you can get: 
you do not want to have to wait too long 
for tasks to get done.

˲˲ The best throughput you can get: 
you want to be able to cram as much 
load as you possibly can onto the sys-
tem so that as many people as possible 
can run their tasks at the same time.

Unfortunately, these two goals are 
contradictory. Optimizing to the first 
goal requires you to minimize the load 
on your system; optimizing to the sec-
ond goal requires you to maximize it. 
You can not do both simultaneously. 
Somewhere in between—at some load 
level (that is, at some utilization val-
ue)—is the optimal load for the system.

The utilization value at which 
this optimal balance occurs is called 
the knee. This is the point at which 

an SMP (symmetric multiprocessing) 
computer.

The italicized lowercase m in the term 
M/M/m is the number of service chan-
nels in the system being modeled. The 
M/M/m knee value for an arbitrary sys-
tem is difficult to calculate, but I have 
done it in Table 1, which shows the knee 
values for some common service chan-
nel counts. (By this point, you may be 
wondering what the other two Ms stand 
for in the M/M/m queuing model name. 
They relate to assumptions about the 
randomness of the timing of your incom-
ing requests and the randomness of your 
service times. See http://en.wikipedia.
org/wiki/Kendall%27s_notation for 
more information, or Optimizing Oracle 
Performance7 for even more.)

Why is the knee value so important? 
For systems with randomly timed ser-
vice requests, allowing sustained re-
source loads in excess of the knee value 
results in response times and through-
puts that will fluctuate severely with mi-
croscopic changes in load. Hence, on 
systems with random request arrivals, 
it is vital to manage load so that it will 
not exceed the knee value.

Relevance of the Knee
How important can this knee concept 
be, really? After all, as I’ve told you, the 
M/M/m model assumes this ridiculous-
ly utopian idea that the system you are 
thinking about scales perfectly. I know 
what you are thinking: it doesn’t.

What M/M/m does give us is the 
knowledge that even if your system did 
scale perfectly, you would still be strick-
en with massive performance problems 
once your average load exceeded the 
knee values in Table 1. Your system 

Table 1. M/M/m knee values for common 
values of m.

Service  
channel count

Knee 
utilization

1 50%

2 57%

4 66%

8 74%

16 81%

32 86%

64 89%

128 92%

Figure 2. The knee occurs at the utilization at which a line through the origin is tangent to 
the response time curve.
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In this article, I write about knees in 
performance curves, their relevance, 
and their application. Whether it is even 
worthwhile to try to define the concept 
of knee, however, has been the subject of 
debate going back at least 20 years.

There is significant historical basis to 
the idea that the thing I have described 
as a knee in fact is not really meaningful. 
In 1988, Stephen Samson argued that, 
at least for M/M/1 queuing systems, 
no “knee” appears in the performance 
curve. “The choice of a guideline number 
is not easy, but the rule-of-thumb makers 
go right on. In most cases there is not a 
knee, no matter how much we wish to 
find one,” wrote Samson.3

The whole problem reminds me, as I 
wrote in 1999,2 of the parable of the frog 
and the boiling water. The story says that 
if you drop a frog into a pan of boiling 
water, he will escape. But if you put a frog 
into a pan of cool water and slowly heat 
it, then the frog will sit patiently in place 
until he is boiled to death.

With utilization, just as with boiling 
water, there is clearly a “death zone,” a 
range of values in which you can’t afford 
to run a system with random arrivals. But 
where is the border of the death zone? If 
you are trying to implement a procedural 
approach to managing utilization, you 
need to know.

My friend Neil Gunther (see http://
en.wikipedia.org/wiki/Neil_J._Gunther 
for more information about Neil) has 
debated with me privately that, first, 
the term knee is completely the wrong 
word to use here, in the absence of a 
functional discontinuity. Second, he 
asserts that the boundary value of .5 for 
an M/M/1 system is wastefully low, that 
you ought to be able to run such a system 
successfully at a much higher utilization 
value than that. Finally, he argues that 
any such special utilization value should 
be defined expressly as the utilization 
value beyond which your average 
response time exceeds your tolerance for 
average response time (Figure A). Thus, 
Gunther argues that any useful not-to-
exceed utilization value is derivable 
only from inquiries about human 
preferences, not from mathematics. 
(See http://www.cmg.org/measureit/
issues/mit62/m_62_15.html for more 
information about his argument.)

The problem I see with this argument 
is illustrated in Figure B. Imagine that 
your tolerance for average response 
time is T, which creates a maximum 
tolerated utilization value of ρT. Notice 
that even a tiny fluctuation in average 
utilization near ρT will result in a huge 
fluctuation in average response time. 
I believe that your customers feel the 
variance, not the mean. Perhaps they say 
they will accept average response times 
up to T, but humans will not be tolerant 

of performance on a system when a 1% 
change in average utilization over a one-
minute period results in, say, a tenfold 
increase in average response time over 
that period.

I do understand the perspective 
that the knee values I’ve listed in 
this article are below the utilization 
values that many people feel safe in 
exceeding, especially for lower-order 
systems such as M/M/1. It is important, 
however, to avoid running resources at 
average utilization values where small 
fluctuations in utilization yield too-large 
fluctuations in response time. 

Having said that, I do not yet 
have a good definition for a too-large 
fluctuation. Perhaps, like response-
time tolerances, different people have 
different tolerances for fluctuation. But 
perhaps there is a fluctuation tolerance 
factor that applies with reasonable 
universality across all users. The Apdex 

Application Performance Index standard, 
for example, assumes the response time 
F at which users become “frustrated” 
is universally four times the response 
time T at which their attitude shifts from 
being “satisfied” to merely “tolerating.”1

The knee, regardless of how you 
define it or what we end up calling it, is 
an important parameter to the capacity-
planning procedure that I described 
earlier in the main text of this article, and 
I believe it is an important parameter 
to the daily process of computer system 
workload management.

I will keep studying.
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Open Debate About Knees

Figure B. Near ρT value, small fluctuations in average utilization result in large 
response-time fluctuations.
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Figure A. Gunther’s maximum allowable utilization value ρT is defined as the utilization 
producing the average response time T.
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The reason  
the knee value 
is so important 
on a system with 
random arrivals 
is that these tend  
to cluster and  
cause temporary 
spikes in utilization. 

isn’t as good as the theoretical systems 
that M/M/m models. Therefore, the uti-
lization values at which your system’s 
knees occur will be more constraining 
than the values in Table 1. (I use the plu-
ral of values and knees, because you can 
model your CPUs with one model, your 
disks with another, your I/O controllers 
with another, and so on.)

To recap:
˲˲ Each of the resources in your sys-

tem has a knee.
˲˲ That knee for each of your resourc-

es is less than or equal to the knee value 
you can look up in Table 1. The more 
imperfectly your system scales, the 
smaller (worse) your knee value will be.

˲˲ On a system with random request 
arrivals, if you allow your sustained uti-
lization for any resource on your system 
to exceed your knee value for that re-
source, then you will have performance 
problems.

˲˲ Therefore, it is vital that you man-
age your load so that your resource utili-
zations will not exceed your knee values.

Capacity Planning
Understanding the knee can collapse 
a lot of complexity out of your capacity 
planning. It works like this:

˲˲ Your goal capacity for a given re-
source is the amount at which you can 
comfortably run your tasks at peak 
times without driving utilizations be-
yond your knees.

˲˲ If you keep your utilizations less 
than your knees, your system behaves 
roughly linearly—no big hyperbolic 
surprises.

˲˲ If you are letting your system run 
any of its resources beyond their knee 
utilizations, however, then you have 
performance problems (whether you 
are aware of them or not).

˲˲ If you have performance prob-
lems, then you don’t need to be spend-
ing your time with mathematical mod-
els; you need to be spending your time 
fixing those problems by rescheduling 
load, eliminating load, or increasing 
capacity.

That’s how capacity planning fits 
into the performance management 
process.

Random Arrivals
You might have noticed that I used the 
term random arrivals several times. 
Why is that important?

Some systems have something that 
you probably do not have right now: 
completely deterministic job schedul-
ing. Some systems—though rare these 
days—are configured to allow service 
requests to enter the system in absolute 
robotic fashion, say, at a pace of one task 
per second. And by this, I don’t mean at 
an average rate of one task per second 
(for example, two tasks in one second 
and zero tasks in the next); I mean one 
task per second, as a robot might feed 
car parts into a bin on an assembly line.

If arrivals into your system behave 
completely deterministically—mean-
ing that you know exactly when the next 
service request is coming—then you 
can run resource utilizations beyond 
their knee utilizations without neces-
sarily creating a performance problem. 
On a system with deterministic arrivals, 
your goal is to run resource utilizations 
up to 100% without cramming so much 
workload into the system that requests 
begin to queue. 

The reason the knee value is so im-
portant on a system with random ar-
rivals is that these tend to cluster and 
cause temporary spikes in utilization. 
These spikes need enough spare ca-
pacity to consume so that users don’t 
have to endure noticeable queuing de-
lays (which cause noticeable fluctua-
tions in response times) every time a 
spike occurs.

Temporary spikes in utilization 
beyond your knee value for a given 
resource are OK as long as they don’t 
exceed a few seconds in duration. But 
how many seconds are too many? I be-
lieve (but have not yet tried to prove) 
that you should at least ensure that your 
spike durations do not exceed eight 
seconds. (You will recognize this num-
ber if you’ve heard of the “eight-second 
rule.”2) The answer is certainly that if 
you’re unable to meet your percentile-
based response time promises or your 
throughput promises to your users, 
then your spikes are too long. 

Coherency Delay
Your system does not have theoretical-
ly perfect scalability. Even if I have nev-
er studied your system specifically, it is 
a pretty good bet that no matter what 
computer application system you are 
thinking of right now, it does not meet 
the M/M/m “theoretically perfect scal-
ability” assumption. Coherency delay is 
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the factor that you can use to model the 
imperfection.4 It is the duration that a 
task spends communicating and coor-
dinating access to a shared resource. 
Like response time, service time, and 
queuing delay, coherency delay is mea-
sured in time per task execution, as in 
seconds per click.

I will not describe a mathematical 
model for predicting coherency delay, 
but the good news is that if you profile 
your software task executions, you’ll 
see it when it occurs. In Oracle, timed 
events such as the following are exam-
ples of coherency delay:

˲˲ enqueue
˲˲ buffer busy waits
˲˲ latch free

You can not model such coherency 
delays with M/M/m. That is because 
M/M/m assumes all m of your service 
channels are parallel, homogeneous, 
and independent. That means the 
model assumes that after you wait po-
litely in a FIFO queue for long enough 
that all the requests that enqueued 
ahead of you have exited the queue for 
service, it will be your turn to be ser-
viced. Coherency delays don’t work like 
that, however.

Imagine an HTML data-entry form 
in which one button labeled “Update” 
executes a SQL update statement, and 
another button labeled “Save” executes 
a SQL commit statement. An applica-
tion built like this would almost guar-
antee abysmal performance. That is 
because the design makes it possible—
quite likely, actually—for a user to click 
Update, look at his calendar, realize 
“uh-oh, I’m late for lunch,” and then go 
to lunch for two hours before clicking 
Save later that afternoon.

The impact to other tasks on this 
system that wanted to update the same 
row would be devastating. Each task 
would necessarily wait for a lock on 
the row (or, on some systems, worse: a 
lock on the row’s page) until the lock-
ing user decided to go ahead and click 
Save—or until a database administra-
tor killed the user’s session, which of 
course would have unsavory side ef-
fects to the person who thought he had 
updated a row. 

In this case, the amount of time a 
task would wait on the lock to be re-
leased has nothing to do with how busy 
the system is. It would be dependent 
upon random factors that exist outside 

of the system’s various resource utili-
zations. That is why you can not model 
this kind of thing in M/M/m, and it is 
why you can never assume that a per-
formance test executed in a unit-test-
ing type of environment is sufficient 
for a making a go/no-go decision about 
insertion of new code into a produc-
tion system.

Performance Testing
All this talk of queuing delays and co-
herency delays leads to a very difficult 
question: How can you possibly test a 
new application enough to be confident 
that you are not going to wreck your 
production implementation with per-
formance problems?

You can model. And you can test.1 

Nothing you do will be perfect, however. 
It is extremely difficult to create models 
and tests in which you’ll foresee all your 
production problems in advance of ac-
tually encountering those problems in 
production.

Some people allow the apparent fu-
tility of this observation to justify not 
testing at all. Do not get trapped in that 
mentality. The following points are 
certain:

˲˲ You will catch a lot more problems 
if you try to catch them prior to produc-
tion than if you do not even try.

˲˲ You will never catch all your prob-
lems in preproduction testing. That is 
why you need a reliable and efficient 
method for solving the problems that 
leak through your preproduction test-
ing processes.

Somewhere in the middle between 
“no testing” and “complete produc-
tion emulation” is the right amount 
of testing. The right amount of testing 
for aircraft manufacturers is probably 
more than the right amount of testing 
for companies that sell baseball caps. 
But don’t skip performance testing al-
together. At the very least, your perfor-
mance-test plan will make you a more 
competent diagnostician (and clearer 
thinker) when the time comes to fix the 
performance problems that will inevita-
bly occur during production operation.

Measuring. People feel throughput 
and response time. Throughput is usual-
ly easy to measure, response time is much 
more difficult. (Remember, throughput 
and response time are not reciprocals.) 
It may not be difficult to time an end-us-
er action with a stopwatch, but it might 
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and coherency 
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question:  
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your production 
implementation 
with performance 
problems?
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be very difficult to get what you really 
need, which is the ability to drill down 
into the details of why a given response 
time is as large as it is.

Unfortunately, people tend to mea-
sure what is easy to measure, which 
is not necessarily what they should be 
measuring. It’s a bug. Measures that 
aren’t what you need, but that are easy 
enough to obtain and seem related to 
what you need are called surrogate mea-
sures. Examples include subroutine call 
counts and samples of subroutine call 
execution durations.

I’m ashamed that I do not have 
greater command over my native lan-
guage than to say it this way, but here is 
a catchy, modern way to express what I 
think about surrogate measures: surro-
gate measures suck.

Here, unfortunately, suck doesn’t 
mean never work. It would actually 
be better if surrogate measures never 
worked. Then nobody would use them. 
The problem is that surrogate measures 
work sometimes. This inspires people’s 
confidence that the measures they are 
using should work all the time, and 
then they don’t. Surrogate measures 
have two big problems. 

˲˲ They can tell you your system’s OK 
when it is not. That’s what statisticians 
call type I error, the false positive. 

˲˲ They can tell you that something is 
a problem when it is not. That’s a type 
II error, the false negative. I have seen 
each type of error waste years of peo-
ple’s time.

When the time comes to assess the 
specifics of a real system, your success 
is at the mercy of how good the mea-
surements are that your system allows 
you to obtain. I have been fortunate to 
work in the Oracle market segment, 
where the software vendor at the center 
of our universe participates actively in 
making it possible to measure systems 
the right way. Getting application soft-
ware developers to use the tools that Or-
acle offers is another story, but at least 
the capabilities are there in the product.

Performance is a Feature
Performance is a software application 
feature, just like recognizing that it’s 
convenient for a string of the form “Case 
1234” to automatically hyperlink over to 
case 1234 in your bug-tracking system. 
(FogBugz, which is software that I enjoy 
using, does this.) Performance, like any 

other feature, does not just happen; it 
has to be designed and built. To do per-
formance well, you have to think about 
it, study it, write extra code for it, test it, 
and support it.

Like many other features, however, 
you can not know exactly how perfor-
mance is going to work out while you’re 
still writing, studying, designing, and 
creating the application. For many ap-
plications (arguably, for the vast ma-
jority), performance is completely un-
known until the production phase of the 
software development life cycle. What 
this leaves you with is this: since you 
can’t know how your application is go-
ing to perform in production, you need 
to write your application so that it’s 
easy to fix performance in production.

As David Garvin has taught us, it’s 
much easier to manage something 
that’s easy to measure.3 Writing an ap-
plication that is easy to fix in production 
begins with an application that’s easy to 
measure in production.

Usually, when I mention the concept 
of production performance measure-
ment, people drift into a state of worry 
about the measurement-intrusion ef-
fect of performance instrumentation. 
They immediately enter a mode of data-
collection compromise, leaving only 
surrogate measures on the table. Won’t 
software with an extra code path to mea-
sure timings be slower than the same 
software without that extra code path?

I like an answer that I once heard 
Tom Kyte give in response to this ques-
tion.6 He estimated that the measure-
ment-intrusion effect of Oracle’s ex-
tensive performance instrumentation 
is –10% or less (where or less means or 
better, as in –20%, –30%, and so on). He 
went on to explain to a now-vexed ques-
tioner that the product is at least 10% 
faster now because of the knowledge 
that Oracle Corporation has gained 
from its performance instrumentation 
code, more than making up for any 
“overhead” the instrumentation might 
have caused.

I think that vendors tend to spend 
too much time worrying about how to 
make their measurement code path ef-
ficient without figuring out first how to 
make it effective. It lands squarely upon 
the idea that Knuth wrote about in 1974 
when he said that “premature optimiza-
tion is the root of all evil.”5 The software 
designer who integrates performance 

measurement into a product is much 
more likely to create a fast application 
and—more importantly—one that will 
become faster over time. 
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The ever-increasing might  of modern computers 
has made it possible to solve problems once 
considered too difficult to tackle. Far too often, 
however, the systems for these functionally complex 
problem spaces have overly complicated architectures.  
Here, I use the term architecture to refer to the overall 
macro design of a system rather than the details 
of how the individual parts are implemented. The 
system architecture is what is behind the scenes of 
usable functionality, including internal and external 
communication mechanisms, component boundaries 
and coupling, and how the system will make use of 
any underlying infrastructure (databases, networks, 
among others). The architecture is the “right”  
answer to the question: how does this system work? 

The question is: What can be done 
about the challenge to understand—
or better yet, prevent—the complexity 
in systems? Many development meth-
odologies (for example, Booch1) con-
sider nonfunctional aspects, but too 
often they stop at the diagram stage. 
The mantra of “we can address [per-
formance, scalability, and so on] later” 
can be crippling. Individual compo-
nents (applications) in a system can 
typically be iterated, but it is often far 
more difficult to iterate the architec-
ture because of all the interface and 
infrastructure implications.

In this article, I describe an ap-
proach to architectural design when 
embarking on creating a new system. 
But what if the system already exists in 
some form? Much of my architecture 
work has been with existing systems—
many times as an “outsider” who is 
invited (or sent) in to evaluate and im-
prove the state of the system. These 
assignments can be quite challenging 
when dealing with complex systems.

One advantage to modeling an ex-
isting system is that the general be-
havior is already in place so you are 
not starting from a blank state. You 
also probably do not have to contend 
with the creation of the functional 
parts of the system. This comes at a 
price, however. There is a fair chance 
the system’s architecture is complex 
and not well understood. Addition-
ally, many solutions may not be prac-
tical because of the high cost of a sys-
tem overhaul.

With any type of system the goal is 
to understand the architecture and 
system behavior as much as possible. 
When a large system has been around 
for years this may seem like a monu-
mental effort.  Many techniques are 
available for discovering how a system 
works and ways it can be improved. 
You can ask members of the develop-
ment and maintenance teams. Di-
agnostic tools (for example, DTrace) 
can help make quick work of finding 
performance or scalability offenders 
in a system. You can comb through 
mountains of log files to see what the 
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developers thought worthy of note. In 
this article I focus on how modeling 
the various system components can be 
used to gain a greater understanding 
and provide a foundation for evaluat-
ing possible changes.

This type of modeling is not just a 
whiteboard or paper exercise. It is the 
creation of drivers and components 
to emulate various aspects of the sys-
tem. The drivers are used to invoke the 
various parts of the system to mimic 
its normal behavior. The idea is to ex-
ercise the architecture without the 
“burden” of ensuring functional cor-
rectness. At times these drivers may be 
scripts written with established tools 
(for example, WinRunner, JMeter), but 
I have often found more value in devel-

oping programs specific to the compo-
nent to be driven. These have allowed 
me to get the information I needed to 
make quality decisions. It is important 
to understand that the model compo-
nents and the associated drivers are 
not just simple test programs but are 
to be used as the basis for exploration 
and discovery.

The process of modeling the sys-
tem should start by examining one or 
two components at a time. The initial 
targets should be components sus-
pected of negatively impacting the 
whole system. You can then build in-
dependent drivers to interact with the 
component(s). If a problem compo-
nent is confirmed, then experimenta-
tion with possible changes can begin. 

These could span from code changes 
to infrastructure changes to hardware 
changes. With the right drivers and 
component modeling it may become 
practical to address redesigning some 
of the components.

Sometimes the functionality con-
tained within a component is so in-
tertwined with the architecture that 
it’s necessary to create a lightweight 
replica. It is not unusual for some func-
tional aspects of the system to mask 
the behavior of the underlying technol-
ogy or infrastructure in responding to 
the requesting applications. In these 
cases having a lightweight model can 
allow the architectural interactions to 
be explored and better understood. If 
you discover architectural solutions, 
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then you can move on to the various 
functional implementations.

Modeling an Early Windows System
My first experience with modeling 
involved creating both drivers and 
mock-up components to explore a new 
technology. I was working for a large 
financial institution in the late 1980s 
when Microsoft Windows 2.1 was re-
leased. A group of developers had cre-
ated a fairly sophisticated suite of Win-
dows applications for telephone-based 
customer service representatives. The 
applications provided the ability to re-
trieve customer information, balances, 
and so on from several mainframe-
based systems (using the now-ancient 
concept of “screen scraping” the data 
intended to be displayed on an IBM 
3270 dumb terminal) and then present 
the data in an aggregated view. It also 
allowed the customer service represen-
tatives to place trades on behalf of the 
customer.

The suite started as a proof of con-
cept, but the prototype demos went so 
well it was rushed to production. When 
I joined the team it was already de-
ployed to about 150 representatives. As 
the programs began to be used all day, 
problems began to occur frequently. 
These were manifested in a variety of 
forms: memory leaks, access viola-
tions, spurious error messages, and 
machine lock-ups (aka freezes).

Our small team was busy adding 
functionality to meet the rapidly grow-
ing wish list and at the same time ad-
dressing the stability issues. We navi-
gated through the source, attacking 
memory leaks and access violations. 
We struggled to track down the grow-
ing list of newly observed error mes-

sage. The most challenging task was 
“freeze patrol,” where we expended a 
great deal of time hunting down those 
machine lock-ups. The problem was 
that we did not have a really good un-
derstanding of how Windows worked 
behind the scenes.

Those familiar with programming 
with the early Windows SDKs will re-
member that documentation (not to 
mention stability) was not well devel-
oped. The API functions were pretty 
low level and it seemed like there were 
a bazillion of them. (If it were not for 
Charles Petzold’s Programming Win-
dows,2 I am not sure how many Win-
dows applications developed outside 
of Microsoft would have been com-
pleted in the 1980s.) The code base 
for the applications was already pret-
ty large—at least for applications in 
those days—and each was implement-
ed slightly differently (they were pro-
totypes, after all). Microsoft offered 
a few sample programs but nothing 
close to the complexity of these ap-
plications. Therefore, we decided to 
build components (applications) that 
imitated the Windows behavior we 
were trying to achieve.

These components were mostly void 
of functionality but started off with the 
basic structure and interface mecha-
nisms similar to the actual applica-
tions. The drivers sent fine-grained 
Windows messages to the model com-
ponents to simulate key presses and 
other externally originated actions. 
They also sent DDE (Dynamic Data Ex-
change, a primitive way to communi-
cate data between Windows programs) 
messages throughout the suite of ap-
plications. As we matured the model, 
we began to merge in more of the API 

calls (for example, user interface con-
trols) used in the actual programs.

Many of the freezes were tracked 
down to undocumented idiosyncra-
sies of Windows Graphics Device In-
terface (GDI) calls. Examples included 
sensitivity to the ordering of some API 
calls, incompatibility between certain 
calls being made in the same context, 
and resource exhaustion possibilities. 
In the early versions of Windows the 
GDI libraries were tightly interwoven 
with the kernel libraries. As Windows 
matured, similar quandaries became 
error messages, exceptions, or just the 
offending application locking up.

The result of the modeling was that 
we gained enough information about 
this novel Windows technology to 
morph the programs to where stability 
was a reasonable expectation. Within 
15 months the system was deployed to 
more than 4,500 workstations and sur-
vived well into Windows NT’s life.

Modeling a “Slave” System
Not all of my modeling experiences re-
sulted in such a positive outcome. Sev-
eral exposed fundamental flaws in the 
architectural design, and with a few the 
only option was to abandon the system 
and start over. These messages were 
not typically well received by project 
management.

One of the more notable examples 
occurred in a system intended to be a 
“slave” receiving updates from several 
existing systems and applying them to 
a new database. The database would 
be used by other new systems to form 
the basis to replace the older systems. 
The systems would be built using a new 
technology platform. The technologies 
were so different and the functional 
breadth so wide that the development 
team had grown to more than 60 peo-
ple for the slave system alone.

I joined the project after the basic 
architecture and much of the func-
tionality had already been designed 
and developed, but it was still months 
away from production. My team’s as-
signment was to help get the most 
out of the infrastructure and optimize 
how the applications interacted with 
each other. After just a few weeks we 
suspected that some bad initial as-
sumptions had impacted the archi-
tectural design. (I do not mean to dis-
parage any teams in my examples, but 

Figure 1. Publisher model component with drivers and sinks.
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merely to point out the potential prob-
lem with too much focus on function-
ality at the expense of a solid architec-
tural foundation.) Because it looked 
like performance and scalability were 
going to be major concerns, the archi-
tecture team began working on some 
model components and drivers to in-
vestigate the design. 

We did some research around the 
incoming rate of messages and the 
mix in the types of transactions. We 
also sampled timings from the func-
tional “processors” that had already 
been built. Then using the same mes-
saging infrastructure as the existing 
dispatcher, we built a component that 
would simulate the incoming message 
dispatcher. Some of the messaging 
technology was new to the company. 
At one end of the dispatcher we had 
drivers to simulate inbound messages. 
On the other end we simulated the per-
formance of the functional processors 
(FPs) using pseudo-random numbers 
clustered around the sampled tim-
ings. By design, there was nothing in 
the modeled components or drivers 
related to the functional processing in 
the system.

Once the model was fully function-
al, we were able to play with various 
parameters related to the incoming 
message rates and simulated FP tim-
ings. We then began to weight the FP 
times according to processing cost 
variations in the mix of incoming 
message types. Prior to this modeling 
effort, the design had (wrongly) as-
sumed that the most important per-
formance aspect was the latency of the 
individual transactions. Several sec-
onds of latency was acceptable to all 
concerned. After all, it would be quite 
some time before this slave would be-
come the system of record and drive 
transactions the other way.

The modeling results were not en-
couraging. The latency was going to be 
a challenge, but the overall throughput 
requirements were going to bury the 
system. We started exploring ways to 
address the performance problems. 
The system was already targeted for the 
fastest hardware available for the cho-
sen platform, so that option was out. 
We delayed looking into improving the 
performance of the individual func-
tional processors; that was deemed 
to be more costly because of the num-

ber that had already been written. We 
thought our chances of quick success 
could increase with a focus on the com-
mon infrastructure pieces.

We worked on new dispatching 
algorithms but that did not result in 
enough improvement. We looked at 
optimizing the messaging infrastruc-
ture but still fell short. We then began 
to benchmark some other message 
formats and infrastructures, and the 
results were mildly encouraging. We 
examined the existing programs to see 
how easy it was going to be to alter the 
messaging formats and technology. 
The programs were too dependent on 
the message structure for it to be al-
tered within a reasonable timeframe.

Given the still-poor results, we 
needed to examine the functional al-
gorithms and the database access. 
We took a few of the midrange and 
lengthier running processors and in-
serted some logging to obtain split 
times of the various steps. Many of the 
functional algorithms were relatively 
expensive because of the required 
complexity for the mapping and re-
structuring of the data. The database 
operations seemed to take longer than 
we logically thought they should. (Over 
time an architect should develop a 
sense for a performance budget based 
on an abstract view of similar func-
tionality where he or she had previous-
ly maximized performance.) 

We then examined the logical data-
base model. The design was not a pat-
tern that would be performant for the 
types of programs in the system. The 
SQL from a few of the algorithms was 
extracted and placed in stand-alone 
model components. The idea was to 
see which types of performance in-
creases were possible. Some increases 
came from changing some of the SQL 
statements, which were taking exces-
sive time because the chosen partition-
ing scheme meant that reading core 
tables typically involved scanning all 
partitions. As our simulated database 
size grew, this became punitive to scal-
ability. The primary problem, however, 
was not the extended length of time for 
individual statements but the sheer 
number of calls. This was a result of 
taking normalization too far. There 
were numerous tables with indexes 
on columns that changed frequently. 
Additionally, multicolumn keys were 
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being used instead of artificial keys, 
sometimes referred to as surrogate 
keys. The system generates them (typi-
cally as integers) to represent the “real” 
keys. This can improve performance 
and maintenance when dealing with 
complex key structures and/or when 
the actual key values can change.

We determined that material im-
provements were possible if we re-
structured the database design and 
changed the associated SQL state-
ments. The programs were written in 
such a way that would have made the 
changes very expensive, however. Our 
conclusion was that the system would 
need a major overhaul if it were to be 
successful. Since the project had al-
ready spent well over $10 million, this 
recommendation was a hard sell.

After an additional $5 million, the 
project was canceled, and my team’s 
focus was redirected to other efforts. 
The modeling process had taken only 
about six weeks. The point to be made 
here is that it would be possible to 
use modeling to vet the major archi-
tectural decisions before committing 
large expenditures. It is vastly less ex-
pensive to discover that a design will 
not perform or scale before a system 
is built rather than after it has been 
placed in production.

Modeling New Systems
It should be standard practice to re-
search the architectural options for new 
systems—or when making substan-
tial overhauls to existing ones. The ex-
periments should be with lightweight 
models rather than a full system, but 
it is vital that these models accurately 
capture the evolving behavior of the 
system. Otherwise the value of the 
modeling process is diminished and 
may lead to erroneous conclusions.

I typically start by trying to under-
stand the functional problem space 
in an abstract fashion. Is the primary 
functionality a user-requested action 
followed by a system reply (such as, 
request/reply)? Is it a request followed 
by a stream of notifications (for ex-
ample, ticking quotes) or bits (for ex-
ample, music or video)? Is it to process 
some input data and send the result 
to another process or system (such as, 
flow-through)? Is it to crunch through 
a massive dataset in search of informa-
tion (decision support system)? Is it a 

combination of these, or something al-
together different?

Some may ask: how do I know which 
portions of the system to model and 
how much time and effort should be 
spent in the process? It is a simple case 
of risk management. The modeling 
should focus on the areas that would 
be the most expensive to get wrong. 
The process should continue until the 
high-risk decisions can be justified. 
Make an effort to retest the decisions 
as often as practical.

One of the most challenging aspects 
in modeling is in finding the right bal-
ance between capturing enough of the 
system behavior and keeping the mod-
el from becoming too complex (and 
expensive) to implement. This is easier 
with an existing system. As you prog-
ress through the modeling iterations, 
if the observations begin to mimic as-
pects of the system, then you are prob-
ably pretty close. You can begin to alter 
the modeling drivers and components 
to explore more of the behavior. For a 
new system I typically look to model 
components that can be used as shells 
for the real component. The goal is 
to provide the responsible developer 
with a starting point that allows the 
focus to be on the functionality rather 
than having to explore the critical nu-
ances of the underlying technology 
and infrastructure.

There are numerous technical mo-
dalities to consider when designing or 
evaluating architecture: performance, 
availability, scalability, security, test-
ability, maintainability, ease of devel-
opment, and operability. The prior-
ity ordering of these modalities may 
differ across systems, but each must 
be considered. How these modalities 
are addressed and their correspond-
ing technical considerations may vary 
by system component. For example, 
with request/reply and streaming up-
dates, latency is a critical performance 
factor, whereas throughput may be 
a better performance factor for flow-
through message processing or bulk-
request functionality. A perhaps subtle 
but nonetheless important message 
is to avoid mixing different modal-
ity implementations within the same 
component. Failure to adhere to this 
lesson puts the architecture on a sure 
path to complexity.

It is far too common to hear the ex-
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cuse: “The system is [going to be] too 
large to take the time to model its be-
havior. We just need to start building 
it.” If the chore of modeling is consid-
ered too onerous, then it will probably 
be very challenging to achieve predict-
able performance, scalability, and 
other desirable technical attributes. 
Some development projects have a 
strong focus on unit tests, but in my 
experience it is rare to find a corre-
sponding focus on testing the system 
architecture as a whole.

Modeling a Sample Component 
Describing the modeling of a sample 
component may provide additional in-
sight into the approach I am advocat-
ing. Suppose a new system calls for re-
ceiving some stream of data items (for 
example, stock quotes), enriching the 
data and publishing it to end users. 
An architect may suggest that some 
type of publisher component be built 
to perform this core requirement. 
How can this component be modeled 
before investing money in building 
a system around it? Data throughput 
and latency are probably primary con-
cerns. Ideally, we have some target re-
quirements for these. Scalability and 
availability are also issues that can be 
addressed with later iterations of the 
model but before proceeding with the 
functional development.

Based on this simple example, the 
model should contain at least two 
building blocks distinct from the 
publisher component. The incom-
ing data feed needs to be simulated. 
A driver should be built to pump data 
into the publisher. Additionally, some 
type of client sink is necessary to vali-
date the flow of messages and enable 
the measuring of throughput and 
latency. Figure 1 shows a simplified 
drawing with drivers and sinks for the 
proposed publisher.

The publisher model component 
should be built using the proposed tar-
get language. It should use any frame-
works, libraries, among others, that 
may affect the model outcome, though 
it may not be obvious which of these 
could have an effect. In that case you 
should take a risk management ap-
proach to include those that are core 
to the operation of the component. Any 
new technology where the behavior is 
not already fully understood should be 

included as well. Any nonsuspect infra-
structure can be added in later itera-
tions. It is important not to get mired 
in trying to build the functionality too 
early. As much as possible should be 
stubbed out.

In some systems a component such 
as the publisher may present the largest 
scalability hurdle. In that case we need 
to know what type of message flow can 
be handled, what type of latency can be 
expected, how many clients can be sup-
ported, and what type of flow the client 
applications can handle.

The data-feed driver should accept 
parameters that allow the message 
rate to be dialed to arbitrary levels. Any 
driver should be capable of pushing 
its target well past any expected high-
water mark. The messages do not have 
to match the intended format, but they 
should be relatively close in size. Since 
the driver is tightly coupled with the 
publisher, it should be written for and 
run on the same type of platform (lan-
guage, operating system, among oth-
ers). This enables the same developer 
to build both the component and the 
driver. (I strongly suggest that each de-
veloper responsible for a system-level 
component also create a distinct driv-
er and a possible sink as a standard 
practice.) The same holds true for the 
client sink so all three can be packaged 
together. This provides a cohesiveness 
that will allow the model to be reused 
for other purposes in the future.

As the modeling progresses, an-
other model receiver should be built 
for the target client platform using its 
expected frameworks and communi-
cation mechanism. The reason for the 
two different platform receiver/sinks is 
to allow the publisher model compo-
nent to be tested without involving an-
other platform (for example, scalability 
testing). The client-platform model re-
ceiver can be used to determine if the 
publisher is interacting with the client 
platform properly. During future trou-
bleshooting sessions these separate 
receivers would provide a means to iso-
late the problem area. All of the driv-
ers and sinks should be maintained as 
part of the development and mainte-
nance of the publisher.

The next step is to evaluate the pub-
lisher model in action with the drivers 
and sinks. To characterize the perfor-
mance, some type of instrumentation 

needs to be added to the client sink 
to calculate throughput. Care must 
be taken with any type of instrumen-
tation so it does not influence the re-
sults of the test. For example, logging 
every single message received with 
a timestamp is likely to be punitive 
to performance. Instead, summary 
statistics can be kept in memory and 
written out at periodic intervals or 
when the test ends.

The data-feed driver should out-
put data at a configurable rate while 
the client sinks count messages and 
compute the rate of data received. 
Another instrumentation method 
could be used to sample the latency. 
At specified message count intervals, 
the data-feed driver could log the 
message number and the originat-
ing timestamp. The client sinks could 
then log the receive timestamp at the 
same interval. If logged at an appropri-
ate frequency, the samples could give 
a good representation of the latency 
without affecting the overall perfor-
mance. High-resolution timers may 
be necessary. Testing across multiple 
machines with a latency requirement 
lower than the clock synchronization 
drift would require more sophisticated 
timing methods.

This model should be exercised at 
various message rates, including rates 
that completely overwhelm the pub-
lisher and its available resources. In 
addition to observing throughput and 
latency, the system resource utiliza-
tion (CPU, memory, network, and so 
on) should be profiled. This informa-
tion could be used later to determine if 
there are possible benefits in exploring 
infrastructure tuning.

As mentioned earlier, the pub-
lisher is required to do some type of 
data enrichment as the messages pass 
through. Throughput, latency, and 
memory consumption are likely to be 
impacted by this enrichment. This 
influence should be estimated and in-
corporated into the model publisher. 
If realistic estimates are not available, 
then purposely estimate high (or fol-
lowing the philosophy of this article, 
build another model and characterize 
it). If the cost of enrichment varies by 
message type, then a pseudorandom 
delay and memory allocation clustered 
around the expected averages could be 
inserted into the model publisher.
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Other Uses for Modeling
Modeling is an iterative process. It 
should not be thought of as just some 
type of performance test. Here is a list 
of items that could be added to further 
the evaluation process.

˲˲ Use the model to evaluate various 
infrastructure choices. These could 
include messaging middleware, oper-
ating system and database-tuning pa-
rameters, network topology, and stor-
age system options.

˲˲ Use the model to create a perfor-
mance profile for a set of hardware, 
and use that profile to extrapolate 
performance on other hardware plat-
forms. Any extrapolation will be more 
accurate if the model is profiled on 
more than one hardware platform.

˲˲ Use the performance profiles to 
determine if multiple instances of the 
publisher (horizontal scaling) are likely 
to be required as the system grows. If 
so, this capability should be built into 
the design and modeled appropriately. 
Converting components designed to 
be singletons could be very expensive.

˲˲ Use the model to explore the set of 
possible failure scenarios. Availabil-
ity is one of the primary attributes of 
a quality system. Waiting to address it 
after a system is built can cost an order 
of magnitude more.

The examples used in this article 
can be seen in abstractions of many 
systems. Similar modeling approach-
es should be undertaken for any ma-
terial component. When interrelated 
models have been built and tested 
they can then be combined for more 
comprehensive system modeling. The 
approach of building one model at 
a time allows the system behavioral 
knowledge to be gained in steps rather 
than attempting to understand—not 
to mention build—one all-encompass-
ing model.

One key element present in almost 
all systems is some type of data store. 
Evaluating a database design can be 
complex. There are a number of steps 
that are similar to the system model-
ing already discussed, however. Once a 
draft of the database model (columns, 
tables, and so on) is available, it can 
be populated with enough generated 
data to enable some performance test-
ing. The effort required to write a data 
generator for this purpose will give an 
idea of how easy it will be to work with 

the database during the development 
process. If this generator seems too 
difficult to tackle, it may be a sign the 
database model is already too complex.

After the tables have been populat-
ed, the next step is to create driver(s) 
that will exercise the queries expected 
to be most expensive and/or most fre-
quent. These drivers can be used to 
refine the underlying relational mod-
el, storage organization, and tuning 
parameters. Performing this type of 
modeling can be priceless. Discover-
ing flaws in the application-level data 
model after all the queries have been 
written and the system is running in 
production is painful. I have worked 
to improve database performance on 
dozens of systems. Optimizing que-
ries, storage subsystems, and other 
database-related items post develop-
ment can be really challenging. If the 
system has been in production for 
some time, then the task is even more 
difficult. Many times the low-level in-
frastructure changes could have been 
determined by early modeling. With 
the proper design more standard con-
figurations may have sufficed.

Instrumentation and Maintenance
Regardless of the type of driver/com-
ponent combination, instrumenta-
tion is vital to both modeling and the 
long-lasting health of a system. It is not 
just a luxury. Flying blind about per-
formance is not advised. Visual flight 
rules (that is, without instrumenta-
tion) can be used only when the skies 
are clear. How often is that true for 
modern systems? The functional and 
technical complexity typically clouds 
the ability to see clearly what is hap-
pening. System performance can be 
like floating down the river in a raft. 
If you do not observe the speed of the 
water periodically, then you might not 
notice an upcoming waterfall until the 
raft is hopelessly plunging over the 
edge. As mentioned previously, when 
the volume of instrumentation data is 
too high, consider using “tracers” and/
or statistical sampling.

There are numerous advantages to 
keeping the drivers and model compo-
nents up to date as a system evolves:

˲˲ They can be used for general re-
gression testing for performance, 
availability, or scalability, when chang-
es are proposed.

˲˲ They can be used for capacity plan-
ning by extrapolating performance 
from a smaller set of resources. The 
only practical way to do this is by fully 
understanding the resource usage 
characteristics.

˲˲ They can model infrastructure or 
other large-scale changes that may 
need to be made to an existing system.

˲˲ At times there are factors outside 
the control of the maintenance/devel-
opment team (for example, infrastruc-
ture changes). The drivers could be 
used to test an isolated portion of the 
system. If any degradation was caused 
by the outside factors, then the results 
could provide “defensive” data to have 
the changes altered or rolled back.

˲˲ When some type of performance, 
availability, scalability, or other infra-
structure problem arises, it would be 
much quicker to pull out the model 
and drivers than to take on the possibly 
overwhelming task of updating them 
while under pressure to troubleshoot a 
production problem.

Modeling is an extremely powerful 
method to understand and improve 
the overall quality of a system. For 
systems expected to last for years this 
improvement translates into real mon-
etary savings. Development organiza-
tions can then spend their budgetary 
money on providing functionality. If 
the models and associated drivers are 
sustained, then this functional focus 
can be widely celebrated. 	
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If  p hysics was  the science of the first half of the 
20th century, biology was certainly the science of the 
second half. Neuroscience is now often cited as one 
of the key scientific focuses of the 21st century and 
has indeed grown rapidly in recent years, spanning a 
range of approaches, from molecular neurobiology to 
neuro-informatics and computational neuroscience. 
Computer science gave biology powerful new data-
analysis tools that yielded bioinformatics and 
genomics, making possible the sequencing of 
the human genome. Similarly, computer science 
techniques are at the heart of brain imaging and other 
branches of neuroscience. 

Computers are critical for the neurosciences, 
though at a much deeper level, representing the best 

metaphor for the central mystery of 
how the brain produces intelligent be-
havior and intelligence itself. They also 
provide experimental tools for infor-
mation processing, effectively testing 
theories of the brain, particularly those 
involving aspects of intelligence (such 
as sensory perception). The contribu-
tion of computer science to neurosci-
ence happens at multiple levels and 
is well recognized. Perhaps less obvi-
ous is that neuroscience is beginning 
to contribute powerful new ideas and 
approaches to artificial intelligence 
and computer science as well. Modern 
computational neuroscience models 
are no longer toy models but quantita-
tively detailed while beginning to com-
pete with state-of-the-art computer-
vision systems. Here, we explore how 
computational neuroscience could be-
come a major source of new ideas and 
approaches in artificial intelligence. 

Understanding the processing of in-
formation in our cortex is a significant 
part of understanding how the brain 
works and understanding intelligence 
itself. For example, vision is one of our 
most developed senses. Primates easily 
categorize images or parts of images, 
as in, say, an office scene or a face with-
in a scene, identifying specific objects. 
Our visual capabilities are exceptional, 
and, despite decades of engineering, 
no computer algorithm is yet able to 
match the performance of the primate 
visual system. 

Our visual cortex may serve as a 
proxy for the rest of the cortex and thus 
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Neuroscience is beginning to inspire  
a new generation of seeing machines. 

by Thomas Serre and Tomaso Poggio 

A 
Neuromorphic 
Approach  
to Computer 
Vision 

 key insights
 � �The past century of neuroscience 

research has begun to answer 
fundamental questions ranging from  
the intricate inner workings of  
individual neurons to understanding  
the collective behavior of networks  
of millions of neurons. 

 � �A key challenge for the visual cortex is 
how to deal with the poverty-of-stimulus 
problem. 

 � �A major goal of the visual system is how 
to adapt to the statistics of its natural 
environment through visual experience 
and even evolution. 
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for intelligence itself. There is little 
doubt that even a partial solution to the 
question of which computations are 
performed by the visual cortex would 
be a major breakthrough in computa-
tional neuroscience and more broadly 
in neuroscience. It would begin to ex-
plain one of the most amazing abili-
ties of the brain and open doors to 
other aspects of intelligence (such as 
language and planning). It would also 
bridge the gap between neurobiology 
and the various information sciences, 
making it possible to develop com-
puter algorithms that follow the in-
formation-processing principles used 
by biological organisms and honed by 
natural evolution. 

The past 60 years of experimental 
work in visual neuroscience has gen-
erated a large and rapidly increasing 

amount of data. Today’s quantitative 
models bridge several levels of under-
standing, from biophysics to physiol-
ogy to behavior. Some of these models 
compete with state-of-the-art comput-
er-vision systems and are close to hu-
man-level performance for specific vi-
sual tasks. 

Here, we describe recent work to-
ward a theory of cortical visual process-
ing. Unlike other models that address 
the computations in a given brain area 
(such as primary visual cortex) or at-
tempt to explain a particular phenom-
enon (such as contrast adaptation and 
specific visual illusion), we describe 
a large-scale model that attempts to 
mimic the main information-process-
ing steps across multiple brain areas 
and millions of neuron-like units. A 
first step toward understanding corti-

cal functions may take the form of a 
detailed, neurobiologically plausible 
model, accounting for the connectiv-
ity, biophysics, and physiology of the 
cortex. 

Models provide a much-needed 
framework for summarizing and in-
tegrating existing data and planning, 
coordinating, and interpreting new ex-
periments. They can be powerful tools 
in basic research, integrating knowl-
edge across multiple levels of analysis, 
from molecular to synaptic, cellular, 
systems, and complex visual behavior. 
However, models, as we discuss later, 
are limited in explanatory power but 
should, ideally, lead to a deeper and 
more general theory. Here, we discuss 
the role of the visual cortex and review 
key computational principles underly-
ing the processing of information dur-
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ing visual recognition, then explore a 
computational neuroscience model 
(representative of a class of older mod-
els) that implements these principles, 
including some of the evidence in its 
favor. When tested with natural imag-
es, the model performs robust object 
recognition on par with computer-vi-
sion systems and human performance 
for a specific class of quick visual-rec-
ognition tasks. The initial success of 
this research represents a case in point 
for arguing that over the next decade 
progress in computer vision and arti-
ficial intelligence promises to benefit 
directly from progress in neuroscience. 

Goal of the Visual System 
A key computational issue in object 
recognitiona is the specificity-invari-
ance trade-off: Recognition must be 
able to finely discriminate between dif-
ferent objects or object classes (such as 
the faces in Figure 1) while being tol-
erant of object transformations (such 
as scaling, translation, illumination, 
changes in viewpoint, and clutter), 
as well as non-rigid transformations 
(such as variations in shape within a 
class), as in the change of facial expres-
sion in recognizing faces. 

A key challenge posed by the visual 
cortex is how well it deals with the pov-
erty-of-stimulus problem, or simple 
lack of visual information. Primates 
are able to learn to recognize an object 
in quite different images from far few-
er labeled examples than are predicted 
by our present learning theory and 
algorithms. For instance, discrimina-
tive algorithms (such as support vector 
machines, or SVMs) can learn a com-
plex object-recognition task from a few 
hundred labeled images. This number 
is small compared to the apparent di-
mensionality of the problem (millions 
of pixels), but a child, even a monkey, is 
apparently able to learn the same task 
from a handful of examples. As an ex-
ample of the prototypical problem in 
visual recognition, imagine a (naïve) 
machine is shown an image of a given 
person and an image of another per-
son. The system’s task is to discrimi-

a	 Within recognition, one distinguishes be-
tween identification and categorization. From 
a computational point of view, both involve 
classification and represent two points on a 
spectrum of generalization levels.

nate future images of these two people 
without seeing other images of them, 
though it has seen many images of oth-
er people and objects and their trans-
formations and may have learned from 
them in an unsupervised way. Can the 
system learn to perform the classifica-
tion task correctly with just two (or a 
few) labeled examples? 

Imagine trying to build such a clas-
sifier from the output of two cortical 
cells, as in Figure 1. Here, the response 
of the two cells defines a 2D feature 
space to represent visual stimuli. In a 
more realistic setting, objects would 
be represented by the response pat-
terns of thousands of such neurons. In 
the figure, we denote visual examples 
from the two people with + and – signs; 
panels (A) and (B) illustrate what the 
recognition problem would look like 
when these two neurons are sensitive 
vs. invariant to the precise position of 
the object within their receptive fields.b 
In each case, a separation (the red lines 
indicate one such possible separation) 

b	 The receptive field of a neuron is the part 
of the visual field that (properly stimulated) 
could elicit a response from the neuron.

can be found between the two classes. 
It has been shown that certain learning 
algorithms (such as SVMs with Gauss-
ian kernels) can solve any discrimina-
tion task with arbitrary difficulty (in the 
limit of an infinite number of training 
examples). That is, with certain classes 
of learning algorithms we are guaran-
teed to be able to find a separation for 
the problem at hand irrespective of the 
difficulty of the recognition task. How-
ever, learning to solve the problem may 
require a prohibitively large number of 
training examples. 

In separating two classes, the two 
representations in panels (A) and (B) 
are not equal; the one in (B) is far su-
perior to the one in (A). With no prior 
assumption on the class of functions 
to be learned, the “simplest” classi-
fier that can separate the data in (B) is 
much simpler than the “simplest” clas-
sifier that separates the data in (A). The 
number of wiggles of the separation 
line (related to the number of parame-
ters to be learned) gives a hand-wavy es-
timate of the complexity of a classifier. 
The sample complexity of the problem 
derived from the invariant representa-
tion in (B) is much lower than that of 

Figure 1. Sample complexity. 
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A hypothetical 2D (face) classification problem (red) line. One class is represented with + and 
the other with – symbols. Insets are 2D transformations (translation and scales) applied to 
examples from the two categories. Panels (A) and (B) are two different representations of the 
same set of images. (B), which is tolerant with respect to the exact position and scale of the 
object within the image, leads to a simpler decision function (such as a linear classifier) and 
requires fewer training examples to achieve similar performance, thus lowering the sample 
complexity of the classification problem. In the limit, learning in (B) could be done with only two 
training examples (blue). 



contributed articles

october 2010  |   vol.  53  |   no.  10  |   communications of the acm     57

the problem in (A). Learning to catego-
rize the data-points in (B) requires far 
fewer training examples than in (A) and 
may be done with as few as two exam-
ples. The key problem in vision is thus 
what can be learned effectively with 
only a small number of examples.c

The main point is not that a low-level 
representation provided from the reti-
na would not support robust object rec-
ognition. Indeed, relatively good com-
puter-vision systems developed in the 
1990s were based on simple retina-like 
representations and rather complex 
decision functions (such as radial basis 
function networks). The main problem 
of these systems is they required a pro-
hibitively large number of training ex-
amples compared to humans. 

More recent work in computer vi-
sion suggests a hierarchical architec-
ture may provide a better solution to 
the problem; see also Bengio and Le 
Cun1 for a related argument. For in-
stance, Heisele et al.10 designed a hi-
erarchical system for the detection 
and recognition of faces, an approach 
based on a hierarchy of “component 
experts” performing a local search for 
one facial component (such as an eye 
or a nose) over a range of positions and 
scales. Experimental evidence from 
Heisele et al.10 suggests such hierarchi-
cal systems based exclusively on linear 
(SVM) classifiers significantly outper-
form a shallow architecture that tries 
to classify a face as a whole, albeit by 
relying on more complex kernels. 

The visual system may be using a 
similar strategy to recognize objects, 
with the goal of reducing the sample 
complexity of the classification prob-
lem. In this view, the visual cortex 
transforms the raw image into a posi-
tion- and scale-tolerant representa-
tion through a hierarchy of processing 
stages, whereby each layer gradually 
increases the tolerance to position 
and scale of the image representation. 
After several layers of such processing 
stages, the resulting image representa-
tion can be used much more efficiently 
for task-dependent learning and classi-

c	 The idea of sample complexity is related to 
the point made by DiCarlo and Cox4 about the 
main goal of processing information from the 
retina to higher visual areas to be “untangling 
object representations,” so a simple linear 
classifier can discriminate between any two 
classes of objects.

fication by higher brain areas. 
These stages can be learned during 

development from temporal streams 
of natural images by exploiting the sta-
tistics of natural environments in two 
ways: correlations over images that 
provide information-rich features at 
various levels of complexity and sizes; 
and correlations over time used to 
learn equivalence classes of these fea-
tures under transformations (such as 
shifts in position and changes in scale). 
The combination of these two learning 
processes allows efficient sharing of vi-
sual features between object categories 
and makes learning new objects and 
categories easier, since they inherit the 
invariance properties of the represen-
tation learned from previous experi-
ence in the form of basic features com-
mon to other objects. In the following 
sections, we review evidence for this 
hierarchical architecture and the two 
correlation mechanisms described 
earlier. 

Hierarchical Architecture 
and Invariant Recognition 
Several lines of evidence (from both 
human psychophysics and monkey 
electrophysiology studies) suggest the 
primate visual system exhibits at least 
some invariance to position and scale. 
While the precise amount of invari-
ance is still under debate, there is gen-
eral agreement as to the fact that there 
is at least some generalization to posi-
tion and scale. 

The neural mechanisms underlying 
such invariant visual recognition have 
been the subject of much computa-
tional and experimental work since the 
early 1990s. One general class of com-
putational models postulates that the 
hierarchical organization of the visual 
cortex is key to this process; see also 
Hegdé and Felleman9 for an alterna-
tive view. The processing of shape in-
formation in the visual cortex follows a 
series of stages, starting with the retina 
and proceeding through the lateral ge-
niculate nucleus (LGN) of the thala-
mus to primary visual cortex (V1) and 
extrastriate visual areas, V2, V4, and 
the inferotemporal (IT) cortex. In turn, 
IT provides a major source of input to 
the prefrontal cortex (PFC) involved in 
linking perception to memory and ac-
tion; see Serre et al.29 for references. 

As one progresses along the ventral 

The role of  
the anatomical 
back-projections 
present  
(in abundance) 
among almost all 
areas in  
visual cortex is  
a matter of debate. 
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stream of the visual cortex, neurons 
become selective for stimuli that are 
increasingly complex—from simple 
oriented bars and edges in early visual 
area V1 to moderately complex fea-
tures in intermediate areas (such as a 
combination of orientations) to com-
plex objects and faces in higher visual 
areas (such as IT). Along with this in-
crease in complexity of the preferred 
stimulus, the invariance properties of 
neurons seem to also increase. Neu-
rons become more and more tolerant 
with respect to the exact position and 
scale of the stimulus within their re-
ceptive fields. As a result, the receptive 
field size of neurons increases from 
about one degree or less in V1 to sev-
eral degrees in IT. 

Compelling evidence suggests that 
IT, which has been critically linked 
with a monkey’s ability to recognize 
objects, provides a representation of 
the image that facilitates recognition 
tolerant of image transformations. For 
instance, Logothetis et al.16 showed 
that monkeys can be trained to recog-
nize paperclip-like wireframe objects 
at a specific location and scale. After 
training, recordings in their IT cor-
tex revealed significant selectivity for 
the trained objects. Because monkeys 
were unlikely to have been in contact 
with the specific paperclip prior to 
training, this experiment provides in-
direct evidence of learning. More im-
portant, Logothetis et al.16 found se-
lective neurons also exhibited a range 
of invariance with respect to the exact 
position (two to four degrees) and 
scale (around two octaves) of the stim-
ulus, which was never presented be-
fore testing at these new positions and 
scales. In 2005, Hung et al.12 showed it 
was possible to train a (linear) classi-
fier to robustly read out from a popula-
tion of IT neurons the category infor-
mation of a briefly flashed stimulus. 
Hung et al. also showed the classifier 
was able to generalize to a range of 
positions and scales (similar to Logo-
thetis et al.’s data) not presented dur-
ing the training of the classifier. This 
generalization suggests the observed 
tolerance to 2D transformation is a 
property of the population of neurons 
learned from visual experience but 
available for a novel object without 
object-specific learning, depending 
on task difficulty. 

showed the patterns of neural activity 
elicited by certain ecologically impor-
tant classes of objects (such as faces 
and places in monozygotic twins) are 
significantly more similar than in di-
zygotic twins. These results suggest 
that genes may play a significant role 
in the way the visual cortex is wired to 
process certain object classes. Mean-
while, several electrophysiological 
studies have demonstrated learning 
and plasticity in the adult monkey; 
see, for instance, Li and DiCarlo.15 
Learning is likely to be both faster and 
easier to elicit in higher visually re-
sponsive areas (such as PFC and IT15) 
than in lower areas. 

This learning result makes intui-
tive sense. For the visual system to re-
main stable, the time scale for learning 
should increase ascending the ventral 
stream.d In the Figure 2 model, we as-
sumed unsupervised learning from V1 
to IT happens during development in 
a sequence starting with the lower ar-
eas. In reality, learning might continue 
throughout adulthood, certainly at the 
level of IT and perhaps in intermediate 
and lower areas as well. 

Unsupervised learning in the ventral 
stream of the visual cortex. With the ex-
ception of the task-specific units at the 
top of the hierarchy (“visual routines”), 
learning in the model in Figure 2 is un-
supervised, thus closely mimicking a 
developmental learning stage. 

As emphasized by several authors, 
statistical regularities in natural visual 
scenes may provide critical cues to the 
visual system for learning with very 
limited or no supervision. A key goal of 
the visual system may be to adapt to the 
statistics of its natural environment 
through visual experience and perhaps 
evolution, too. In the Figure 2 model, 
the selectivity of simple and complex 
units can be learned from natural vid-
eo sequences (see supplementary ma-

d	 In the hierarchical model in Figure 1, learning 
proceeds layer by layer, starting at the bottom, 
a process similar to recent work by Hinton11 
but that is quite different from the original 
neural networks that used back-propagation 
and simultaneously learned all layers at the 
same time. Our implementation includes the 
unsupervised learning of features from natu-
ral images but assumes the learning of posi-
tion and scale tolerance, thus hardwired in the 
model; see Masquelier et al.18 for an initial at-
tempt at learning position and scale tolerance 
in the model.

Computational Models of 
Object Recognition in Cortex 
We developed26,29 (in close coopera-
tion with experimental labs) an initial 
quantitative model of feedforward hi-
erarchical processing in the ventral 
stream of the visual cortex (see Figure 
2). The resulting model effectively inte-
grates the large body of neuroscience 
data (summarized earlier) character-
izing the properties of neurons along 
the object-recognition processing hier-
archy. The model also mimics human 
performance in difficult visual-recog-
nition tasks28 while performing at least 
as well as most current computer-vi-
sion systems.27 

Feedforward hierarchical mod-
els have a long history, beginning in 
the 1970s with Marko and Giebel’s 
homogeneous multilayered archi-
tecture17 and later Fukushima’s Neo-
cognitron.6 One of their key compu-
tational mechanisms originates from 
the pioneering physiological stud-
ies and models of Hubel and Wiesel 
(http://serre-lab.clps.brown.edu/re-
sources/ACM2010). The basic idea is 
to build an increasingly complex and 
invariant object representation in a 
hierarchy of stages by progressively 
integrating, or pooling, convergent 
inputs from lower levels. Building on 
existing models (see supplementary 
notes http://serre-lab.clps.brown.
edu/resources/ACM2010), we have 
been developing24,29 a similar compu-
tational theory that attempts to quan-
titatively account for a host of recent 
anatomical and physiological data; 
see also Mutch and Lowe19 and Mas-
quelier et al.18 

The feedforward hierarchical mod-
el in Figure 2 assumes two classes of 
functional units: simple and complex. 
Simple act as local template-matching 
operators, increasing the complexity of 
the image representation by pooling 
over local afferent units with selectiv-
ity for different image features (such as 
edges at different orientations). Com-
plex increase the tolerance of the rep-
resentation with respect to 2D transfor-
mations by pooling over afferent units 
with similar selectivity but slightly dif-
ferent positions and scales. 

Learning and plasticity. How the 
organization of the visual cortex is in-
fluenced by development vs. genetics 
is a matter of debate. An fMRI study21 

http://serre-lab.clps.brown.edu/resources/ACM2010
http://serre-lab.clps.brown.edu/resources/ACM2010
http://serre-lab.clps.brown.edu/resources/ACM2010
http://serre-lab.clps.brown.edu/resources/ACM2010
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terial http://serre-lab.clps.brown.edu/
resources/ACM2010 for details). 

Supervised learning in higher ar-
eas. After this initial developmental 
stage, learning a new object category 
requires training only of task-specif-
ic circuits at the top of the ventral-
stream hierarchy, thus providing a 
position and scale-invariant represen-
tation to task-specific circuits beyond 
IT to learn to generalize over trans-
formations other than image-plane 
transformations (such as 3D rotation) 
that must be learned anew for each 
object or category. For instance, pose-
invariant face categorization circuits 
may be built, possibly in PFC, by com-
bining several units tuned to different 
face examples, including different 
people, views, and lighting conditions 
(possibly in IT). 

A default routine may be running in 
a default state (no specific visual task), 
perhaps the routine What is there? 
As an example of a simple routine con-
sider a classifier that receives the activ-
ity of a few hundred IT-like units, tuned 
to examples of the target object and 
distractors. While learning in the mod-
el from the layers below is stimulus-
driven, the PFC-like classification units 
are trained in a supervised way follow-
ing a perceptron-like learning rule. 

Immediate Recognition 
The role of the anatomical back-projec-
tions present (in abundance) among 
almost all areas in the visual cortex is 
a matter of debate. A commonly ac-
cepted hypothesis is that the basic pro-
cessing of information is feedforward,30 
supported most directly by the short 
times required for a selective response 
to appear in cells at all stages of the hi-
erarchy. Neural recordings from IT in 
a monkey12 show the activity of small 
neuronal populations over very short 
time intervals (as short as 12.5ms and 
about 100ms after stimulus onset) con-
tains surprisingly accurate and robust 
information supporting a variety of 
recognition tasks. While this data does 
not rule out local feedback loops within 
an area, it does suggest that a core hi-
erarchical feedforward architecture 
(like the one described here) may be a 
reasonable starting point for a theory of 
the visual cortex, aiming to explain im-
mediate recognition, the initial phase 
of recognition before eye movement 

and high-level processes take place. 
Agreement with experimental data. 

Since its original development in the 
late 1990s,24,29 the model in Figure 2 
has been able to explain a number of 
new experimental results, including 
data not used to derive or fit model pa-
rameters. The model seems to be qual-
itatively and quantitatively consistent 
with (and in some cases predicts29) 
several properties of subpopulations 
of cells in V1, V4, IT, and PFC, as well 
as fMRI and psychophysical data (see 
the sidebar “Quantitative Data Com-
patible with the Model” for a complete 
list of findings). 

We compared the performance of 
the model against the performance 
of human observers in a rapid animal 
vs. non-animal recognition task28 for 
which recognition is quick and cortical 
back-projections may be less relevant. 
Results indicate the model predicts 
human performance quite well during 
such a task, suggesting the model may 

indeed provide a satisfactory descrip-
tion of the feedforward path. In par-
ticular, for this experiment, we broke 
down the performance of the model 
and human observers into four image 
categories with varying amounts of 
clutter. Interestingly, the performance 
of both the model and the human ob-
servers was most accurate (~90% cor-
rect for both human participants and 
the model) on images for which the 
amount of information is maximal and 
clutter minimal and decreases monoti-
cally as the clutter in the image increas-
es. This decrease in performance with 
increasing clutter likely reflects a key 
limitation of this type of feedforward 
architecture. This result is in agree-
ment with the reduced selectivity of 
neurons in V4 and IT when presented 
with multiple stimuli within their re-
ceptive fields for which the model pro-
vides a good quantitative fit29 with neu-
rophysiology data (see the sidebar). 

Application to computer vision. 

Figure 2. Hierarchical feedforward models of the visual cortex. 
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es,13 finding that the model of the dor-
sal stream competed with a state-of-
the-art action-recognition system (that 
outperformed many other systems) on 
all three data sets.13 A direct extension 
of this approach led to a computer sys-
tem for the automated monitoring and 
analysis of rodent behavior for behav-
ioral phenotyping applications that 
perform on par with human manual 
scoring. We also found the learning in 

this model produced a large dictionary 
of optic-flow patterns that seems con-
sistent with the response properties of 
cells in the medial temporal (MT) area 
in response to both isolated gratings 
and plaids, or two gratings superim-
posed on one another. 

Conclusion 
Demonstrating that a model designed 
to mimic known anatomy and physiol-

How does the model29 perform real-
world recognition tasks? And how 
does it compare to state-of-the-art 
artificial-intelligence systems? Given 
the specific biological constraints the 
theory must satisfy (such as using only 
biophysically plausible operations, 
receptive field sizes, and a range of in-
variances), it was not clear how well the 
model implementation would perform 
compared to systems heuristically en-
gineered for these complex tasks. 

Several years ago, we were surprised 
to find the model capable of recogniz-
ing complex images,27 performing at a 
level comparable to some of the best 
existing systems on the CalTech-101 
image database of 101 object catego-
ries with a recognition rate of about 
55% (chance level < 1%); see Serre et 
al.27 and Mutch and Lowe.19 A related 
system with fewer layers, less invari-
ance, and more units had an even bet-
ter recognition rate on the CalTech 
data set.20 

We also developed an automated 
system for parsing street-scene im-
ages27 based in part on the class of 
models described earlier. The system 
recognizes seven different object cat-
egories—cars, pedestrians, bikes, 
skies, roads, buildings, trees—from 
natural images of street scenes de-
spite very large variations in shape 
(such as trees in summer and winter 
and SUVs and compact cars from any 
point of view). 

Content-based recognition and 
search in videos is an emerging ap-
plication of computer vision, whereby 
neuroscience may again suggest an 
avenue for approaching the problem. 
In 2007, we developed an initial mod-
el for recognizing biological motion 
and actions from video sequences 
based on the organization of the dor-
sal stream of the visual cortex,13 which 
is critically linked to the processing 
of motion information, from V1 and 
MT to higher motion-selective areas 
MST/FST and STS. The system relies 
on computational principles similar 
to those in the model of the ventral 
stream described earlier but that start 
with spatio-temporal filters modeled 
after motion-sensitive cells in the pri-
mary visual cortex. 

We evaluated system performance 
for recognizing actions (human and 
animal) in real-world video sequenc-

Black corresponds to data used to derive the parameters of the model, red to data 
consistent with the model (not used to fit model parameters), and blue to actual  
correct predictions by the model. Notations: PFC (prefrontal cortex), V1 (visual  
area I or primary visual cortex), V4 (visual area IV), and IT (inferotemporal cortex). 
Data from these areas corresponds to monkey electrophysiology studies. LOC (Lateral 
Occipital Complex) involves fMRI with humans. The psychological studies are 
psychophysics on human subjects. 

Quantitative Data  
Compatible with  
the Model 

Area Type of data Ref. biol. data Ref. model data

Psych. Rapid animal categorization (1) (1)

Face inversion effect (2) (2)

LOC Face processing (fMRI) (3) (3)

PFC Differential role of IT and PFC in categorization (4) (5)

IT Tuning and invariance properties (6) (5)

Read out for object category (7) (8,9)

Average effect in IT (10) (10)

V4 MAX operation (11) (5)

Tuning for two-bar stimuli (12) (8,9)

Two-spot interaction (13) (8)

Tuning for boundary conformation (14) (8,15)

Tuning for Cartesian and non-Cartesian gratings (16) (8)

V1 Simple and complex cells tuning properties (17–19) (8)

MAX operation in subset of complex cells (20) (5)
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ogy of the primate visual system leads 
to good performance with respect to 
computer-vision benchmarks may 
suggest neuroscience is on the verge 
of providing novel and useful para-
digms to computer vision and per-
haps to other areas of computer sci-
ence as well. The feedforward model 
described here can be modified and 
improved by taking into account new 
experimental data (such as more de-
tailed properties of specific visual 
areas like V125), implementing some 
of its implicit assumptions (such as 
learning invariances from sequences 
of natural images), taking into ac-
count additional sources of visual in-
formation (such as binocular disparity 
and color), and extention to describe 
the detailed dynamics of neural re-
sponses. Meanwhile, the recognition 
performance of models of this general 
type can be improved by exploring pa-
rameters (such as receptive field sizes 
and connectivity) by, say, using com-
puter-intensive iterations of a muta-
tion-and-test cycle. 

 However, it is important to realize 
the intrinsic limitations of the specific 
computational framework we have 
described and why it is at best a first 
step toward understanding the visual 
cortex. First, from the anatomical and 
physiological point of view the class of 
feedforward models we’ve described 
here is incomplete, as it does not ac-
count for the massive back-projections 
found in the cortex. To date, the role 
of cortical feedback remains poorly 
understood. It is likely that feedback 
underlies top-down signals related to 
attention, task-dependent biases, and 
memory. Back-projections must also 
be taken into account in order to de-
scribe visual perception beyond the 
first 100msec–200msec. 

Given enough time, humans use 
eye movement to scan images, and 
performance in many object-recog-
nition tasks improves significantly 
over that obtained during quick pre-
sentations. Extensions of the model 
to incorporate feedback are possible 
and under way.2 Feedforward models 
may well turn out to be approximate 
descriptions of the first 100msec–
200msec of the processing required by 
more complex theories of vision based 
on back-projections.3,5,7,8,14,22,31 How-
ever, the computations involved in 
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the initial phase are nontrivial but es-
sential for any scheme involving feed-
back. A related point is that normal 
visual perception is much more than 
classification, as it involves interpret-
ing and parsing visual scenes. In this 
sense, the class of models we describe 
is limited, since it deals only with clas-
sification tasks. More complex archi-
tectures are needed; see Serre et al.26 
for a discussion. 

Finally, we described a class of 
models, not a theory. Computational 
models are not sufficient on their 
own. Our model, despite describing 
(quantitatively) aspects of monkey 
physiology and human recognition, 
does not yield a good understanding 
of the computational principles of 
the cortex and their power. What is yet 
needed is a mathematical theory to ex-
plain the hierarchical organization of 
the cortex. 
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Though the outsourcing  of IT services has long 
been a topic of academic interest,22 the potential for 
the global sourcing of IT services to have a long-term 
effect on the domestic IT work force continues to 
attract significant interest from the media, public, 
and academic community.1,3,6,15,19,24 Here, we use 
survey data collected in 2007 to characterize the effect 
offshoring has had on the U.S. IT work force (see the 
sidebar “Key Survey Questions”) and estimate how it 
will affect the demand for skills among U.S. IT workers 
in the future. 

Understanding the effect of offshoring on domestic 
employment is potentially important for anticipating 
the training needs of existing and future IT workers 
and for enabling policymakers to frame initiatives  
that ease the transition to a global IT work force. 
However, our current understanding is limited by 

a paucity of data on firms’ offshoring 
activities. Most discussion of offshor-
ing relies on anecdotes, press reports, 
and theoretical arguments. Indeed, 
the U.S. government acknowledges 
development of better offshoring data 
is a pressing policy concern.9 

The primary contribution of this 
study is the collection and analysis of 
data describing how offshoring affects 
the U.S. work force. That data comes 
from two complementary, unusually 
large surveys carried out in late 2007, 
one involving 3,014 human resources 
managers and the other more than 
6,000 U.S. workers employed in a vari-
ety of occupations. The data allows us 
to provide general statistics about the 
overall rate of U.S. IT offshoring and 
address two main questions: Do the 
rates of IT worker offshoring differ 
significantly from the offshoring rates 
for workers in other occupations? And 
is the pattern of IT offshoring con-
sistent with the theory that jobs are 
less readily offshored if they require 
face-to-face contact with U.S.-based 
consumers or co-workers or require 
employees to perform hands-on work 
with U.S.-based assets? 

Our interest in the second question 
was motivated by work suggesting 
that job characteristics (such as the 
need for customer contact or physical 
presence or information intensity) are 
closely related to the potential rate of 
offshoring.2,4,11,18 In the study, we com-
bined data on offshoring-related dis-
placement by occupation with Blind-
er’s classification4 of “offshorability” 
of various occupations to understand 

doi:10.1145/1831407.1831426

IT jobs requiring interpersonal interaction  
or physical presence in fixed locations are less 
likely to be sent out of the country. 

by Prasanna B. Tambe and Lorin M. Hitt 

How 
Offshoring 
Affects  
IT Workers

 key insights
 � �Offshoring is most common in high-tech 

firms and IT functions. 

 � �IT workers reported offshoring-related 
displacement at a rate of 8%, more 
than double that of workers in other 
occupations. 

 � �Technical occupations reliant on skills 
that can be delivered with relatively 
little face-to-face contact are more 
easily offshored, suggesting a coming 
shift in the skill base of the domestic  
IT work force. 
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how job characteristics correlate with 
offshoring rates. 

About 15% of all firms and 40% of 
technology firms we surveyed engaged 
in some offshoring activity, with about 
30% offshoring IT workers. About 8% 
of IT workers reported having been 
displaced due to offshoring, more 
than twice the percentage of any other 
type of employee in the survey. How-
ever, this rate implies an annual dis-
placement rate of about 1% per year, 
a relatively small fraction of the an-
nual worker turnover rate in the U.S. 
economy. In addition, the offshoring 
of some IT occupations (such as pro-
grammers and software developers) 
was especially likely to be associated 
with domestic job displacement. 
Other occupations requiring more 
interpersonal interaction (such as sys-
tems analysts) were less likely to be 
offshored, and overseas employment 

in other occupations (such as sales 
and management) may have been di-
rected at serving offshore customers 
and therefore were also less likely to 
be associated with job displacement 
in the U.S. 

We make three separate contribu-
tions toward understanding how off-
shoring affects domestic IT workers: 
quantify the extent to which offshor-
ing has affected IT workers; show a 
relationship between occupational 
attributes and offshoring-related dis-
placement, providing empirical sup-
port for emerging theories of how 
offshoring drives the global disaggre-
gation of skills2,4; and contribute to the 
literature demonstrating the growing 
importance of managerial and inter-
personal skills for IT workers.13,18,21 

Data and Methods 
Our primary data comes from two 

separate questionnaires, both ad-
ministered in the winter of 2007 by 
a third-party survey firm on behalf of 
one of the largest online recruitment 
and career-advancement companies 
in the U.S. The first focused on the 
offshoring practices of 3,016 individ-
ual firms, including whether and why 
they offshore and what types of work 
and to what countries they offshore. It 
was conducted within the U.S. among 
hiring managers and human-resource 
professionals employed full-time with 
significant involvement in hiring de-
cisions. Respondents were also asked 
about firm characteristics (such as 
size and industry). The second was ad-
ministered to individual workers and 
included questions relating to wheth-
er or not they had been displaced due 
to offshoring. It was also conducted 
within the U.S. (online) among 6,704 
employees employed full-time and in-
cluded both firm characteristics (such 
as size and industry) and employee 
characteristics (such as age, salary, 
and job level). 

To test the hypothesis that job 
characteristics affect the likelihood of 
a job being offshored, we used probit 
models in which the dependent vari-
able was 1 if an employee reported be-
ing displaced due to offshoring or an 
employer reported offshoring a par-
ticular type of work; we also included 
a measure of the importance of face-
to-face contact or physical presence as 
an independent variable. Rather than 
restrict our sample to IT workers, we 
included all occupations in the analy-
sis to increase the variation in the skill 
content of jobs, employing Huber-
White robust (clustered) standard er-
rors to account for possible random 
firm effects. 

We captured the importance of 
face-to-face contact and physical 
presence in our regression models 
by including index values computed 
in a study of the offshorability of vari-
ous occupations.4 Blinder’s index is 
derived by placing jobs into catego-
ries depending on whether they re-
quire face-to-face interaction (such as 
child-care workers) and whether they 
require workers (such as in the con-
struction trades) to be in a particular 
location. To maintain consistency 
with Blinder’s classification, we ad-
opted the term “personally delivered” 

Questions for employers 

Did your company outsource work  
to third-party vendors outside  
the country in 2007? 
  Yes      No      I don’t know

Did your company offshore job 
functions to its foreign affiliates in 2007?  
  Yes      No      I don’t know

What positions are your company  
most likely to offshore? 
  Sales Managers	
  HR Managers
  Sales Agents	
  Systems Administrators
  Financial Specialists
  Marketing Managers
  General Managers
  Hardware Engineers
  Software Engineers
  Computer-Support Specialists
  Computer-Systems Analysts
  Data-Entry Keyers
  Computer Programmers
  Network Analysts 
  Database Administrators
  Software Developers
  Graphic Designers
  Financial Service Providers
  Customer Service Providers

Where do you offshore?  
Check all that apply. 
[drop-down list of countries]•

•

Questions for workers 

Have you ever been displaced  
from your job because your position  
was offshored? 
  Yes      No 

In which state is your company 
headquartered?  
[drop-down list of U.S. states]•

•

In what industry do you currently work? 
[drop-down list of industries]•

•

What is your current profession?  
[drop-down list of professions]•

•

What is your job level? 
 � Professional/Technical Staff Member
 � Entry level/Administrative/Clerical
 � Director/Manager/

Supervisor/Team Leader
  Vice President
  Senior Management 

What is your current salary?  
[drop-down list of income ranges] •

•

You indicated you were  
displaced because your position  
was offshored. What happened as  
a result of your last displacement? 
 � I was placed somewhere else 

in the company
 � I was let go
 � Other

Key Survey Questions
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or “personal” services to describe 
tasks requiring customer contact or 
physical presence and “impersonal” 
services to describe tasks requir-
ing neither of these characteristics. 
Higher values on this scale indicate 
workers in these jobs provide fewer 
personally delivered services, or “im-
personal” jobs, and are therefore 
more likely to be offshored, all else 
being equal. 

We also included additional vari-
ables in our regressions to control 
for other factors that might affect 
an employee’s chances of being dis-
placed due to offshoring. Since the 
relative benefit of offshoring a par-
ticular worker depends on the cost of 
the worker to the firm, we included a 
measure of employee salary (coded 
in discrete levels). Employees are less 
likely to be displaced if they have more 
firm-specific knowledge or experience 
with the firm. Though we did not have 
access to organizational tenure vari-
ables, we included the individual’s 
job level, coded in discrete levels. We 
included demographic variables for 
employees, as there is evidence that 
such factors as race, age, and gender 
influence displacement; see Kletzer12 
for a review of the job-displacement 
literature. We also included the num-
ber of employees at the firm to control 
for firm size, as well as a dummy vari-
able indicating the industry in which 
the firm competes. Finally, in some re-
gressions, we also included the state 
within the U.S. in which the firm op-
erated in 2007, to control for regional 
differences. 

Results 
Here, we present some statistics and 
results from the regression analyses 
aiming to identify the factors that 
most affect offshoring: 

Employer statistics. Table 1 reports 
the overall incidence of offshoring 
by industry in 2007. The proportion 
of firms that reported offshoring any 
type of work across all industries was 
15.2%. However, within technology-
services and telecommunications in-
dustries, over 40% of firms in the sam-
ple reported offshoring some type of 
work. The hypothesis that offshoring 
is more common in high-tech indus-
tries than in other industries is signif-
icant at the p<.01 level (X2(1)=100.5). 

The figure here shows that offshoring 
rates vary significantly by job type. 
Over 30% of respondents reported off-
shoring computer programmers and 
software developers, but only about 
half of them, or 15.5%, reported off-
shoring systems analysts. About 24% 
of employers offshore customer ser-
vice, and a smaller percentage (less 
than 10%) offshore management, 
sales, and marketing functions. A 
test of the hypothesis that employers 
offshore IT workers more than other 
types of workers is significant at the 
.01 level (X2(1)=86.6). Among IT work-
ers, the hypothesis that computer 
programmers and software develop-
ers are offshored in greater numbers 

than systems analysts is significant at 
the p<.01 level (X2(1)=30.9). 

Employers also reported offshor-
ing different types of work for very 
different reasons. A test of the hypoth-
esis that occupation and reason for 
offshoring are independent is reject-
ed at the p<.01 level (X2(36)=165.2). 
Table 2 lists correlations between type 
of work and reasons for offshoring it. 
Jobs involving close interaction with 
the markets they serve (such as man-
agement and sales) are offshored for 
quality reasons in firms that are ex-
panding geographically, while firms 
appear to offshore computer and tech-
nical work and customer service jobs 
primarily for cost savings and for ac-

Table 1. Percent of surveyed firms by industry reporting offshoring work. 

Industry N
Offshore to 
Third Party

Offshore to  
Foreign Affiliate

Total  
Offshore

Technology services 126 35.7 29.4 42.1

Telecommunications 43 37.2 16.3 41.9

Insurance 93 32.3 11.8 32.3

Manufacturing 248 24.6 19 31.1

Engineering services 82 22 17.1 28.1

Banking and finance 135 22.2 11.1 24.4

Oil 18 16.7 11.1 22.2

Travel 33 21.2 9.1 21.2

Utilities 29 17.2 6.9 20.7

Communications 34 20.6 8.8 20.6

Advertising/Marketing 41 14.6 9.8 17.1

Research services 35 17.1 0 17.1

Transportation and warehousing 74 13.5 5.4 16.2

Administrative-support services 56 14.3 8.9 16.1

Automotive services 45 8.9 8.9 15.6

Wholesale trade 66 13.6 6.1 15.2

Arts, entertainment, recreation 61 11.5 1.6 13.1

Agricultural/Forestry/Fishing/Hunting 25 12 0 12.0

Printing trade 26 11.5 3.9 11.5

Other 383 9.7 4.4 11.2

Retail trade 269 10 3 11.2

Construction 86 7 4.7 9.3

Other services 110 7.3 6.4 9.1

Waste Management  
and Remediation Services 12 8.3 0 8.3

Legal services 52 5.8 0 5.8

Accommodation and Food services 125 4 2.4 5.6

Health Care and Social Assistance 381 5.2 0.8 5.5

Real estate 49 4.1 0 4.1

Religious/nonprofit 139 2.9 2.2 3.6

Education 123 3.3 0.8 3.3

Gas 13 0 0 0.0

Mining 4 0 0 0.0

Total 3,016 13.1 7.0 15.2
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cess to skills. These correlations sug-
gest that offshoring may have more 
direct implications for U.S.-based IT 
workers than the offshoring of other 
types of workers. 

Table 3 further supports these 
ideas, showing firms’ offshoring des-
tinations, as well as correlations be-
tween destination and type of work 
being offshored. A test of the hypoth-
esis that occupation and offshoring 
destination are independent is reject-
ed at the p<.01 level (X2(171)=298.2), 

indicating that particular types of 
work are best suited for offshoring 
only to certain countries. IT work and 
customer-service work appear to be 
much more concentrated than sales, 
management, and marketing, which 
are spread over a larger number of 
countries, consistent with the idea 
that jobs involving personally deliv-
ered services are often co-located with 
overseas customers. In 2007, India 
was the most popular destination for 
offshoring any type of work, especially 

for IT work, and, of all the countries 
in our sample, offshoring to India was 
most associated with cost savings. 

Employee statistics. The findings 
from the employer data are supported 
by statistics from the employee sur-
veys. Table 4 includes the percent-
age of workers, by occupation, who 
reported having been displaced due 
to offshoring. Across all occupations, 
slightly over 4% of workers reported 
having been displaced due to off-
shoring. Of occupations with at least 
100 observations in the sample, en-
gineers, machine operators, and IT 
workers reported the highest rates of 
offshoring-related job displacement. 
Of the five occupations with the high-
est displacement rates, all but ma-
chine operators were technology-re-
lated. Furthermore, unlike computer 
jobs, which in 2007 were increasing 
as a proportion of employment world-
wide, machine-operator employment 
numbers have declined, suffering 
from unusually high displacement 
rates.10,16 These results support the 
common perception that U.S. IT work-
ers have experienced higher rates of 
offshoring-related displacement than 
other U.S. workers. 

Table 5 compares the displacement 
frequency of IT workers with that of 
all other types of worker. At about 8%, 
IT workers were (in 2007) displaced 
at twice the rate of other workers. A 
test of the hypothesis that displace-
ment rates differ between IT workers 
and non-IT workers is significant at 
the .01 level (X2=27.5, p<.01). How-
ever, because these numbers reflect 
the percentage of workers who have 
ever been offshored, an 8% displace-
ment rate implies an annual average 
offshoring-related displacement rate 
of about 1% for IT workers, assuming 
that many U.S. firms began offshoring 
in 2000.a Surveys conducted 1995–
2005 suggest average IT staff turnover 
rates vary from 10% to 15%.7,8

Among occupations with at least 

a	 We computed this average estimate by divid-
ing the total displacement rate by the number 
of years since 2000, because many companies 
viewed the potential Y2K problem as a trigger. 
The annual displacement rate is slightly less 
if firms engaged in substantial offshoring be-
fore 2000. Due to data limitations, we can say 
little about how the actual displacement rate 
changed from year to year 2000–2007.

Percent of firms reporting offshoring by worker type. 
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Types of  
Worker Being 
Offshored 31.4% 31.4% 24.9% 15.5% 7.6% 6.1% 5.5%

N=458

Table 2. Correlations between occupation and reasons for offshoring. 

Reason for Offshoring

Occupation Cost Savings Skills Service Quality Expansion Other Total 

Computer  
programmer .24** .14** –.07 .03 –.09 144

Software developer .22** .14** –.01 .03   –.13** 144

Systems analyst .15** .13** .14** .03  –.11* 71

Customer service .14** .05 .11* .00 –.16** 114

Graphic designer .04 .08 .13** .08  –.11* 35

General manager .01 .15** .12** .26** –.09 28

Sales manager –.06 .10* .15** .29** –.08 35

Marketing personnel –.08 .17** .22** .27** –.11* 25

HR personnel .07 .03   .10* .15** –.12** 31

Total (Percentage) 63.7 26.9 13.9 19.1 18.7

Reported correlations are partial correlations between whether or not a firm offshores a position and 
the reasons it gives for firms report for offshoring, controlling for firm size and industry, * significant at 
the 5% level or greater, ** significant at the 1% level or greater. For all correlations, N=458. 
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100 observations, we observed the 
lowest displacement rates among 
sales representatives and nurses. 
Moreover, a number of occupations 
with fewer observations (such as real 
estate agents, veterinarians, profes-
sors, and religious professionals) re-
ported no offshoring displacement. 
In addition to providing a basis for 
comparison with the IT worker popu-
lation, data from these other occupa-
tions provides preliminary support 
for the hypothesis that employees 
providing more personally delivered 
services are generally less vulnerable 
to offshoring than occupations that 
need not be in a fixed location (such as 
computer programmers and machine 
operators). 

Occupational Attributes 
We provide a more rigorous test of the 
hypothesis that “impersonal” jobs are 
more vulnerable to offshoring. Table 
6 reports the results of some regres-
sions using the survey data. The unit 
of observation in the regression is 
the employer-occupation offshoring 
combination, taking a value of 1 if the 
employer reported offshoring a par-
ticular occupation and 0 otherwise. 
Column (1) lists the results from a re-
gression that includes all firms in our 
sample. Employers were less likely to 
offshore jobs in which employees pro-
vide personal services (t=9.0). The size 
of the employer (t=2.0) and the local 
cost of doing business (t=3.5) for the 
employer both significantly increase 
the probability that it will offshore a 
particular job. Column (2) lists results 
from a regression that includes only 
the firms that reported offshoring 
work in 2007. The extent to which an 
employee provided personal services 
is still significantly and negatively as-
sociated with whether a job was off-
shored (t=14.0). 

Column (3) adds a covariate in-
dicating whether the employer was 
exapanding geographically, along 
with an interaction term between 
geographic expansion and personal 
interaction. Our estimates indicate 
that firms expanding geographically 
are more likely to hire offshore work-
ers (t=6.71). Furthermore, geographic 
expansion moderates the type of work 
being offshored, consistent with the 
hypothesis that provision of personal 

services must be co-located with the 
markets being served. If a firm’s cus-
tomers are all located in the U.S., it 
will offshore jobs that do not require 

personal interaction with the U.S. 
market. However, if a firm does busi-
ness in overseas markets, employers 
will also hire offshore workers who 

Table 3. Correlations between offshoring destinations and type of work. 

Type of Position Offshored Reason

Country Total IT
Customer 

Service Marketing Management Sales Wages

India 236  .43**  .20** –.14** –.08 –.16**   .40**

China 128 –.08 –.03 .03 .05 .05   .11**

U.S. Territories 74 –.06 .02 .18** .16** .15**  –.30**

Mexico 63 –.08 .04 .10 .05 .05 .09*

Canada 47 .01 .11 .22** .26** .04  –.01

Other 43 –.06 –.04 –.07 .03 –.05  –.17**

Germany 41 .04 .05 .20** .26** .15** –.09*

Philippines 37 .08 .20** .01 .03 –.02 .09*

United Kingdom 37 –.06 .09 .22** .20** .24**  –.15**

France 33 –.01 .03 .23** .17** .10  –.13**

Brazil 31 –.00 .03 .27** .17** .18 –.09*

Argentina 23 .00 .06 .13** .07 .09 –.01

Italy 23 .02 .08 .29** .22** .19** –.07

Japan 23 .01 .07 .15** .18** .20** –.07

Australia 22 .02 .07 .26** .29** .20** –.06

Other Europe 21 –.03 .02 .00 .14** .07 –.07

Poland 20 .02 .11 .01 .05 .03  .05

Russia 20 .09 .07 .11** .05 –.01 –.04

Taiwan 20 .05 .00 .11**   .10* .08  .06

** p<.01 *p<.05, N=458. 
For “Type of Position,” we report correlations between whether a firm reports offshoring to a country 
and whether it reports offshoring a particular worker type. For “Reason,” we report correlations between 
whether a firm reports offshoring to a country and whether wages are a principal reason it did so.

Table 4. Worker displacement levels by occupation. 

Occupation N Displaced

Engineer 180 10.00%

Machine Operator/Assembly 359 8.36%

IT Manager/Network Administrator 123 8.13%

Other Computer or Internet Specialty 248 7.26%

Engineering Technician 222 6.76%

Other Health Care Professional 265 5.28%

Maintenance/Mechanic/Repair Worker 141 4.96%

Sales Representative, Retail 270 4.07%

Food Preparation/Service Worker 150 4.00%

Other Profession 1,431 3.91%

Administrative Assistant/Secretary 725 3.45%

Other Financial Professional 281 2.85%

Transportation/Equipment Operator 213 2.82%

Sales Representative, Other 334 2.40%

Nurse, Nurse Practitioner, or Physician’s Assistant 305 0.98%

Total 5,247 5.0%

aTable includes only occupations with at least 100 samples in the survey. 
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can provide personal services directly 
to overseas customers. 

Table 7 reports the results of the 
primary regressions from the survey 
data relating the personal services 
provided in one’s occupation to the 
likelihood of offshoring-related dis-
placement. The results in column 
(1) support the hypothesis that em-
ployment in a job providing personal 
services significantly decreases the 
likelihood of being displaced due to 
offshoring (t=3.5). Somewhat sur-
prisingly, the coefficient estimate on 
salary level is negative and signifi-
cant, suggesting workers with higher 
salaries are less likely to be offshored 
(t=2.09). However, in the absence of 
human-capital data, the salary term in 
the regressions also reflects human-
capital variables (such as education 
and experience). We therefore inter-
pret the negative coefficient as indi-
cating that, conditional on job level, 
workers with more human capital are 
less likely to be offshored, an effect 
that dominates any direct gains from 
offshoring more expensive workers. 
The results also suggest that older 
workers (t=4.9), males (t=2.21), and 
workers in simpler jobs (t=2.15) re-
quiring less firm-specific capital are 
likely to be offshored. 

After including industry dummies 
in column (2), the coefficient esti-
mate on gender is no longer signifi-
cant, indicating our earlier estimate 
on gender may have reflected high off-
shoring intensity in such industries 
as IT with a higher fraction of men 
and low offshoring intensity in such 
industries as health care with a high-
er fraction of women. However, the 
estimates on the other coefficients 
remain significant. Dummy variables 
for state and race in column (3) do not 

significantly alter the coefficient esti-
mates on any other variable. 

Column (4) shows the marginal ef-
fects of the estimates from our baseline 
regression in column (1) where all vari-
ables are standardized so effect sizes 
are comparable. A one standard devia-
tion increase in our personal-services 
index measure decreases the probabil-
ity of offshoring-related displacement 
by about 1%, a 25% increase over the 
U.S. national base rate of 4% in 2007. 
The effect of a one standard deviation 
decrease in our personal-services in-
dex appears to be similar in magnitude 
to a one standard deviation increase in 
age, also increasing the likelihood of 
offshoring-related displacement by 
slightly over 1%. Older workers who do 
not provide personal services are thus 
particularly vulnerable to offshoring-
related displacement. 

The sample in column (5) is re-
stricted to IT workers. The measure 
on personal interaction is insignifi-
cant because there is little variation in 
this index within the IT workers in our 
surveyed population. Of the remain-

ing variables, only age is significant, 
suggesting that among IT workers, 
older workers are at the greatest risk 
of offshoring-related displacement 
(t=3.10). 

Table 8 explores how the level of 
personal interaction in a prior job af-
fects outcomes for workers after being 
displaced due to offshoring. Employ-
ees in occupations providing fewer 
personal services are more likely to be 
separated from their employers, while 
those providing more personal ser-
vices are more likely to be retained for 
other positions (t=2.0). This suggests 
that firms might retain and move 
workers with interpersonal or man-
agement skills not as easy to source 
globally. Column (2) shows how much 
change in the personal-delivery mea-
sure affects retention. A one standard 
deviation increase in the personal-
skills index increases the chance of 
being retained by a firm by about 6%. 

Discussion
Although about 15% of firms in the 
U.S. offshored in 2007, firms in high-

Table 5. Offshoring-related displacement 
rates for IT and non-IT workers. 

Non-IT Workers Displaced

Not Displaced 5,704 712

Displaced 227 61

3.8% 7.9%

A chi-squared test of the hypothesis of equality 
between displacement averages is rejected at 
the p<.01 level X2(1)=27.5, p<.01. 

Table 6. Probit analysis, employer offshoring. 

All Employers
Only Employers 
That Offshore

Only Employers 
That Offshore

Probit 
Estimates

Probit 
Estimates

Probit 
Estimates

Employer offshores job type (1) (2) (3)

Impersonala .009 .014 .019

(.001)** (.001)** (.002)**

Number of Employees .002 .006 .006

(.001)** (.002)** (.002)**

Local Cost of Doing Business .007 –.001 –.001

(.002)** (.002) (.002)

Geographic Expansion 1.55

(.231)**

Geographic Expansion * Impersonal –.015

(.003)**

Controls Industry Industry Industry

Pseudo-R2 .11 .07 .09

N 26,568 4,041 4,041

Huber-White standard errors are clustered on firm and shown in parentheses. ** p<.01

a � Composite skill index taken from Blinder.4  Higher values indicate that less face-to-face contact or 
physical presence are needed for job.

Column (1) is a probit regression of employer and job characteristics against the likelihood the employer 
offshores a particular type of job. 
Column (2) is a probit regression of employer and job characteristics against the likelihood the employer 
offshores a particular type of job, only for employers are offshoring. 
Column (3) is similar to Column (2) but includes variables related to employer expansion plans. 
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tech industries offshored at rates 
higher than 40%, and IT work was 
the most commonly offshored type 
of work. IT workers in the U.S. have 
experienced offshoring-related dis-
placement at a rate of 8%, more than 
double the percentage in other occu-
pations. Firms offshore for a number 
of reasons, but IT workers appear to 
be offshored primarily for cost or ac-
cess to skills. Therefore, compared 
to sales workers offshored to provide 
customer contact to overseas mar-
kets, the offshoring of IT workers 
should lead to greater displacement 
of U.S.-based IT workers. Our results 
also provide empirical support for the 
hypothesis proposed in earlier work4 

that employees in jobs requiring face-
to-face contact or physical presence in 
a fixed location are less likely to be off-
shored. This suggests that IT workers 
are especially vulnerable to offshoring 
because IT jobs generally require less 
customer contact or interaction with 
fixed physical assets. 

Our estimates imply an average dis-
placement rate of about 1% per year 

for U.S.-based IT workers. However, as 
offshoring grows more popular, our 
findings, which suggest that workers 
who do not provide personal services 
are being displaced at a higher rate, 
are consistent with emerging work 
providing evidence for a potentially 
significant long-term shift in the rela-
tive demand for skills within the IT 
labor market.23 These results suggest 
that technical occupations reliant on 
skills that can be delivered with rela-
tively little face-to-face contact are 
more easily offshored. Other schol-
ars have noted that interpersonal or 
managerial skills are increasingly 
valuable for IT workers,13,17 so our 
findings suggest that offshoring will 
continue to drive a secular increase in 
the direction of this trend. IT workers 
concerned about offshoring-related 
displacement may find more robust 
career paths in IT professions that re-
quire personal delivery. 

These results also have policy im-
plications. First, the relatively low 
level of offshoring suggests any pol-
icy prescription for addressing the 

adverse consequences of offshoring 
should be concerned with the po-
tential growth of offshoring rather 
than the existing level of offshoring-
related displacement. Annual rates 
of offshoring-related displacement 
in the survey were on the order of 
10% of aggregate IT-worker turnover. 
While unclear at what level offshoring 
shifts from a trend affecting mostly 
individual workers to a concern for all 
workers in an occupation, the trends 
should be measured and monitored. 

Proposed policy interventions at-
tempting to reduce the adverse ef-
fects of worker displacement (such 
as worker retraining and government 
compensation to offset wage losses 
associated with moving to new in-
dustries) could focus on specific oc-
cupations. Furthermore, training 
programs could focus on the move-
ment of displaced workers toward 
work that combines existing skills 
with those that involve elements of 
personal delivery. Private or public 
educational institutions can poten-
tially adjust their curricula to address 

Table 7. Probit analysis, worker displacement. 

All 
Workers

All 
Workers

All 
Workers

All 
Workers

IT Workers  
Only

Probit 
Estimates

Probit 
Estimates

Probit 
Estimates

Marginal  
Effects

Probit 
Estimates

Probit Displacement  
from Offshoring (1) (2) (3) (4) (5)

Impersonala .007 .004 .004 .011 .000

     (.002)**    (.002)*     (.002)**      (.002)** (.004)

Job Level –.103 –.095 –.092 –.006 –.231

   (.048)*     (.049)*     (.050)*      (.003)** (.172)

Salary –.048 –.059 –.056 –.130 –.021

   (.023)*    (.024)**     (.025)*      (.059)** (.058)

Male? .137 .066 .070 .006 –.138

   (.062)*  (.065)  (.067)      (.003)** (.183)

Age .197 .194 .195 .014 .319

     (.040)**    (.041)**     (.043)**      (.003)**    (.103)**

Number of Employees –.001 –.001 –.000 –.002 .003

 (.001)  (.001)  (.001) (.003) (.003)

Controls Industry Industry  
State Race

Pseudo-R2 .03 .05 .06 .06 .04

N 5,790 5,790 5,790 5,471 672

Standard errors are in parentheses, **p<.01 *p<.05

a � Composite skill index from Blinder.4 Higher values indicate less face-to-face contact or physical 
presence needed for job.

Table 8. Probit analysis of outcomes for 
all displaced workers. 

Separated  
from Firm

Probit 
Estimates

Marginal 
Effects

(1) (2)

Impersonala .012 .060

    (.006)**      (.029)**

Job Level -.180 -.038

(.180) (.038)

Salary .097 .863

(.087) (.772)

Male -.357 -.050

(.217) (.030)

Age -.193 -.044

(.145) (.032)

Controls Industry Industry

Pseudo-R2 .09 .09

N 222 222

Standard errors in parentheses. ** p<.01

a � Composite skill index taken from Blinder.4 
Higher values indicate less face-to-face 
contact or physical presence needed for job.

N=222.57 employees retained by their 
employers after job displacement.
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this emerging need. Our findings are 
consistent with broader calls from 
education scholars who have advo-
cated (in response to recent waves of 
technological change) emphasizing 
“softer” skills (such as complex com-
munication)14 in the U.S. educational 
system; for example, educators could 
interweave existing material in the 
IT curriculum with projects that pro-
mote teamwork, negotiation, and pre-
sentation skills. 

In the future, this area of research 
would benefit from improved offshor-
ing data, including more fine-grain 
measures of the task content of in-
dividual jobs. Data at the task level 
would allow researchers to test more 
nuanced models of which attributes 
make a job vulnerable to offshoring 
(such as those considering the modu-
larity, codifiability, or information in-
tensity of a worker’s task set). These 
tests would also provide insight into 
how jobs and educational programs 
can be designed so U.S.-based work-
ers maximize the value they provide 
to the global economy. Furthermore, 
although our survey data was unique 
because it allowed us to capture fine-
grain outcomes, a limitation of the 
data was its reliance on self-reported 
responses from employees and hir-
ing managers that might be subject to 
bias. Evidence from other data sourc-
es could therefore be useful in validat-
ing these results. 

Finally, although our study focused 
on job displacement, offshoring may 
also affect workers through reduced 
wages. A more comprehensive under-
standing of the full effects of offshor-
ing on IT workers and the demand for 
particular skills could therefore be 
provided through analyses of job dis-
placement and wage effects. 
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Peer-to-peer (P2P)  computing  has attracted 
significant interest in recent years, originally sparked 
by the release of three influential systems in 1999: 
the Napster music-sharing system, the Freenet 
anonymous data store, and the SETI@home volunteer-
based scientific computing projects. Napster, for 
instance, allowed its users to download music 
directly from each other’s computers via the Internet. 
Because the bandwidth-intensive music downloads 
occurred directly between users’ computers, Napster 
avoided significant operating costs and was able to 
offer its service to millions of users for free. Though 
unresolved legal issues ultimately sealed Napster’s 
fate, the idea of cooperative resource sharing among 
peers found its way into many other applications.

More than a decade later, P2P technology has gone 
far beyond music sharing, anonymous data storage, 
or scientific computing; it now enjoys significant 
research attention and increasingly widespread use 
in open software communities and industry alike. 
Scientists, companies, and open-software 

organizations use BitTorrent to distrib-
ute bulk data such as software updates, 
data sets, and media files to many 
nodes;5 commercial P2P software al-
lows enterprises to distribute news 
and events to their employees and cus-
tomers;29 millions of people use Skype 
to make video and phone calls;1 and 
hundreds of TV channels are available 
using live streaming applications such 
as PPLive,17 CoolStreaming,38 and the 
BBC’s iPlayer.4

The term P2P has been defined in 
different ways, so we should clarify 
what exactly we mean by a P2P system. 
For the purposes of this article, a P2P 
system is a distributed system with the 
following properties:

High degree of decentralization. 
The peers implement both client and 
server functionality and most of the 
system’s state and tasks are dynami-
cally allocated among the peers. There 
are few if any dedicated nodes with 
centralized state. As a result, the bulk 
of the computation, bandwidth, and 
storage needed to operate the system 
are contributed by participating nodes.

Self-organization. Once a node is 
introduced into the system (typically 
by providing it with the IP address of a 
participating node and any necessary 

Peer-to-Peer 
Systems

doi:10.1145/1831407.1831427

Within a decade, P2P has proven to be  
a technology that enables innovative new 
services and is used by millions of people 
every day. 

by Rodrigo Rodrigues and Peter Druschel

 key insights
 � �P2P leverages the computing resources 

of cooperating users to achieve 
scalability and organic growth, thus 
lowering the deployment barrier for 
innovative new services.

 � �Originally invented for music/data 
sharing and volunteer computing, 
P2P systems now enjoy widespread 
commercial and non-commercial use 
in content distribution, IPTV, and IP 
telephony.

 � �The strength of P2P—its independence 
of dedicated infrastructure and 
centralized control—is also its 
weakness, as it presents new technical, 
commercial, and legal challenges.

 � �P2P technology may turn out to be most 
valuable as a low-cost deployment 
vector for experimental, innovative 
services; those services that prove 
to be commercially viable can be 
subsequently combined with centralized, 
infrastructure-based components. Ill
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key material), little or no manual con-
figuration is needed to maintain the 
system.

Multiple administrative domains. 
The participating nodes are not owned 
and controlled by a single organiza-
tion. In general, each node is owned 
and operated by an independent indi-
vidual who voluntarily joins the system.

P2P systems have several distinctive 
characteristics that make them inter-
esting:

Low barrier to deployment. Be-
cause P2P systems require little or no 
dedicated infrastructure, the upfront 
investment needed to deploy a P2P ser-
vice tends to be low when compared to 
client-server systems.

Organic growth. Because the re-
sources are contributed by partici-
pating nodes, a P2P system can grow 
almost arbitrarily without requiring 
a “fork-lift upgrade” of existing infra-
structure, for example, the replace-
ment of a server with more powerful 
hardware.

Resilience to faults and attacks. P2P 
systems tend to be resilient to faults 
because there are few if any nodes that 
are critical to the system’s operation. 
To attack or shut down a P2P system, 
an attacker must target a large propor-
tion of the nodes simultaneously.

Abundance and diversity of re-
sources. Popular P2P systems have 
an abundance of resources that few 
organizations would be able to afford 
individually. The resources tend to be 
diverse in terms of their hardware and 
software architecture, network attach-
ment, power supply, geographic loca-
tion and jurisdiction. This diversity re-
duces their vulnerability to correlated 
failure, attack, and even censorship.

As with other technologies (for ex-
ample, cryptography), the properties of 
P2P systems lend themselves to desir-
able and undesirable use. For instance, 
P2P systems’ resilience may help citi-
zens avoid censorship by a totalitar-
ian regime; at the same time, it can be 
abused to try and hide criminal activity 
from law enforcement agencies. The 
scalability of a P2P system can be used 
to disseminate a critical software up-
date efficiently at a planetary scale, but 
can also be used to facilitate the illegal 
distribution of copyrighted content.

Despite having acquired a negative 
reputation for some of its initial pur-

poses, P2P technologies are increas-
ingly being used for legal applications 
with enormous business potential, and 
there is consensus about their ability to 
lower the barrier for the introduction of 
innovative technologies. Nevertheless, 
P2P technology faces many challenges. 
The decentralized nature of P2P sys-
tems raises concerns about manage-
ability, security, and law enforcement. 
Moreover, P2P applications are affect-
ing the traffic experienced by Internet 
service providers (ISPs) and threaten to 
disrupt the current Internet econom-
ics. In this article, we briefly sketch im-
portant highlights of the technology, 
its applications, and the challenges it 
faces.

Applications
Here, we discuss some of the most suc-
cessful P2P systems and also mention 
promising P2P systems that have not 
yet received as much attention. 

Sharing and distributing files. Pres-
ently, the most popular P2P applica-
tions are file sharing (for example, 
eDonkey) and bulk data distribution 
(for example, BitTorrent). 

Both types of systems can be viewed 
as successors of Napster. In Napster, 
users shared a subset of their disk 
files with other participants, who were 
able to search for keywords in the file 
names. Users would then download 
any of the files in the query results di-
rectly from the peer that shared it.

Much of the content shared by Nap-
ster users was music, which led to copy-
right infringement lawsuits. Napster 
was found guilty and had to shut down 
its services. Simultaneously, a series of 
similar P2P systems appeared, most 
notably Gnutella and FastTrack (better 
known by one of its client applications, 
Kazaa). Gnutella, unlike Napster, has 
no centralized components and is not 
operated by any single entity (perhaps 
in part to make it harder to prosecute).

The desire to reduce the download 
time for very large files lead to the de-
sign of BitTorrent,10 which enables a 
large set of users to download bulk data 
quickly and efficiently. The system uses 
spare upload bandwidth of concurrent 
downloaders and peers who already 
have the complete file (either because 
they are data sources or have finished 
the download) to assist other down-
loaders in the system. Unlike file-shar-

ing applications, BitTorrent and other 
P2P content distribution networks do 
not include a search component, and 
users downloading different content 
are unaware of each other, since they 
form separate networks. The protocol 
is widely used for disseminating data, 
software, or media content.

Streaming media. An increasingly 
popular P2P application is streaming 
media distribution and IPTV (deliver-
ing digital television service over the 
Internet). As in file sharing, the idea is 
to leverage the bandwidth of partici-
pating clients to avoid the bandwidth 
costs of server-based solutions.

Streaming media distribution has 
stricter timing requirements than 
downloading bulk data because data 
must be delivered before the playout 
deadline to be useful.

Example systems include academic 
efforts with widespread adoption such 
as PPLive17 and CoolStreaming,38 and 
commercial products such as BBC’s 
iPlayer4 and Skinkers LiveStation.29

Telephony. Another major use of 
P2P technology on the Internet is for 
making audio and video calls, popular-
ized by the Skype application. Skype 
exploits the resources of participating 
nodes to provide seamless audiovisual 
connectivity to its users, regardless 
of their current location or type of In-
ternet connection. Peers assist those 
without publicly routable IP addresses 
to establish connections, thus working 
around connectivity problems due to 
firewalls and network address transla-
tion, without requiring a centralized 
infrastructure that handles and for-
wards calls. Skype reported 520 million 
registered users at the end of 2009.

Volunteer computing. A fourth im-
portant P2P application is volunteer 
computing. In these systems, users do-
nate their spare CPU cycles to scientific 
computations, usually in fields such as 
astrophysics, biology, or climatology. 
The first system of this type was SETI@
home. Volunteers install a screen saver 
that runs the P2P application when 
the user is not active. This application 
downloads blocks containing obser-
vational data collected at the Arecibo 
radio telescope from the SETI@home 
server. Then the application analyzes 
this data, searching for possible radio 
transmissions, and sends the results 
back to the server.
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The success of SETI@home and 
similar projects led to the develop-
ment of the BOINC platform,3 which 
has been used to develop many cycle-
sharing P2P systems in use today. At 
the time of this writing, BOINC has 
more than half a million active peers 
computing on average 5.42 petaFLOPS 
(floating-point operations per sec-
ond). For comparison, a modern PC 
performs on the order of a few tens of 
GFLOPS (about five orders of magni-
tude fewer), and the world’s fastest su-
percomputer as of August 2010 has a 
performance of about 1.76 petaFLOPS.

Other applications. Other types of 
P2P applications have seen significant 
use, at least temporarily, but have not 
reached the same levels of adoption as 
the systems we describe here. Among 
them are applications that leverage 
peer-contributed disk space to pro-
vide distributed storage. Freenet9 aims 
to combine distributed storage with 
content distribution, censorship resis-
tance, and anonymity. It is still active, 
but the properties of the system make 
it difficult to estimate its actual use. 
MojoNation36 was a subsequent project 
for building a reliable P2P storage sys-
tem, but it was shut down after proving 
unable to ensure the availability of data 
due to unstable membership and other 
problems.

P2P Web content distribution net-
works (CDNs) such as CoralCDN16 and 
CoDeeN35 were deployed as research 
prototypes but gained widespread use. 
In these systems, a set of cooperating 
users form a network of Web caches 
and name servers that replicates Web 
content as users access it, thereby re-
ducing the load on servers hosting pop-
ular content. During its peak usage, 
CoralCDN received up to 25 million 
hits per day from one million unique 
IP addresses.

Many more P2P systems have been 
designed and prototyped, but either 
were not deployed publicly or had 
small deployments. Examples include 
systems for distributed data monitor-
ing, management and mining,26,37 mas-
sively distributed query processing,19 
cooperative backup,11 bibliographic 
databases,33 serverless email,24 and ar-
chival storage.23

Technology developed for P2P ap-
plications has also been incorporated 
into other types of systems. For in-

stance, Dynamo,13 a storage substrate 
that Amazon uses internally for many 
of its services and applications, uses 
distributed hash tables (DHTs), which 
we will explain later. Akamai’s NetSes-
siona client uses P2P downloads to 
increase performance and reduce the 
cost of delivering streaming content. 
Even though these systems are con-
trolled by a single organization and 
thus do not strictly satisfy our defini-
tion of a P2P system, they are based on 
P2P technology. 

While P2P systems are a recent in-
vention, technical predecessors of P2P 
systems have existed for a long time. 
Early examples include the NNTP and 
SMTP news and mail distribution sys-
tems, and the Internet routing system. 
Like P2P systems, these are mostly 
decentralized systems that rely on re-
source contributions from their par-
ticipants. However, the peers in these 
systems are organizations and the pro-
tocols are not self-organizing.

While the earliest and most visible 
P2P systems were mainly file-sharing 
applications, current uses of P2P tech-
nology are much more diverse and 
include the distribution of data, soft-
ware, media content, as well as Inter-
net telephony and scientific comput-
ing. Moreover, an increasing number 
of commercial services and products 
rely on P2P technology.

How Do P2P Systems Work?
Here, we sketch some of the most im-
portant techniques that make P2P sys-
tems work. We discuss fundamental 
architectural choices like the degree of 
centralization and the structure of the 
overlay network. As you will see, one of 
the key challenges is to build an over-
lay with a routing capability that works 
well in the presence of a high mem-
bership turnover (usually referred to 
as churn), which is typical of deployed 
P2P system.28 We then present solu-
tions to specific problems addressed in 
the context of P2P systems: application 
state maintenance, application-level 
node coordination, and content distri-
bution.

Note that our intention in this pre-
sentation is to provide representative 

a	 See Akamai NetSession Interface Overview at 
http://www.akamai.com/html/misc/akamai_
client/netsession_interface.html/.

While the earliest 
and most visible 
P2P systems were 
mainly file-sharing 
applications, 
current uses of 
P2P technology are 
much more diverse 
and include the 
distribution of data, 
software, media 
content, as well as 
Internet telephony 
and scientific 
computing. 

http://www.akamai.com/html/misc/akamai_client/netsession_interface.html/
http://www.akamai.com/html/misc/akamai_client/netsession_interface.html/
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examples of the most interesting tech-
niques rather than try to be exhaustive 
or precise about a particular system or 
protocol.

Degree of centralization. We can 
broadly categorize the architecture of 
P2P systems according to the presence 
or absence of centralized components 
in the system design.

Partly centralized P2P systems have 
a dedicated controller node that main-
tains the set of participating nodes and 
controls the system. For instance, Nap-
ster had a Web site that maintained the 
membership and a content index; early 
versions of BitTorrent have a “tracker,” 
which is a node that keeps track of the 
set of nodes uploading and download-
ing the same content, and periodically 
provides nodes with a set of peers they 
can connect to;10 the BOINC platform 

for volunteer computing has a site that 
maintains the membership and as-
signs compute tasks;3 and Skype has 
a central site that provides log-in, ac-
count management, and payment.

Resource-intensive operations like 
transmitting content or computing ap-
plication functions do not involve the 
controller. Like general P2P systems, 
partly centralized P2P systems can 
provide organic growth and abundant 
resources. However, they do not neces-
sarily offer the same scalability and re-
silience because the controller forms a 
potential bottleneck and a single point 
of failure and attack. Partly centralized 
P2P systems are relatively simple and 
can be managed by a single organiza-
tion via the controller.

Decentralized P2P system. In a de-
centralized P2P system, there are no 

dedicated nodes that are critical for the 
operation of the system. Decentralized 
P2P systems have no inherent bottle-
necks and can potentially scale very 
well. Moreover, the lack of dedicated 
nodes makes them potentially resilient 
to failure, attack, and legal challenge.

In some decentralized P2P systems, 
nodes with plenty of resources, high 
availability and a publicly routable IP 
address act as supernodes. These su-
pernodes have additional responsi-
bilities, such as acting as a rendez-vous 
point for nodes behind firewalls, stor-
ing state or keeping an index of avail-
able content. Supernodes can increase 
the efficiency of a P2P system, but may 
also increase its vulnerability to node 
failure.

Overlay maintenance. P2P systems 
maintain an overlay network, which 
can be thought of as a directed graph G 
= (N,E), where N is the set of participat-
ing computers and E is a set of overlay 
links. A pair of nodes connected by a 
link in E is aware of each other’s IP ad-
dress and communicates directly via 
the Internet. Here, we discuss how dif-
ferent types of P2P systems maintain 
their overlay.

In partly centralized P2P systems, 
new nodes join the overlay by connect-
ing to the controller located at a well-
known domain name or IP address 
(which can be, for instance, hardcoded 
in the application). Thus, the overlay 
initially has a star-shaped topology 
with the controller at the center. Ad-
ditional overlay links may be formed 
dynamically among participants that 
have been introduced by the controller.

In decentralized overlays, newly 
joining nodes are expected to obtain, 
through an outside channel, the net-
work address (for example, IP address 
and port number) of some node that 
already participates in the system. The 
address of such a bootstrap node can 
be obtained, for instance, from a Web 
site. To join, the new node contacts the 
bootstrap node.

We distinguish between systems 
that maintain an unstructured or a 
structured overlay network.

Unstructured overlays. In an unstruc-
tured P2P system, there are no con-
straints on the links between different 
nodes, and therefore the overlay graph 
does not have any particular structure. 
In a typical unstructured P2P system, 

Figure 1. An example KBR implementation. 
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Figure 2. Locating objects in unstructured overlays.
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a newly joining node forms its initial 
links by repeatedly performing a ran-
dom walk through the overlay starting 
at the bootstrap node and requesting a 
link to the node where the walk termi-
nates. Nodes acquire additional links 
(for example, by performing more ran-
dom walks) whenever their degree falls 
below the desired minimum; they re-
fuse link requests when their current 
degree is at its maximum.

The minimum node degree is typi-
cally chosen to maintain connectiv-
ity in the overlay despite node failures 
and membership churn. A maximum 
degree is maintained to bound the 
overhead associated with maintaining 
overlay links.

Structured overlays. In a structured 
overlay, each node has a unique identi-
fier in a large numeric key space, for ex-
ample, the set of 160-bit integers. Iden-
tifiers are chosen in a way that makes 
them uniformly distributed in that 
space. The overlay graph has a specific 
structure; a node’s identifier deter-
mines its position within that structure 
and constrains its set of overlay links.

Keys are also used when assign-
ing responsibilities to nodes. The 
key space is divided among the par-
ticipating nodes, such that each key is 
mapped to exactly one of the current 
overlay nodes via a simple function. 
For instance, a key may be mapped to 
the node whose identifier is the key’s 
closest counterclockwise successor in 
the key space. In this technique the key 
space is considered to be circular (that 
is, the id zero succeeds the highest id 
value) to account for the fact that there 
may exist keys greater than all node 
identifiers.

The overlay graph structure is cho-
sen to enable efficient key-based rout-
ing. Key-based routing implements 
the primitive KBR(n0, k). Given a start-
ing node n0 and a key k, KBR produces 
a path, that is, a sequence of overlay 
nodes that ends in the node respon-
sible for k. As will become clear in sub-
sequent sections, KBR is a powerful 
primitive.

Many implementations of key-
based routing exist.18,27,32 In general, 
they strike a balance between the 
amount of routing state required at 
each node and the number of forward-
ing hops required to deliver a message. 
Typical implementations require an 

amount of per-node state and a num-
ber of forwarding hops that are both 
logarithmic in the size of the network.

Figure 1 illustrates an example of 
a key-based routing scheme. Node 
65a1fc invokes KBR with the key 
d46a1c, producing a route via a se-
quence of nodes whose ids share in-
creasingly longer prefixes with the key. 
Eventually the message reaches the 
node with id d462ba, which has suffi-
cient knowledge about its neighboring 
nodes to determine that it is respon-
sible for the target key. Though not 
depicted, the reply can be forwarded 
directly to the invoking node.

Summary. We have seen how the 
overlay network is formed and main-
tained in different types of P2P sys-
tems. In partly centralized P2P sys-
tems, the controller facilitates the 
overlay formation.

In other P2P systems, overlay main-
tenance is fully decentralized. Com-
pared to an unstructured overlay net-
work, a structured overlay network 
invests additional resources to main-
tain a specific graph structure. In re-
turn, structured overlays are able to 
perform key-based routing efficiently.

The choice between an unstructured 
and a structured overlay depends on 
how useful key-based routing is for the 
application, and also on the frequency 
of overlay membership events. As we 
will discuss, key-based routing can re-
liably and efficiently locate uniquely 
identified data items and maintain 
spanning trees among member nodes. 
However, maintaining a structured 
overlay in a high-churn environment 
has an associated cost, which may not 
be worth paying if the application does 
not require the functionality provided 
by key-based routing.

Some P2P systems use both struc-
tured and unstructured overlays. A 
recent (“trackerless”) version of Bit-
Torrent, for instance, uses key-based 
routing to choose tracker nodes, but 
builds an unstructured overlay to dis-
seminate the content.

Distributed state. Most P2P systems 
maintain some application-specific 
distributed state. Without loss of gen-
erality, we consider that state as a col-
lection of objects with unique keys. 
Maintaining this collection of state 
objects in a distributed manner, that 
is, providing mechanisms for object 

placement and locating objects, are 
key tasks in such systems.

Partly centralized systems. In partly 
centralized P2P systems, an object is 
typically stored at the node that insert-
ed the object, as well as any nodes that 
have subsequently downloaded the ob-
ject. The controller node maintains in-
formation about which objects exist in 
the system, their keys, names and oth-
er attributes, and which nodes are cur-
rently storing those objects. Queries 
for a given key, or a set of keywords that 
match an object’s name or attributes, 
are directed to the controller, which re-
sponds with a set of nodes from which 
the corresponding object(s) can be 
downloaded.

Unstructured systems. As in partly 
centralized systems, content is typi-
cally stored at the node that introduced 
the content to the system, and repli-
cated at other downloaders. To make 
it easier to find content, some systems 
place copies of (or pointers to) an in-
serted object on additional nodes, for 
instance, along a random walk path 
through the overlay.

To locate an object, a querying 
node typically floods a request mes-
sage through the overlay. The query 
can specify the desired object by its 
key, metadata, or keywords. A node 
that receives a query and has a match-
ing object (or a pointer to a matching 
object), responds to the querying node. 
Figure 2 illustrates this process. In this 
case, node I inserts an object into the 
system and holds its only copy, but in-
serts pointers to the object on all nodes 
along a random walk that ends in node 
R. When node S tries to locate the ob-
ject, it floods a query, first, to all nodes 
that are at a distance of one hop, then 
to all nodes two hops away. In the last 
step the query reaches node R, which 
returns the address of I.

Often, the scope of the flood (that is, 
the maximal number of hops from the 
querying nodes that a flood message 
is forwarded) is limited to trade recall 
(the probability that an object that ex-
ists in the system is found) for overhead 
(the number of messages required by 
the flood). An alternative to flooding is 
for the querying node to send a request 
message along a random walk through 
the overlay.

Gnutella was the first example of a 
decentralized, unstructured network 
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that used flooding to locate content in 
a file sharing system.

Structured overlays. In structured 
overlays, distributed state is main-
tained using a distributed hash table 
(DHT) abstraction. The DHT has the 
same put/get interface as a convention-
al hash table. Inserted key/value pairs 
are distributed among the participat-
ing nodes in the structured overlay us-
ing a simple placement function. For 
instance, that function can position 
replicas of the key/value pair on the set 
of r nodes whose identifiers succeed 
the key in the circular key space. Note 
that in our terminology, the values 
correspond to the state objects main-

tained by the system.
Given this replica placement policy, 

the DHT’s put and get operations can 
be implemented using the KBR primi-
tive in a straightforward manner. To 
insert (put) a key/value pair, we use 
the KBR primitive to determine the re-
sponsible node for the key k and store 
the pair on that node, which then prop-
agates it to the set of replicas for k. To 
look up (get) a value, we use the KBR 
primitive to fetch the value associated 
with a given key. The responsible node 
can respond to the fetch request or for-
ward it to one of the nodes in the rep-
lica set. Figure 3 shows an example put 
operation, where the value is initially 

pushed to the node responsible for key 
k, which is discovered using KBR, and 
this node pushes the value to its three 
immediate successors.

When a DHT experiences churn, 
pairs have to be moved between nodes 
as the mapping of keys to nodes chang-
es. To minimize the required network 
communication, large data values are 
typically not inserted directly into a 
DHT; instead, an indirection pointer is 
inserted under the value’s key, which 
points to the node that actually stores 
the value.

DHTs are used, for instance, in file 
sharing networks such as eDonkey, 
and also in some versions of BitTor-
rent.

Summary. Unstructured overlays 
tend to be very efficient at locating 
widely replicated objects, while KBR-
based techniques can reliably and ef-
ficiently locate any object that exists 
in the system, no matter how rare it 
may be. Put another way, unstructured 
overlays are good at finding “hay” while 
structured overlays are good at find-
ing “needles.” On the other hand, un-
structured networks support arbitrary 
keyword-based queries, while KBR-
based systems directly support only 
key-based queries.

Distributed coordination. Frequent-
ly, a group of nodes in a P2P application 
must coordinate their actions without 
centralized control. For instance, the 
set of nodes that replicate a particu-
lar object must inform each other of 
updates to the object. In another ex-
ample, a node that is interested in re-
ceiving a particular streaming content 
channel may wish to find, among the 
nodes that currently receive that chan-
nel, one that is nearby and has available 
upstream network bandwidth. We will 
look at two distinct approaches to this 
problem: epidemic techniques where 
information spreads virally through 
the system, and tree-based techniques 
where distribution trees are formed to 
spread the information.

We focus only on decentralized 
overlays, since coordination can be ac-
complished by the controller node in 
partly centralized systems.

Unstructured overlays. In unstruc-
tured overlays, coordination typically 
relies on epidemic techniques. In 
these protocols, information is spread 
through the overlay in a manner simi-

Figure 4. An example KBR tree.
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Figure 3. Inserting a value into a DHT.
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lar to the way an infection spreads in 
a population: the node that produced 
the information sends it to (some of) 
its overlay neighbors, who send it to 
(some of) their neighbors, and so on. 
This method of dissemination is very 
simple and robust. As in all epidemic 
techniques, there is a trade-off be-
tween the speed of information dis-
semination and overhead. Moreover, if 
a given piece of information is of inter-
est only to a subset of nodes and these 
nodes are widely dispersed within the 
overlay, then the information ends up 
being needlessly delivered to all nodes.

A more efficient way to coordinate 
the actions among a group of nodes 
is to form a spanning tree among the 
nodes. The spanning tree is embedded 
in the overlay graph, using a decentral-
ized algorithm for spanning tree for-
mation. This tree can then be used to 
multicast messages to all members, or 
to compute summaries (for example, 
sums, averages, minima, or maxima) of 
state variables within the group. How-
ever, this added coordination efficien-
cy must be balanced against the over-
head of maintaining the spanning tree 
in the unstructured overlay network.

Structured overlays. In structured 
overlays, spanning trees among any 
group of overlay nodes can be formed 
and maintained very efficiently us-
ing the KBR primitive, making trees 
the preferred method of coordination 
in these overlays. To join a spanning 
tree, a node uses KBR to route to a 
unique key associated with the group. 
The resulting union of the paths from 
all group members form a spanning 
tree rooted at the node responsible for 
the group’s key. This KBR tree is then 
used to aggregate and disseminate 
state associated with the group, and to 
implement multicast and anycast. Fig-
ure 4 illustrates an example KBR tree 
formed by the union of the KBR routes 
from nodes A, B, and C to the key cor-
responding to the group id. This tree is 
rooted at node G, which is the respon-
sible node for that key.

Because a join message terminates 
as soon as it intercepts the tree, group 
membership maintenance is decen-
tralized, that is, the arrival or departure 
of a node is noted only by the node’s 
parent and children in the tree. As a 
result, the technique scales to large 
numbers of groups, as well as large and 

highly dynamic groups.
Summary. The epidemic techniques 

typically used for coordination in un-
structured overlays are simple and ro-
bust to overlay churn, but they may not 
scale to large overlays or large numbers 
of groups, and information tends to 
propagate slowly. Spanning trees can 
increase the efficiency of coordination, 
but maintaining a spanning tree in an 
unstructured overlay adds costs.

The additional overhead for main-
taining a structured overlay is propor-
tional to the churn in the total overlay 
membership. Once that overhead is 
paid, KBR trees enable efficient and 
fast coordination among potentially 
numerous, large and dynamic sub-
groups within the overlay.

Content Distribution
Another common task in P2P sys-
tems is the distribution of bulk data 
or streaming content to a set of inter-
ested nodes. P2P techniques for con-
tent distribution can be categorized 
as tree-based (where fixed distribution 
trees are formed either with the aid of 
a structured overlay or embedded in 
an unstructured overlay), or swarming 
protocols (which have no notion of a 
fixed tree for routing content and usu-
ally form an unstructured overlay). Due 
to space constraints, we focus on the 
swarming protocols popularized by the 
BitTorrent protocol.10

In swarming protocols, the content 
is divided into a sequence of blocks, 
and each block is individually multi-
cast to all overlay nodes such that dif-
ferent blocks are disseminated along 
different paths.

The basic operation of a swarming 
protocol is simple: once every swarm-
ing interval (say, one second), overlay 
neighbors exchange information indi-
cating which content blocks they have 
available. (In streaming content dis-
tribution, only the most recently pub-
lished blocks are normally of interest.) 
Each node intersects the availability in-
formation received from its neighbors, 
and then requests a block it does not 
already have from one of the neighbors 
who has it.

It is important that blocks are well 
distributed among the peers, to ensure 
neighboring peers tend to have blocks 
they can swap and that blocks remain 
available when some peers leave the 

Unstructured 
overlays are good at 
finding “hay,” while 
structured overlays 
are good at finding 
“needles.” 
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system. To achieve such a distribu-
tion, the system can randomize both 
the choice of block to download and 
the choice of a neighbor from whom 
to request the block. In one possible 
strategy, a node chooses to download 
the rarest block among all blocks held 
by its overlay neighbors.10

The best known and original 
swarming protocol for bulk content 
distribution is BitTorrent.10 Examples 
of swarming protocols used for stream-
ing content include PPLive17 and the 
original version of CoolStreaming.38

Challenges
Much of the promise of P2P systems 
stems from their independence of ded-
icated infrastructure and centralized 
control. However, these very proper-
ties also expose P2P systems to some 
unique challenges not faced by other 
types of distributed systems. Moreover, 
given the popularity of P2P systems, 
they become natural targets for misuse 
or attack. Here, we give an overview of 
challenges and attacks that P2P sys-
tems may face, and corresponding de-
fense techniques. As you will see, some 
of the issues have been addressed to 
varying degrees, and others remain 
open questions.

Controlling membership. Most P2P 
systems have open or loosely controlled 
membership. This lack of strong user 
identities allows an attacker to popu-
late a P2P system with nodes under 
his control, by creating many distinct 
identities (such action was termed a 
Sybil attack15). Once he controls a large 
number of “virtual” peers, an attacker 
can defeat many kinds of defenses 
against node failure or misbehavior, 
for example, those that rely on replica-
tion or voting. For instance, an attacker 
who wishes to suppress the value asso-
ciated with some key k from a DHT can 
add virtual nodes to the system until 
he controls all of the nodes that store 
replicas of the value. These nodes can 
then deny the existence of that key/
value pair when a get operation for key 
k is issued.

Initial proposals to address Sybil 
attacks required proof of work (for ex-
ample, solving a cryptographic puzzle 
or downloading a large file) before a 
new node could join the overlay.15,34 

While these approaches limit the rate 
at which an attacker can obtain iden-

tities, they also make it more difficult 
for legitimate users to join. Moreover, 
an attacker with enough resources or 
access to a botnet can still mount Sybil 
attacks.

Another solution requires certified 
identities,7 where a trusted author-
ity vouches for the correspondence 
between a peer identity and the corre-
sponding real-world entity. The disad-
vantage of certified identities is that 
a trusted authority and the necessary 
registration process may be impracti-
cal or inappropriate in some applica-
tions.

Protecting data. Another aspect of 
P2P system robustness is the availabil-
ity, durability, integrity, and authentic-
ity of the data stored in the system or 
downloaded by a peer. Different types 
of P2P systems have devised different 
mechanisms to address these prob-
lems.

Integrity and authenticity. In the case 
of DHTs, data integrity is commonly 
verified using self-certifying named ob-
jects. DHTs take advantage of the fact 
that they have flexibility in the choice 
of the keys for values stored in the 
DHT. By setting key=hash(value) during 
the put operation, the downloader can 
verify the retrieved data is correct by 
applying the cryptographic hash func-
tion to the result of the get operation 
and comparing it to the original key. 
Systems that store mutable data and 
systems that allow users to choose ar-
bitrary names for inserted content can 
instead use cryptographic signatures 
to protect the integrity and authentic-
ity of the data. However, such systems 
require an infrastructure to manage 
the cryptographic keys.

Studies show that systems that do 
not protect the integrity of inserted 
data (including many file sharing sys-
tems) tend to be rife with mislabeled 
or corrupted content.8,22 One possible 
approach to counter the problem of 
content pollution is for peers to vote on 
the authenticity of data. For example, a 
voting system called Credence was de-
veloped by researchers and used by sev-
eral thousands of peers in the Gnutella 
file sharing network.34 However, the 
problem remains challenging given 
the possibility of Sybil attacks to defeat 
the voting.

Availability and durability. The next 
challenge is how to ensure the avail-

Much of the promise 
of P2P systems 
stems from their 
independence 
of dedicated 
infrastructure and 
centralized control. 
However, these 
very properties 
also expose P2P 
systems to some 
unique challenges 
not faced by other 
types of distributed 
systems.
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ability and durability of data stored in 
a P2P system. Even in the absence of 
attacks, ensuring availability can prove 
difficult due to churn. For a data object 
to be available, at least one node that 
stores a replica must be online at all 
times. To make sure an object remains 
available under churn, a system must 
constantly move replicas to live nodes, 
which can require significant network 
bandwidth. For this reason, a practical 
P2P storage system cannot simultane-
ously achieve all three goals of scalable 
storage, high availability, and resil-
ience to churn.6

Another challenge is that the long-
term membership of a P2P storage 
system (that is, the set of nodes that 
periodically come online) must be non-
decreasing to ensure the durability 
of stored data. Otherwise, the system 
may lose data permanently, since the 
storage space available among the re-
maining members may fall below that 
required to store all the data.

Incentives. Participants in a P2P 
system are expected to contribute re-
sources for the common good of all 
peers. However, users don’t necessarily 
have an incentive to contribute if they 
can access the service for free. Such us-
ers, called free riders, may wish to save 
their own disk space, bandwidth, and 
compute cycles, or they may prefer not 
to contribute any content in a file-shar-
ing system.

Free riding is reportedly widespread 
in many P2P systems. For instance, in 
2000 and 2001, studies of the Gnutella 
system found a large fraction of free 
riders.2,28 More recently, a study of a 
DHT used in the eMule file-sharing 
system found large clusters of peers 
(with more than 10,000 nodes) that 
had modified their client software to 
produce the same node identifier for 
all nodes, which means these nodes 
are not responsible for any keys.31

The presence of many free riders re-
duces the resources available to a P2P 
system, and can deteriorate the quality 
of the service the system is able to pro-
vide to its users. To address this issue, 
incentive schemes have been incorpo-
rated in the design of P2P systems.

BitTorrent uses a tit-for-tat strat-
egy, where to be able to download a file 
from a peer, a peer must upload anoth-
er part of the same file in return, or risk 
being disconnected from that peer.10 

This provides a strong incentive for us-
ers to share their upload bandwidth, 
since a peer that does not upload data 
will have poor download performance. 
A number of other incentive mecha-
nisms have been proposed, which all 
try to tie the quality of the service a peer 
receives to how much that peer con-
tributes.12,25

Managing P2P systems. Whether 
P2P systems are easier to manage than 
other distributed systems is an open 
question.

On the one hand, P2P systems adapt 
to a wide range of conditions with re-
spect to workload and resource avail-
ability, they automatically recover 
from most node failures, and partici-
pating users look after their hardware 
independently. As a result, the burden 
associated with the day-to-day opera-
tion of P2P systems appears to be low 
compared to server-based solutions, 
as evidenced by the fact that graduate 
students have been able to deploy and 
manage P2P systems that attract mil-
lions of users.16

On the other hand, there is evi-
dence that P2P systems can experience 
widespread disruptions that are diffi-
cult to manage. For instance, on Aug. 
16, 2007, the Skype overlay network 
collapsed and remained unavailable 
for several days. The problem was re-
portedly triggered by a Microsoft Win-
dows Update patch that caused many 
of the peers to reboot around the same 
time, causing a lack of resources that, 
combined with a software bug, pre-
vented the overlay from recovering.30 
This type of problem may indicate 
the lack of centralized control over 
available resources and participating 
nodes makes it difficult to manage 
systemwide disruptions when they 
occur. However, more research and 
long-term practical experience with 
deployed systems is needed to settle 
this question.

Some of the challenges P2P systems 
face (for example, data integrity and 
authenticity) are largely solved, while 
others (for example, membership con-
trol and incentives) have partial solu-
tions that are sufficient for important 
applications. However, some problems 
remain wide open (for example, data 
durability and management issues). 
Progress on these problems may be 
necessary to further expand the range 

of applications of P2P technology.

Peer-to-Peer and ISPs
Internet service providers have wit-
nessed the success of P2P applications 
with mixed feelings. On one hand, P2P 
is fueling demand for network band-
width. Indeed, P2P accounts for the 
majority of bytes transferred on the 
Internet.29 On the other hand, P2P traf-
fic patterns are challenging certain as-
sumptions that ISPs have made when 
engineering their networks and when 
pricing their services.

To understand this tension, we 
must consider the Internet’s structure 
and pricing. The Internet is a roughly 
hierarchical conglomeration of in-
dependent network providers. Local 
ISPs typically connect to regional ISPs, 
who in turn connect to (inter-)national 
backbone providers. ISPs at the same 
level of the hierarchy (so-called peer 
ISPs) may also exchange traffic directly. 
In particular, the backbone providers 
are fully interconnected.

Typically, peer ISPs do not charge 
each other for traffic they exchange di-
rectly, but customers pay for the bits 
they send to their providers. An excep-
tion is residential Internet connections 
that are usually offered at a flat rate by 
ISPs.

This pricing model originated at a 
time when client-server applications 
dominated the traffic in the Internet. 
Commercial server operators pay their 
ISPs for the bandwidth used, who in 
turn pay their respective providers. 
Since residential customers rarely op-
erate servers (in fact, their terms of 
use do not allow them to operate com-
mercial servers), it was reasonable to 
assume they generate little upstream 
traffic, keeping costs low for local ISPs 
and enabling them to offer flat-rate 
pricing.

With P2P content distribution ap-
plications, however, residential P2P 
nodes upload content to each other. 
Unless the P2P nodes happen to con-
nect to the same ISP or to two ISPs that 
peer directly with each other, the up-
loading node’s ISP must forward the 
data to its own provider. This incurs 
costs that the ISP cannot pass on to 
its flat-rate customers.20 As a result of 
this tension, some ISPs have started to 
traffic shape and even block BitTorrent 
traffic.14 Whether network operators 
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should be required to disclose such 
practices, and if they should be allowed 
at all to discriminate among different 
traffic types is the subject of an ongo-
ing debate.

Independent of the outcome of this 
debate, the tension will have to be re-
solved in a way that allows P2P applica-
tions to thrive while ensuring the prof-
itability of ISPs. A promising technical 
approach is to bias the peer selection 
in P2P applications toward nodes con-
nected to the same ISP or to ISPs that 
peer with each other.20 Another solu-
tion is for ISPs to change their pricing 
model.

A more fundamental tension is 
that some ISPs view many of the cur-
rently deployed P2P applications as 
competing with their own value-added 
services. For instance, ISPs that offer 
conventional telephone service may 
view P2P VoIP applications as competi-
tion, and cable ISP may view P2P IPTV 
applications as competing with their 
own IPTV services. In either case, such 
ISP’s market share in the more profit-
able value-added services is potentially 
diminished in favor of carrying more 
plain bits.

In the long term, however, ISPs will 
likely benefit, directly and indirectly, 
from the innovation and emergence of 
new services that P2P systems enable. 
Moreover, ISPs may find new revenue 
sources by offering infrastructure sup-
port for successful services that initial-
ly developed as P2P applications.

Conclusion
In this article, we have sketched the 
promise, technology, and challenges 
of P2P systems. As a disruptive technol-
ogy, P2P creates significant opportuni-
ties and challenges for the Internet, in-
dustry, and society. Arguably the most 
significant promise of P2P technology 
lies in its ability to significantly lower 
the barrier for innovation. But the great 
strength of P2P, its independence of 
dedicated infrastructure and central-
ized control, may also be its weakness, 
as it creates new challenges that must 
be dealt with through technical, com-
mercial, and legal means.

One possible outcome is that P2P 
will turn out to be especially valuable 
as a proving ground for new ideas and 
services, in addition to keeping its role 
as a platform for grassroots services 

that enable free speech and the unreg-
ulated exchange of information. Ser-
vices that turn out to be popular, legal, 
and commercially viable may then be 
transformed into more infrastructure-
based, commercial services. Here, 
ideas from P2P systems may be com-
bined with traditional, centralized ap-
proaches to build highly scalable and 
dependable systems.	
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The past decade has witnessed a renais-
sance in server virtualization, which is 
transforming enterprise computing by 
offering new capabilities and efficien-
cies. The following paper by Diwaker 
Gupta et al. presents a novel approach 
for significantly improving the efficien-
cy of virtualized servers. Their “Differ-
ence Engine” eliminates memory re-
dundancy by exploiting similarity both 
within and across virtual machines.

A virtual machine (VM) is a software 
abstraction that behaves like hardware. 
The classic definition by Popek and 
Goldberg is “an efficient, isolated du-
plicate of a real machine.” For example, 
a VM that presents the illusion of being 
a physical x86 server may run an un-
modified operating system designed 
for that platform, such as Windows or 
Linux. Neither the OS nor its users need 
be aware they are interacting with a VM 
instead of dedicated hardware.

Little more than a decade ago, vir-
tual machines were considered a fairly 
exotic mainframe technology. Today, 
VMs are pervasive in corporate data-
centers, and serve as the foundation 
for cloud-computing platforms. The 
commercial success of virtual ma-
chines has influenced the design of 
high-volume processor architectures, 
which now contain special-purpose 
hardware to accelerate virtualization.

Why have VMs proliferated so rap-
idly? One reason is that virtualization 
is an extremely versatile technology. 

There is a well-known adage: “All 
problems in computer science can 
be solved by another level of indirec-
tion.” The virtualization software layer, 
known as a hypervisor, provides this 
level of indirection, decoupling an 
OS and its applications from physical 
hardware. Eliminating the traditional 
“one machine, one OS” constraint 
opens up numerous possibilities.

Initially, the most compelling use of 
VMs was basic partitioning and server 
consolidation. In typical unvirtualized 
environments, individual servers were 

grossly underutilized. Virtualization al-
lowed many servers to be consolidated 
as VMs onto a single physical machine, 
resulting in significantly lower capi-
tal and management costs. This abil-
ity to “do more with less” fueled the 
rapid adoption of virtualization, even 
through economic downturns.

As virtualization became more main-
stream, innovations arose for manag-
ing distributed systems consisting of 
many virtualized servers. Since VMs 
are independent of the particular hard-
ware on which they execute, they are 
inherently portable. Live, running VMs 
can migrate between different physical 
servers, enabling zero-downtime infra-
structure maintenance, and supporting 
automated dynamic load balancing in 
production datacenters and clouds.

Additional virtualization features le-
verage indirection to offer capabilities 
beyond those of physical platforms. By 
interposing on VM operations trans-
parently, no changes are required to the 
software running within the VM. Exam-
ples include improving security by add-
ing checks that cannot be defeated by 
compromised software within the VM, 
and replicating VM state across physi-
cal machines for fault tolerance.

While core virtualization techniques 
are now reasonably mature, research-
ers continue to develop innovative ways 
to optimize VM efficiency and improve 
server utilization. Today, limited hard-
ware memory often constrains the de-
gree of server consolidation on modern 
machines equipped with many proces-
sor cores. The Difference Engine clev-
erly exploits the extra level of indirec-
tion in virtualized memory systems to 
reduce the memory footprint of VMs. 
Since higher consolidation ratios trans-
late directly into cost savings, such 
techniques are incredibly valuable.

Due to consolidation, many VMs on 
the same physical machine typically 
run similar OS instances and applica-
tions, or contain common data. The 
Difference Engine extends the hyper-

visor with several mechanisms that 
reclaim memory by eliminating redun-
dancy. First, when identical memory 
pages are found, they are deduplicated 
by retaining only a single instance that 
is shared copy-on-write, similar to the 
page-sharing feature that we intro-
duced in VMware’s hypervisor.

However, the Difference Engine goes 
much further, taking advantage of de-
duplication opportunities that are left 
on the table when sharing is restricted 
to completely-identical pages. By ob-
serving that many more pages are nearly 
identical, sharing at sub-page granular-
ity becomes very attractive. Candidates 
for sub-page sharing are identified by 
hashing small portions of pages, and 
patches are generated against reference 
pages to store near-duplicates com-
pactly. When pages are not sufficiently 
similar, a conventional compression 
algorithm is applied to wring out any re-
maining intra-page redundancy.

By combining these mechanisms 
to eliminate full-page, sub-page, and 
intra-page redundancy, the Difference 
Engine achieves impressive space sav-
ings—more than twice as much as full-
page sharing alone for VMs running 
disparate workloads. Of course, these 
savings aren’t free; compressed pages 
and sub-pages still incur page faults, 
and hashing, patching, and compres-
sion are compute-intensive operations.

But given current trends, it’s a safe 
bet that spare processor cycles will 
be easier to find than spare memory 
pages. The emergence of dense flash 
memory, phase-change memory, and 
other technologies will surely shift bot-
tlenecks and trade-offs, ensuring this 
research area remains interesting.

Given the long history and extensive 
literature associated with both virtual-
ization and memory management, it’s 
refreshing to find a paper that is both 
stimulating and practical. As virtual 
machines become increasingly ubiq-
uitous, I’m confident that similar ideas 
will be leveraged by both commercial 
and research hypervisors. I strongly 
urge you to get a glimpse of this future 
now by reading this paper.	

Carl Waldspurger (carl@vmware.com) is a Principal 
Engineer at VMware, Palo Alto, where he oversees core 
resource management and virtualization technologies.
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Abstract
Virtual machine monitors (VMMs) are a popular platform 
for Internet hosting centers and cloud-based compute ser-
vices. By multiplexing hardware resources among virtual 
machines (VMs) running commodity operating systems, 
VMMs decrease both the capital outlay and management 
overhead of hosting centers. Appropriate placement and 
migration policies can take advantage of statistical multi-
plexing to effectively utilize available processors. However, 
main memory is not amenable to such multiplexing and is 
often the primary bottleneck in achieving higher degrees of 
consolidation.

Previous efforts have shown that content-based page 
sharing provides modest decreases in the memory footprint 
of VMs running similar operating systems and applica-
tions. Our studies show that significant additional gains can 
be had by leveraging both subpage level sharing (through 
page patching) and incore memory compression. We build 
Difference Engine, an extension to the Xen VMM, to support 
each of these—in addition to standard copy-on-write full-
page sharing—and demonstrate substantial savings across 
VMs running disparate workloads (up to 65%). In head-to-
head memory-savings comparisons, Difference Engine 
outperforms VMware ESX server by a factor 1.6–2.5 for het-
erogeneous workloads. In all cases, the performance over-
head of Difference Engine is less than 7%.

1.  INTRODUCTION
Virtualization technology has improved dramatically over 
the past decade to become pervasive within the service-
delivery industry. Virtual machines are particularly attrac-
tive for server consolidation. Their strong resource and 
fault isolation guarantees allow multiplexing of hard-
ware among individual services, each with (potentially) 
distinct software configurations. Anecdotally, individ-
ual server machines often run at 5–10% CPU utilization. 
Operators’ reasons are manifold: because of the need to 
over-provision for peak levels of demand, because fault 
isolation mandates that individual services run on indi-
vidual machines, and because many services often run 
best on a particular operating system configuration. The 
promise of virtual machine technology for server con-
solidation is to run multiple services on a single physical 
machine while still allowing independent configuration 
and failure isolation.

While physical CPUs are frequently amenable to 
multiplexing, main memory is not. Many services run 
comfortably on a machine with 1GB of RAM; multiplexing 
10 VMs on that same host, however, would allocate each just 
100MB of RAM. Increasing a machine’s physical memory is 
often both difficult and expensive. Incremental upgrades 
in memory capacity are subject to both the availability of 
extra slots on the motherboard and the ability to support 
higher-capacity modules: such upgrades often involve 
replacing—as opposed to just adding—memory chips. 
Moreover, not only is high-density memory expensive, it 
also consumes significant power. Furthermore, as many-
core processors become the norm, the bottleneck for VM 
multiplexing will increasingly be the memory, not the 
CPU. Finally, both applications and operating systems are 
becoming more and more resource intensive over time. As 
a result, commodity operating systems require significant 
physical memory to avoid frequent paging.

Not surprisingly, researchers and commercial VM soft-
ware vendors have developed techniques to decrease the 
memory requirements for virtual machines. Notably, the 
VMware ESX server implements content-based page shar-
ing, which has been shown to reduce the memory footprint 
of multiple, homogeneous virtual machines by 10–40%.19 
We find that these values depend greatly on the operat-
ing system and configuration of the guest VMs. We are 
not aware of any previously published sharing figures for 
mixed-OS ESX deployments. Our evaluation indicates, how-
ever, that the benefits of ESX-style page sharing decrease as 
the heterogeneity of the guest VMs increases, due in large 
part to the fact that page sharing requires the candidate 
pages to be identical.

The premise of this work is that there are significant 
additional benefits from sharing at a subpage granularity, 
i.e., there are many pages that are nearly identical. We show 
that it is possible to efficiently find such similar pages and 
coalesce them into a much smaller memory footprint. 
Among the set of similar pages, we are able to store most as 
patches relative to a single baseline page. We also compress 

The original version of this paper is entitled “Differ-
ence Engine: Harnessing Memory Redundancy in Vir-
tual Machines” and was presented at USENIX OSDI, 
December 2008. An extended abstract entitled “Difference 
Engine” appeared in USENIX ;login; volume 34, number 2.



86    communications of the acm   |   october 2010  |   vol.  53  |   no.  10

research highlights 

 

memory system, this approach does not scale well since 
every time a page changes its fingerprints must be recom-
puted as well. Further, it is inefficient to find the maximal 
intersecting set from among a large number of candidate 
pages. Broder adapted Manber’s approach to the problem 
of identifying documents (in this case, Web pages) that are 
nearly identical using a combination of Rabin fingerprints 
and sampling based on minimum values under a set of ran-
dom permutations.6

While these techniques can be used to identify similar 
files, they do not address how to efficiently encode the dif-
ferences. Douglis and Iyengar explored using Rabin finger-
prints and delta encoding to compress similar files in the 
DERD system,10 but only considered whole files. Kulkarni 
et al.12 extended the DERD scheme to exploit similarity at the 
block level. Difference Engine also tries to exploit memory 
redundancy at several different granularities.

2.3. Memory compression
In-memory compression is not a new idea. Douglis et al.9 
implemented memory compression in the Sprite operat-
ing system with mixed results. In their experience, memory 
compression was sometimes beneficial, but at other times 
the performance overhead outweighed the memory savings. 
Subsequently, Wilson et al. argued Douglis’ mixed results 
were primarily due to slow hardware.20 They also devel-
oped new compression algorithms (leveraged by Difference 
Engine) that exploit the inherent structure present in vir-
tual memory, whereas earlier systems used general-purpose 
compression algorithms. Tuduce et al.17 implemented a 
compressed cache for Linux that adaptively manages the 
amount of physical memory devoted to compressed pages 
using a simple algorithm shown to be effective across a wide 
variety of workloads.

3. ARCHITECTURE
Difference Engine uses three distinct mechanisms that 
work together to realize the benefits of memory sharing, as 
shown in Figure 1. In this example, two VMs have allocated 
five pages total, each initially backed by distinct pages in 
machine memory (Figure 1a). For brevity, we only show how 
the mapping from guest physical memory to machine mem-
ory changes; the guest virtual to guest physical mapping 
remains unaffected. First, for identical pages across the 
VMs, we store a single copy and create references that point 
to the original. In Figure 1b, one page in VM-2 is identical to 
one in VM-1. For pages that are similar, but not identical, we 
store a patch against a reference page and discard the redun-
dant copy. In Figure 1c, the second page of VM-2 is stored as 
a patch to the second page of VM-1. Finally, for pages that 
are unique and infrequently accessed, we compress them in 
memory to save space. In Figure 1d, the remaining private 
page in VM-1 is compressed. The actual machine memory 
footprint is now less than three pages, down from five pages 
originally.

In all three cases, efficiency concerns require us to select 
candidate pages that are unlikely to be accessed in the near 
future. We employ a global clock that scans memory in the 
background, identifying pages that have not been recently 

those pages that are unlikely to be accessed in the near 
future; an efficient implementation of compression nicely 
complements page sharing and patching.

In this paper, we present Difference Engine, an extension 
to the Xen VMM5 that not only shares identical pages, but 
also supports subpage sharing and in-memory compres-
sion of infrequently accessed pages. Our results show that 
for a heterogeneous setup (different operating systems host-
ing different applications), Difference Engine can reduce 
memory usage by nearly 65%. In head-to-head comparisons 
against VMware’s ESX server running the same workloads, 
Difference Engine delivers a factor of 1.5 more memory sav-
ings for a homogeneous workload and a factor of 1.6–2.5 
more memory savings for heterogeneous workloads.

Critically, we demonstrate that these benefits can be 
obtained without negatively impacting application perfor-
mance: in our experiments across a variety of workloads, 
Difference Engine imposes less than 7% overhead. We fur-
ther show that Difference Engine can leverage improved 
memory efficiency to increase aggregate system perfor-
mance by utilizing the free memory to create additional vir-
tual machines in support of a target workload.

2. RELATED WORK
Difference Engine builds upon substantial previous work in 
page sharing, delta encoding, and memory compression. In 
each instance, we attempt to leverage existing approaches 
where appropriate.

2.1. Page sharing
Two common approaches in the literature for finding redun-
dant pages are content-based page sharing, exemplified by 
VMWare’s ESX server,19 and explicitly tracking page changes 
to build knowledge of identical pages, exemplified by “trans-
parent page sharing” in Disco.7 Transparent page sharing 
can be more efficient, but requires several modifications 
to the guest OS, in contrast to ESX server and Difference 
Engine which require no modifications.

To find sharing candidates, both Difference Engine and 
ESX hash contents of each page and use hash collisions to 
identify potential duplicates. Once shared, our system can 
manage page updates in a copy-on-write fashion, as in Disco 
and ESX server. We build upon earlier work on flash cloning18 
of VMs, which allows new VMs to be cloned from an exist-
ing VM in milliseconds; as the newly created VM writes to 
its memory, it is given private copies of the shared pages. 
An extension by Kloster et al. studied page sharing in Xen11 
and we build upon this experience, adding support for fully 
virtualized (HVM) guests, integrating the global clock, and 
improving the overall reliability and performance.

2.2. Delta encoding
Our initial investigations into page similarity were inspired 
by research in leveraging similarity across files in large file 
systems. In GLIMPSE,14 Manber proposed computing Rabin 
fingerprints over fixed-size blocks at multiple offsets in a 
file. Similar files will then share some fingerprints. Thus the 
maximum number of common fingerprints is a strong indi-
cator of similarity. However, in a dynamically evolving virtual 
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•	 Mixed-1: Windows XP SP1 hosting RUBiS8; Debian 3.1 
compiling the Linux kernel; Slackware 10.2 compiling 
Vim 7.0 followed by a run of the lmbench 
benchmark.15

•	 Mixed-2: Windows XP SP1 running Apache 2.2.8 host-
ing approximately 32,000 static Web pages crawled 
from Wikipedia, with httperf running on a separate 
machine requesting these pages; Debian 3.1 running 
the SysBench database benchmark1 using 10 threads to 
issue 100,000 requests; Slackware 10.2 running 
dbench2 with 10 clients for 6 min followed by a run of 
the IOZone benchmark.3

We designed these workloads to stress the memory-
saving mechanisms since opportunities for identical page 
sharing are reduced. In this first experiment, for a variety 
of configurations, we suspend the VMs after completing a 
benchmark, and consider a static snapshot of their mem-
ory to determine the number of pages required to store the 
images using various techniques. Table 1 shows the results 
of our analysis for the Mixed-1 workload.

The first column breaks down these 393,120 pages into 
three categories: 149,038 zero pages (i.e., the page con-
tains all zeros), 52,436 sharable pages (the page is not all 
zeros, and there exists at least one other identical page), 
and 191,646 unique pages (no other page in memory is 
exactly the same). The second column shows the number 
of pages required to store these three categories of pages 

used. In addition, reference pages for sharing or patch-
ing must be found quickly without introducing perfor-
mance overhead. Difference Engine uses full-page hashes 
and hash-based fingerprints to identify good candidates. 
Finally, we implement a demand paging mechanism that 
supplements main memory by writing VM pages to disk 
to support overcommitment, allowing the total memory 
required for all VMs to temporarily exceed the physical 
memory capacity.

3.1. Page sharing
Difference Engine’s implementation of content-based 
page sharing is similar to those in earlier systems. We walk 
through memory looking for identical pages. As we scan 
memory, we hash each page and index it based on its hash 
value. Identical pages hash to the same value and a collision 
indicates that a potential matching page has been found. 
We perform a byte-by-byte comparison to ensure that the 
pages are indeed identical before sharing them.

Upon identifying target pages for sharing, we reclaim 
one of the pages and update the virtual memory to point 
at the shared copy. Both mappings are marked read-only, 
so that writes to a shared page cause a page fault that will 
be trapped by the VMM. The VMM returns a private copy 
of the shared page to the faulting VM and updates the vir-
tual memory mappings appropriately. If no VM refers to a 
shared page, the VMM reclaims it and returns it to the free 
memory pool.

3.2. Patching
Traditionally, the goal of page sharing has been to elimi-
nate redundant copies of identical pages. Difference Engine 
considers further reducing the memory required to store 
similar pages by constructing patches that represent a page 
as the difference relative to a reference page. To motivate 
this design decision, we provide an initial study into the 
potential savings due to subpage sharing, both within and 
across virtual machines. First, we define the following two 
heterogeneous workloads, each involving three 512MB vir-
tual machines:

(a) Initial (b) Page sharing (c) Patching (d) Compression
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Figure 1. The three different memory conservation techniques employed by Difference Engine: page sharing, page patching, and 
compression. In this example, five physical pages are stored in less than three machine memory pages for a savings of roughly 50%.

Table 1. Effectiveness of page sharing across three 512MB VMs 
running Windows XP, Debian, and Slackware Linux using 4KB pages.

Pages Initial After Sharing After Patching

 U nique 191,646 191,646
  Sharable  

  (non-zero)
  52,436     3,577

  Zero 149,038             1

Total 393,120 195,224 88,422

 R eference   50,727 50,727
  Patchable 144,497 37,695
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little additional gain by hashing more blocks. Combining 
blocks does not help much, at least for these workloads. 
Furthermore, storing more candidates in each hash 
bucket also produces little gain. Hence, Difference Engine 
indexes a page by hashing 64-byte blocks at two fixed loca-
tions in the page (chosen at random) and using each hash 
value as a separate index to store the page in the hash 
table. To find a candidate similar page, the system com-
putes hashes at the same two locations, looks up those 
hash table entries, and chooses the better of the (at most) 
two pages found there.

3.3. Compression
Finally, for pages that are not significantly similar to other 
pages in memory, we consider compressing them to reduce 
the memory footprint. Compression is useful only if the 
compression ratio is reasonably high, and, like patching, 
if selected pages are accessed infrequently, otherwise the 
overhead of compression/decompression will outweigh 
the benefits. We identify candidate pages for compression 
using a global clock algorithm (Section 4.2), assuming that 
pages that have not been recently accessed are unlikely to be 
accessed in the near future.

Difference Engine supports multiple compression 
algorithms, currently LZO and WKdm as described in 
Wilson et al.20; we invalidate compressed pages in the VM 
and save them in a dynamically allocated storage area in 
machine memory. When a VM accesses a compressed page, 
Difference Engine decompresses the page and returns it to 
the VM uncompressed. It remains there until it is again con-
sidered for compression.

3.4. Paging machine memory
While Difference Engine will deliver some (typically high) 
level of memory savings, in the worst case all VMs might 
actually require all of their allocated memory. Setting aside 
sufficient physical memory to account for this case prevents 
using the memory saved by Difference Engine to create addi-
tional VMs. Not doing so, however, may result in temporarily 
overshooting the physical memory capacity of the machine 
and cause a system crash. We therefore require a demand-
paging mechanism to supplement main memory by writing 
pages out to disk in such cases.

A good candidate page for swapping out would likely not 
be accessed in the near future—the same requirement as 
compressed/patched pages. In fact, Difference Engine also 
considers compressed and patched pages as candidates 
for swapping out. Once the contents of the page are written 
to disk, the page can be reclaimed. When a VM accesses a 
swapped out page, Difference Engine fetches it from disk 
and copies the contents into a newly allocated page that is 
mapped appropriately in the VM’s memory.

Since disk I/O is involved, swapping in/out is an expen-
sive operation. Further, a swapped page is unavailable for 
sharing or as a reference page for patching. Therefore, swap-
ping should be an infrequent operation. Difference Engine 
implements the core mechanisms for paging, and leaves 
policy decisions—such as when and how much to swap—to 
user space tools.

using traditional page sharing. Each unique page must be 
preserved; however, we only need to store one copy of a set 
of identical pages. Hence, the 52,436 nonunique pages con-
tain only 3,577 distinct pages—implying there are roughly 
14 copies of every nonunique page. Furthermore, only one 
copy of the zero page is needed. In total, the 393,120 origi-
nal pages can be represented by 195,224 distinct pages—a 
50% savings.

The third column depicts the additional savings available 
if we consider subpage sharing. Using a cut-off of 2KB for the 
patch size (i.e., we do not create a patch if it will take up more 
than half a page), we identify 144,497 distinct pages eligible 
for patching. We store the 50,727 remaining pages as is and 
use them as reference pages for the patched pages. For each 
of the similar pages, we compute a patch using Xdelta.13 The 
average patch size is 1,070 bytes, allowing them to be stored 
in 37,695 4KB pages, saving 106,802 pages. In sum, subpage 
sharing requires only 88,422 pages to store the memory for 
all VMs instead of 195,224 for fullpage sharing or 393,120 
originally—an impressive 77% savings, or almost another 
50% over full-page sharing. We note that this was the least 
savings in our experiments; the savings from patching are 
even higher in most cases. Further, a significant amount of 
page sharing actually comes from zero pages and, therefore, 
depends on their availability. For instance, the same work-
load when executed on 256MB VMs yields far fewer zero 
pages. Alternative mechanisms to page sharing become 
even more important in such cases.

One of the principal complications with subpage shar-
ing is identifying candidate reference pages. Difference 
Engine uses a parameterized scheme to identify similar 
pages based upon the hashes of several 64-byte portions of 
each page. In particular, HashSimilarityDetector(k, s) hashes 
the contents of (k · s) 64-byte blocks at randomly cho-
sen locations on the page, and then groups these hashes 
together into k groups of s hashes each. We use each group 
as an index into a hash table. In other words, higher values 
of s capture local similarity while higher k values incorpo-
rate global similarity. Hence, HashSimilarityDetector(1,1) 
will choose one block on a page and index that block; 
pages are considered similar if that block of data matches. 
HashSimilarityDetector(1,2) combines the hashes from two 
different locations in the page into one index of length two. 
HashSimilarityDetector(2,1) instead indexes each page twice: 
once based on the contents of a first block, and again based 
on the contents of a second block. Pages that match at least 
one of the two blocks are chosen as candidates. For each 
scheme, the number of candidates, c, specifies how many 
different pages the hash table tracks for each signature. 
With one candidate, we only store the first page found with 
each signature; for larger values, we keep multiple pages in 
the hash table for each index. When trying to build a patch, 
Difference Engine computes a patch between all matching 
pages and chooses the best one.

We have evaluated this scheme for a variety of parameter 
settings on the two workloads described above. For both 
the workloads, HashSimilarityDetector(2,1) with one candi-
date does surprisingly well. There is a substantial gain due 
to hashing two distinct blocks in the page separately, but 
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of memory. Changing the heap size requires pervasive code 
changes in Xen, and will likely break the application binary 
interface (ABI) for some OSes. We therefore restrict the size 
of the page-sharing hash table so that it can hold entries 
for only 1/5 of physical memory. Hence Difference Engine 
processes memory in five passes, as described by Kloster  
et al.11 In our test configuration, this partitioning results in a 
1.76MB hash table. We divide the space of hash function val-
ues into five intervals, and only insert a page into the table if 
its hash value falls into the current interval. A complete cycle 
of five passes covering all the hash value intervals is required 
to identify all identical pages.

4.4. Page-similarity detection
The goal of the page-similarity component is to find pairs 
of pages with similar content, and, hence, make candidates 
for patching. We implement a simple strategy for find-
ing similar pages based on hashing short blocks within a 
page, as described in Section 3.2. Specifically, we use the 
HashSimilarityDetector(2,1) described there, which hashes 
short data blocks from two locations on each page, and 
indexes the page at each of those two locations in a separate 
page-similarity hash table, distinct from the page-sharing 
hash table described above. We use the 1-candidate variation, 
where at most one page is indexed for each block hash value.

Recall that the clock makes a complete scan through 
memory in five passes. The page-sharing hash table is 
cleared after each pass, since only pages within a pass are 
considered for sharing. However, two similar pages may 
appear in different passes if their hash values fall in different 
intervals. Since we want to only consider pages that have not 
been shared in a full cycle for patching, the page-similarity 
hash table is not cleared on every pass. This approach also 
increases the chances of finding better candidate pages to 
act as the reference for a patch.

4.5. Compression
Compression operates similarly to patching—in both cases 
the goal is to replace a page with a shorter representation 
of the same data. The primary difference is that patching 
makes use of a reference page, while a compressed repre-
sentation is self contained. There is one important interac-
tion between compression and patching: once we compress 
a page, the page can no longer be used as a reference for a 
later patched page. A naive implementation that compresses 
all nonidentical pages as it goes along will almost entirely 
prevent page patches from being built. Compression of a 
page should be postponed at least until all pages have been 
checked for similarity against it. A complete cycle of a page 
sharing scan will identify similar pages, so a sufficient con-
dition for compression is that no page should be compressed 
until a complete cycle of the page sharing code finishes.

4.6. Paging machine memory
Recall that any memory freed by Difference Engine cannot 
be used reliably without supplementing main memory with 
secondary storage. That is, when the total allocated memory 
of all VMs exceeds the system memory capacity, some pages 
will have to be swapped to disk.

4. IMPLEMENTATION
We have implemented Difference Engine on top of Xen 3.0.4 
in roughly 14,500 lines of code. An additional 20,000 lines 
come from ports of existing patching and compression algo-
rithms (Xdelta, LZO, WKdm) to run inside Xen.

4.1. Modifications to Xen
Xen and other platforms that support fully virtualized guests 
use a mechanism called “shadow page tables” to manage 
guest OS memory.19 The guest OS has its own copy of the page 
table that it manages believing that they are the hardware 
page tables, though in reality it is just a map from the guest’s 
virtual memory to its notion of physical memory (V2P map). 
In addition, Xen maintains a map from the guest’s notion of 
physical memory to the machine memory (P2M map). The 
shadow page table is a cache of the results of composing the 
V2P map with the P2M map, mapping guest virtual memory 
directly to machine memory.

Difference Engine relies on manipulating P2M maps 
and the shadow page tables to interpose on page accesses. 
For simplicity, we do not consider any pages mapped by 
Domain-0 (the privileged, control domain in Xen), which, 
among other things, avoids the potential for circular page 
faults.

4.2. Clock
Difference Engine implements a not-recently-used (NRU) 
policy16 to select candidate pages for sharing, patching, 
compression, and swapping out. On each invocation, 
the clock scans a portion of the memory, checking and 
clearing the referenced (R) and modified (M) bits on pages. 
Thus, pages with the R/M bits set must have been refer-
enced/modified since the last scan. We ensure that suc-
cessive scans of memory are separated by at least 4 s in 
the current implementation to give domains a chance to 
set the R/M bits on frequently accessed pages. In the pres-
ence of multiple VMs, the clock scans a small portion 
of each VM’s memory in turn for fairness. The external 
API exported by the clock is simple: return a list of pages 
(of some maximum size) that have not been accessed in 
some time.

Using the R/M bits, we can annotate each page with 
its “freshness.” By default, we employ the following pol-
icy. Recently modified pages are ignored; pages accessed 
recently but not modified are considered for sharing and to 
be reference pages for patching, but cannot be patched or 
compressed themselves; pages not recently accessed can be 
shared or patched; and pages not accessed for an extended 
period of time are eligible for everything, including com-
pression and swapping.

4.3. Page sharing
Difference Engine uses the SuperFastHash4 function to 
compute digests for each scanned page and inserts them 
along with the page-frame number into a hash table. Ideally, 
the hash table should be sized so that it can hold entries for 
all of physical memory. The hash table is allocated out of 
Xen’s heap space, which is quite limited in size: the code, 
data, and heap segments in Xen must all fit in a 12MB region 
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that compressing a page on our hardware is fast, requiring 
slightly less than 30 ms on average. Patching, on the other 
hand, is almost an order of magnitude slower: creating a 
patch (patch_page) takes over 300 ms. This time is primar-
ily due to the overhead of finding a good candidate base page 
and constructing the patch. Both decompressing a page and 
reconstructing a patched page are also fairly fast, taking 10 
and 18 ms respectively.

Swapping out takes approximately 50 ms. However, this 
does not include the time to actually write the page to disk. 
This is intentional: once the page contents have been cop-
ied to user space, they are immediately available for being 
swapped in; and the actual write to the disk might be delayed 
because of file system and OS buffering in Domain-0. 
Swapping in, on the other hand, is the most expensive opera-
tion, taking approximately 7 ms. There are a few caveats, 
however. First, swapping in is an asynchronous operation 
and might be affected by several factors, including process 
scheduling within Domain-0; it is not a tight bound. Second, 
swapping in might require reading the page from disk, and 
the seek time will depend on the size of the swap file, among 
other things.

5.2. Real-world applications
We now present the performance of Difference Engine on a 
variety of workloads. We seek to answer two questions. First, 
how effective are the memory-saving mechanisms at reduc-
ing memory usage for real-world applications? Second, what 
is the impact of those memory-sharing mechanisms on 
system performance? Since the degree of possible sharing 
depends on the software configuration, we consider several 
different cases of application mixes.

To put our numbers in perspective, we conduct head-to-
head comparisons with VMware ESX server for three differ-
ent workload mixes. We run ESX Server 3.0.1 build 32,039 on 
a Dell PowerEdge 1950 system. Note that even though this 
system has two 2.3-GHz Intel Xeon processors, our VMware 
license limits our usage to a single CPU. We therefore restrict 
Xen (and, hence, Difference Engine) to use a single CPU for 
fairness. We also ensure that the OS images used with ESX 
match those used with Xen, especially the file system and disk 
layout. Note that we are only concerned with the effectiveness 
of the memory sharing mechanisms—not in comparing the 
application performance across the two hypervisors. In an 
effort to compare the performance of Difference Engine to 
ESX in its most aggressive configuration, we configure both 
to scan 10,000 pages/s, the highest rate allowed by ESX.a

The Xen VMM does not perform any I/O (delegating all 
I/O to Domain-0) and is not aware of any devices. Thus, it 
is not possible to build swap support directly in the VMM. 
Further, since Difference Engine supports unmodified OSes, 
we cannot expect any support from the guest OS. Hence, we 
implement a single swap daemon (swapd) running as a user 
process in Domain-0 to manage swap space. For each VM in 
the system, swapd creates a separate thread to handle swap-
in requests.

To swap out a page, swapd makes a hypercall into 
Xen, where a victim page is chosen by invoking the global 
clock. If the victim is a compressed or patched page, we 
first reconstruct it. We pause the VM that owns the page 
and copy the contents of the page to a page in Domain-0’s 
address space (supplied by swapd). Next, we remove all 
entries pointing to the victim page in the P2M and M2P 
maps, and in the shadow page tables. We then mark the 
page as swapped out in the corresponding page table entry. 
Meanwhile, swapd writes the page contents to the swap 
file and inserts the corresponding byte offset in a hash 
table keyed by <Domain ID, guest page-frame number>. 
Finally, we free the page, return it to the domain heap, and 
reschedule the VM.

When a VM tries to access a swapped page, it incurs a 
page fault and traps into Xen. We pause the VM and allocate 
a fresh page to hold the swapped in data. We populate the 
P2M and M2P maps appropriately to accommodate the new 
page. Xen dispatches a swap-in request to swapd contain-
ing the domain ID and the faulting page-frame number. The 
handler thread for the faulting domain in swapd receives 
the request and fetches the location of the page in the swap 
file from the hash table. It then copies the page contents 
into the newly allocated page frame within Xen via another 
hypercall. At this point, swapd notifies Xen, and Xen restarts 
the VM at the faulting instruction.

5. EVALUATION
We first present micro-benchmarks to evaluate the cost of 
individual operations, the performance of the global clock 
and the behavior of each of the three mechanisms in iso-
lation. Next, we evaluate whole system performance: for a 
range of workloads, we measure memory savings and the 
impact on application performance. We present head-to-
head comparisons with the VMware ESX server. Finally, 
we demonstrate how our memory savings can be used to 
boost the aggregate system performance. Unless other-
wise mentioned, all experiments are run on dual-proces-
sor, dual-core 2.33-GHz Intel Xeon machines and the page 
size is 4KB.

5.1. Cost of individual operations
Before quantifying the memory savings provided by 
Difference Engine, we measure the overhead of various 
functions involved. Table 2 shows the overhead imposed by 
the major Difference Engine operations. As expected, col-
lapsing identical pages into a copy-on-write shared page 
(share_page) and recreating private copies (cow_break) 
are relatively cheap operations, taking approximately 6 and 
25 ms, respectively. Perhaps more surprising, however, is 

Table 2. CPU overhead of different functions.

Function Mean execution time (ms)

share_pages         6.2
cow_break      25.1
compress_page      29.7
uncompress       10.4
patch_page    338.1
unpatch       18.6
swap_out_page      48.9
swap_in_page 7151.6



 

Base Scenario—Homogeneous VMs: In our first set of 
benchmarks, we test the base scenario where all VMs on a 
machine run the same OS and applications. This scenario 
is common in cluster-based systems where several services 
are replicated to provide fault tolerance or load balancing. 
Our expectation is that significant memory savings are 
available and that most of the savings will come from page 
sharing.

On a machine running standard Xen, we start from 1 to 6 
VMs, each with 256MB of memory and running RUBiS8—an 
e-commerce application designed to evaluate application 
server performance—on Debian 3.1. We use the PHP imple-
mentation of RUBiS; each instance consists of a Web server 
(Apache) and a database server (MySQL). Two distinct client 
machines generate the workload, each running the standard 
RUBiS workload generator simulating 100 user sessions. 
The benchmark runs for roughly 20 min. The workload gen-
erator reports several metrics at the end of the benchmark, 
in particular the average response time and the total num-
ber of requests served.

We then run the same set of VMs with Difference Engine 
enabled. Both the total number of requests and the average 
response time remain unaffected while Difference Engine 
delivers 65%–75% memory savings. In this case, the bulk 
of memory savings comes from page sharing. Recall that 
Difference Engine tries to share as many pages as it can 
before considering pages for patching and compression, 
so sharing is expected to be the largest contributor in most 
cases, particularly in homogeneous workloads.

We next compare Difference Engine performance with 
the VMware ESX server. We set up four 512MB virtual 
machines running Debian 3.1. Each VM executes dbench2 
for 10 min followed by a stabilization period of 20 min. 
Figure 2 shows the amount of memory saved as a function 
of time. First, note that eventually both ESX and Difference 
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Engine reclaim roughly the same amount of memory (the 
graph for ESX plateaus beyond 1,200 s). However, while 
dbench is executing, Difference Engine delivers approxi-
mately 1.5 times the memory savings achieved by ESX. As 
before, the bulk of Difference Engine savings come from 
page sharing for the homogeneous workload case.
Heterogeneous OS and Applications: Given the increasing 
trend toward virtualization, both on the desktop and in the 
data center, we envision that a single physical machine will 
host significantly different types of operating systems and 
workloads. While smarter VM placement and scheduling 
will mitigate some of these differences, there will still be 
a diverse and heterogeneous mix of applications and envi-
ronments, underscoring the need for mechanisms other 
than page sharing. We now examine the utility of Difference 
Engine in such scenarios, and demonstrate that significant 
additional memory savings result from employing patching 
and compression in these settings.

Figures 3 and 4 show the memory savings as a function 
of time for the two heterogeneous workloads—Mixed-1 
and Mixed-2 described in Section 3.2. We make the follow-
ing observations. First, in steady state, Difference Engine 
delivers a factor of 1.6–2.5 more memory savings than ESX. 
For instance, for the Mixed-2 workload, Difference Engine 
could host the three VMs allocated 512MB of physical 
memory each in approximately 760MB of machine memory; 
ESX would require roughly 1,100MB of machine memory. 
The remaining, significant, savings come from patching 
and compression. And these savings come at a small cost. 
Table  3 summarizes the performance of the three bench-
marks in the Mixed-1 workload. The baseline configuration 
is regular Xen without Difference Engine. In all cases, per-
formance overhead of Difference Engine is within 7% of the 
baseline. For the same workload, we find that performance 
under ESX with aggressive page sharing is also within 5% of 
the ESX baseline with no page sharing.
Increasing Aggregate System Performance: Difference Engine 
goes to great lengths to reclaim memory in a system, but eventu-
ally this extra memory needs to actually get used in a productive 

80

100
DE Shared
DE Patched
DE Compressed

ESX aggressive

DE total

60

40

20

0
0 200 400 600 800

Time (s)

S
av

in
gs

 (%
)

1000 1200

Figure 2. Four identical VMs execute dbench. Both Difference Engine 
and ESX eventually yield similar savings, but DE extracts more 
savings while the benchmark is in progress.
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Figure 3. Memory savings for Mixed-1. Difference Engine saves up to 
45% more memory than ESX.

a  After initial publication of our results, we were informed by VMware 
that this version of ESX silently limits the effective page-sharing rate to a 
maximum of 450 pages/sec per vm regardless of the configured scan rate.
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deliver better aggregate performance. The remaining lines 
show the performance with up to three extra VMs. Clearly, 
Difference Engine enables higher aggregate performance 
compared to the baseline. However, beyond a certain point 
(two additional VMs in this case), the overhead of manag-
ing the extra VMs begins to offset the performance benefits: 
Difference Engine has to manage 4.5GB of memory on a sys-
tem with 2.8GB of RAM to support seven VMs. In each case, 
beyond 1,400 clients, the VM’s working set becomes large 
enough to invoke the paging mechanism: we observe between 
5,000 pages (for one extra VM) to around 20,000 pages (for 
three extra VMs) being swapped out, of which roughly a fourth 
get swapped back in.

6. CONCLUSION
One of the primary bottlenecks to higher degrees of virtual 
machine multiplexing is main memory. Earlier work shows 
that substantial memory savings are available from harvest-
ing identical pages across virtual machines when running 
homogeneous workloads. The premise of this work is that 
there are significant additional memory savings available 
from locating and patching similar pages and in-memory 
page compression. We present the design and evaluation 
of Difference Engine to demonstrate the potential memory 
savings available from leveraging a combination of whole 
page sharing, page patching, and compression. Our per-
formance evaluation shows that Difference Engine delivers 
an additional factor of 1.6–2.5 more memory savings than 
VMware ESX server for a variety of workloads, with minimal 
performance overhead. Difference Engine mechanisms 
might also be leveraged to improve single OS memory man-
agement; we leave such exploration to future work.
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Figure 5. Up to a limit, Difference Engine can help increase aggregate 
system performance by spreading the load across extra VMs.

manner. One can certainly use the saved memory to create more 
VMs, but does that increase the aggregate system performance?

To answer this question, we created four VMs with 650MB 
of RAM each on a physical machine with 2.8GB of free 
memory (excluding memory allocated to Domain-0). For the 
baseline (without Difference Engine), Xen allocates mem-
ory statically. Upon creating all the VMs, there is clearly not 
enough memory left to create another VM of the same con-
figuration. Each VM hosts a RUBiS instance. For this experi-
ment, we used the Java Servlets implementation of RUBiS. 
There are two distinct client machines per VM to act as work-
load generators.

The goal is to increase the load on the system to satu-
ration. The solid line in Figure 5 shows the total requests 
served for the baseline, with the total offered load marked 
on the X-axis. Beyond 960 clients, the total number of 
requests served plateaus at around 180,000 while the 
average response time (not shown) increases sharply. Upon 
investigation, we find that for higher loads all of the VMs 
have more than 95% memory utilization and some VMs actu-
ally start swapping to disk (within the guest OS). Using fewer 
VMs with more memory (e.g., 2 VMs with 1.2GB RAM each) 
did not improve the baseline performance for this workload.

Next, we repeat the same experiment with Difference 
Engine, except this time we utilize reclaimed memory to cre-
ate additional VMs. As a result, for each data point on the 
X-axis, the per VM load decreases, while the aggregate offered 
load remains the same. We expect that since each VM individ-
ually has lower load compared to the baseline, the system will 



 

Diwaker Gupta (diwaker@asterdata.
com), University of California, San Diego, 
Currently at Aster Data.

Sangmin Lee (sangmin@cs.utexas. edu), 
University of California, San Diego, 
Currently at UT Austin.

Michael Vrable (mvrable@cs.ucsd.edu), 
University of California, San Diego.

Stefan Savage (savage@cs.ucsd.edu), 
University of California, San Diego.

Alex C. Snoeren (snoeren@cs.ucsd.
edu), University of California,  
San Diego.

George Varghese (varghese@cs.ucsd.
edu), University of California, San Diego.

Geoffrey M. Voelker (voelker
@cs.ucsd.edu), University of California, 
San Diego.

Amin Vahdat (vahdat@cs.ucsd.edu), 
University of California, San Diego.

OCtober 2010  |   vol.  53  |   no.  10  |   communications of the acm     93

	 1.	 http://sysbench.sourceforge.net/.
	 2.	 http://samba.org/ftp/tridge/dbench/.
	 3.	 http://www.iozone.org/.
	 4.	 http://www.azillionmonkeys.com/qed/

hash.html.
	 5.	B arham, P., Dragovic, B., Fraser, K., 

Hand, S., Harris, T., Ho, A., Neugebauer, 
R., Pratt, I., Warfield, A. Xen and the 
art of virtualization. In Proceedings 
of the 19th ACM Symposium on 
Operating Systems Principles (2003).

	 6.	B roder, A.Z. Identifying and filtering 
near-duplicate documents. In 
Proceedings of the 11th Annual 
Symposium on Combinatorial Pattern 
Matching (2000).

	 7.	B ugnion, E., Devine, S., Rosenblum, M. 
Disco: Running commodity operating 
systems on scalable multiprocessors. 
In Proceedings of the 16th ACM 
Symposium on Operating System 
Principles (1997).

	 8.	C ecchet, E., Marguerite, J., 
Zwaenepoel, W. Performance and 
scalability of EJB applications. 
In Proceedings of the 17th ACM 
Conference on Object-oriented 
Programming, Systems, Languages, 
and Applications (2002).

	 9.	D ouglis, F. The compression cache: 
Using on-line compression to extend 
physical memory. In Proceedings 
of the USENIX Winter Technical 
Conference (1993).

	10.	D ouglis, F., Iyengar, A. Application-
specific delta-encoding via 
resemblance detection. In 
Proceedings of the USENIX Annual 
Technical Conference (2003).

	11.	 Kloster, J.F., Kristensen, J., Mejlholm, 
A. On the feasibility of memory 
sharing. Master’s thesis, Aalborg 
University (2006).

	12.	 Kulkarni, P., Douglis, F., Lavoie, J., 

with ESX setup and monitoring and to Emil Sit for provid-
ing insightful feedback on the paper. Finally, we would like 
to thank Michael Mitzenmacher for his assistance with 
min-wise hashing, our OSDI shepherd Fred Douglis for his 
insightful feedback and support, Rick Farrow at ;login; and 
the anonymous OSDI ’08 reviewers for their valuable com-
ments. This work was supported in part by NSF CSR-PDOS 
Grant No. CNS-0615392, the UCSD Center for Networked 
Systems (CNS), and UC Discovery Grant 07–10237. Vrable 
was supported in part by an NSF Graduate Research 
Fellowship.�

References

Tracey, J.M. Redundancy elimination 
within large collections of files. In 
Proceedings of the USENIX Annual 
Technical Conference (2004).

	13.	 MacDonald, J. xdelta. http://www.
xdelta.org/.

	14.	 Manber, U., Wu, S. GLIMPSE: 
A tool to search through entire 
file systems. In Proceedings of 
the USENIX Winter Technical 
Conference (1994).

	15.	 McVoy, L., Staelin, C. lmbench: 
Portable tools for performance 
analysis. In Proceedings of the 
USENIX Annual Technical Conference 
(1996).

	16.	T anenbaum, A.S. Modern Operating 
Systems. Prentice Hall (2007).

	17.	T uduce, I.C., Gross, T. Adaptive main 
memory compression. In Proceedings 

of the USENIX Annual Technical 
Conference (2005).

	18.	 Vrable, M., Ma, J., Chen, J., Moore, D., 
VandeKieft, E., Snoeren, A.C., Voelker, 
G.M., Savage, S. Scalability, fidelity and 
containment in the Potemkin virtual 
honeyfarm. In Proceedings of the 20th 
ACM Symposium on Operating System 
Principles (2005).

	19.	W aldspurger, C.A. Memory resource 
management in VMware ESX server. In 
Proceedings of the 5th ACM/USENIX 
Symposium on Operating System 
Design and Implementation (2002).

	20.	W ilson, P.R., Kaplan, S.F., 
Smaragdakis, Y. The case for 
compressed caching in virtual 
memory systems. In Proceedings 
of the USENIX Annual Technical 
Conference (1999).

© 2010 ACM 0001-0782/10/1000 $10.00

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

http://www.xdelta.org/
http://sysbench.sourceforge.net/
http://samba.org/ftp/tridge/dbench/
http://www.iozone.org/
http://www.azillionmonkeys.com/qed/hash.html
http://www.azillionmonkeys.com/qed/hash.html
mailto:mvrable@cs.ucsd.edu
mailto:savage@cs.ucsd.edu
mailto:voelker@cs.ucsd.edu
mailto:vahdat@cs.ucsd.edu
http://www.mentornet.net
http://www.acm.org/mentornet
http://www.xdelta.org/
mailto:snoeren@cs.ucsd.edu
mailto:snoeren@cs.ucsd.edu
mailto:varghese@cs.ucsd.edu
mailto:varghese@cs.ucsd.edu
mailto:voelker@cs.ucsd.edu
mailto:sangmin@cs.utexas. edu
mailto:diwaker@asterdata.com
mailto:diwaker@asterdata.com


94    communications of the acm    |   october 2010  |   vol.  53  |   no.  10

When a pair of nuclear-powered Russian 
submarines was reported patrolling 
off the eastern seaboard of the U.S. last 
summer, Pentagon officials expressed 
wariness over the Kremlin’s motiva-
tions. At the same time, these officials 
emphasized their confidence in the U.S. 
Navy’s tracking capabilities: “We’ve 
known where they were,” a senior De-
fense Department official told the New 
York Times, “and we’re not concerned 
about our ability to track the subs.”

While the official did not divulge 
the methods used by the Navy to track 
submarines, the Times added that such 
tracking “can be done from aircraft, 
ships, underwater sensors, or other 
submarines.” But the article failed 
to mention perhaps the most impor-
tant part of modern tracking technol-
ogy—the algorithm that fuses differ-
ent measurements at different times. 
Nearly every modern tracking system 
is based on the seminal work of Rudolf 
Kalman1 who developed the optimal 
fusion algorithm for linear dynamics 
under Gaussian noise. This algorithm, 
now known simply as the “Kalman 
filter” is used in a remarkably broad 
range of real-world applications—
from patient monitoring to spaceship 
navigation. But in the 50 years since 
Kalman first published his algorithm, 
it has become apparent that the prob-
lem it addresses is a special case of a 
much more general problem.

This general problem, known as 
“Bayesian inference in graphical mod-
els,” is defined on a graph where the 
nodes denote random variables and 
edges encode direct probabilistic de-
pendencies. Each node has access to a 
noisy measurement about its state. In 
the case of tracking a submarine, the 
tth node will represent the location of a 
submarine at time t, and edges will con-
nect node t to node t+1 in a temporal 
chain, representing the fact that a sub-
marine’s current location is highly de-
pendent on its location in the previous 
time. Kalman’s algorithm allows one to 
efficiently compute the optimal esti-
mate of the submarine’s location, given 

all the measurements. It assumes the 
probabilistic dependencies are Gauss-
ian and the graph is a temporal chain.

The generalization of Kalman’s al-
gorithm to arbitrary graphical models 
is called “belief propagation”2 and it 
originated in the late 1970s after Judea 
Pearl read a paper by the cognitive 
psychologist David Rumelhart on how 
children comprehend text.3 Rumelhart 
presented compelling evidence that 
text comprehension must be, first, a 
collaborative computation among a 
vast number of autonomous, neural-
like modules, each doing an extremely 
simple and repetitive task and, sec-
ond, that some kind of friendly “hand-
shaking” must take place between 
top-down and bottom-up modes of in-
ference, for example, the meaning of a 
sentence helps disambiguate a word 
while, at the same time, recognizing a 
word helps disambiguate a sentence. 
This disambiguation is similar to what 
happens in a Kalman filter (where 
measurements at one time can dis-
ambiguate measurements at another 
time), but the dependency structure is 
certainly not a temporal chain.

Not caring much about general-
ity, Pearl pieced together the simplest 
structure he could think of (that is, a 
tree) and tried to see if anything useful 
can be computed by assigning each vari-
able a simple processor, forced to com-
municate only with its neighbors. This 
gave rise to the tree-propagation algo-
rithm and, a year later, to belief propa-
gation on poly-trees, which supported 
bi-directional inferences and interac-
tions known as “explaining-away.”

Although several algorithms were 
later developed to perform Bayesian 
updating in general, “loopy” struc-
tures, the prospects of achieving such 
updating by local message passing 
process remained elusive. Out of to-
tal frustration, yet still convinced that 
such algorithms must guide many of 
our cognitive abilities, Pearl imag-
ined a “shortsighted” algorithm that 
totally ignores the loopy structure of 
the graph and propagates messages 

as if each module is situated in a poly-
tree environment. He then assigned 
as a homework exercise2 the task of 
evaluating the extent to which this un-
informed algorithm could serve as an 
approximation to the exact Bayesian 
inference problem. This “homework 
exercise” was partially solved by differ-
ent researchers in the last decade and 
loopy belief propagation is now used 
successfully in applications ranging 
from satellite communication to driv-
er assistance.

The success of loopy belief propaga-
tion, however, has been limited to dis-
crete state spaces. In the following pa-
per, Sudderth et al. provide an elegant 
algorithm that handles continuous 
variables. Unlike the Kalman filter, it 
does not require the probabilistic de-
pendencies to be Gaussian, relying in-
stead on stochastic algorithms known 
as “Monte Carlo” algorithms. An exten-
sion to Kalman filters called “particle 
filters” also uses Monte Carlo algo-
rithms, but the authors provide an al-
gorithm that can work with any depen-
dency structure, not just a temporal 
chain. They show how their algorithm 
successfully solves some important 
“loopy” problems in computer-vision 
and sensor networks. One only won-
ders if in the future such algorithms 
will be used to solve the really difficult 
problems—figuring out the Kremlin’s 
intent from partial, noisy observations, 
or reading text as children do.	
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Nonparametric Belief Propagation
By Erik B. Sudderth, Alexander T. Ihler, Michael Isard, William T. Freeman, and Alan S. Willsky

Abstract
Continuous quantities are ubiquitous in models of real-
world phenomena, but are surprisingly difficult to reason 
about automatically. Probabilistic graphical models such 
as Bayesian networks and Markov random fields, and algo-
rithms for approximate inference such as belief propaga-
tion (BP), have proven to be powerful tools in a wide range of 
applications in statistics and artificial intelligence. However, 
applying these methods to models with continuous variables 
remains a challenging task. In this work we describe an exten-
sion of BP to continuous variable models, generalizing par-
ticle filtering, and Gaussian mixture filtering techniques for 
time series to more complex models. We illustrate the power 
of the resulting nonparametric BP algorithm via two applica-
tions: kinematic tracking of visual motion and distributed 
localization in sensor networks.

1. Introduction
Graphical models provide a powerful, general framework for 
developing statistical models in such diverse areas as bioin-
formatics, communications, natural language processing, 
and computer vision.28 However, graphical formulations 
are only useful when combined with efficient algorithms 
for inference and learning. Such algorithms exist for many 
discrete models, such as those underlying modern error cor-
recting codes and machine translation systems.

For most problems involving high-dimensional continu-
ous variables, comparably efficient and accurate algorithms 
are unavailable. Alas, these are exactly the sorts of problems 
that arise frequently in areas like computer vision. Difficulties 
begin with the continuous surfaces and illuminants that digi-
tal cameras record in grids of pixels, and that geometric recon-
struction algorithms seek to recover. At a higher level, the 
articulated models used in many tracking applications have 
dozens of degrees of freedom to be estimated at each time 
step.41, 45 Realistic graphical models for these problems must 
represent outliers, bimodalities, and other non-Gaussian sta-
tistical features. The corresponding optimal inference pro-
cedures for these models typically involve integral equations 
for which no closed form solution exists. It is thus necessary 
to develop families of approximate representations, and algo-
rithms for fitting those approximations.

In this work we describe the nonparametric belief propa-
gation (NBP) algorithm. NBP combines ideas from Monte 
Carlo3 and particle filtering6, 11 approaches for represent-
ing complex uncertainty in time series, with the popular 
belief propagation (BP) algorithm37 for approximate infer-
ence in complex graphical models. Unlike discretized 
approximations to continuous variables, NBP is not limited 
to low-dimensional domains. Unlike classical Gaussian 
approximations, NBP’s particle-based messages can rep-
resent, and consistently reason about, the multimodal 

distributions induced by many real-world datasets. And 
unlike particle filters, NBP can exploit the rich nonsequen-
tial structure of more complex graphical models, like those 
in Figure 1.

We begin in Section 2 by reviewing graphical models, 
BP, Monte Carlo methods, and particle filters. Section 3 
then develops the two stages of the NBP algorithm: a belief 
fusion step which combines information from multiple par-
ticle sets, and a message propagation step which accounts 
for dependencies among random variables. We review a 
pair of previous real-world applications of NBP in Section 
4: kinematic tracking of visual motion (Figures 6 and 7) 
and distributed localization in sensor networks (Figure 8). 
Finally, we conclude in Section 5 by surveying algorithmic 
and theoretical developments since the original introduc-
tion of NBP.

2. Inference in Graphical Models
Probabilistic graphical models decompose multivariate 
distributions into a set of local interactions among small 
subsets of variables. These local relationships produce 
conditional independencies which lead to efficient learn-
ing and inference algorithms. Moreover, their modular 

The original versions of this paper were entitled “Non
parametric Belief Propagation,” by E. Sudderth, A. Ihler, 
W. Freeman, and A. Willsky, and “PAMPAS: Real-Valued 
Graphical Models for Computer Vision,” by M. Isard. 
Both appeared in the IEEE Conference on Computer Vision 
and Pattern Recognition, June 2003.

Hidden Markov model

Graphical models

Figure 1. Particle filters assume variables are related by a hidden 
Markov model (top). The NBP algorithm extends particle filtering 
techniques to arbitrarily structured graphical models, such as those 
for arrays of image pixels (bottom left) or articulated human motion 
(bottom right).
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2.2. Belief propagation
For graphs that are acyclic or tree-structured, the desired 
conditional distributions p(xi | y) can be directly calculated 
by a local message-passing algorithm known as belief propa-
gation (BP).37, 50 At each iteration of the BP algorithm, nodes 
j Î V calculate messages  mji(xi) to be sent to each neighbor-
ing node i Î  G( j):

The outgoing message is a positive function defined on Xi. 
Intuitively, it is a (possibly approximate) sufficient statistic 
of the information that node j has collected regarding xi. At 
any iteration, each node can produce an approximation  qi(xi) 
to the marginal distribution p(xi | y) by combining incoming 
messages with the local evidence potential:

These updates are graphically summarized in Figure 2. 
For tree-structured graphs, the approximate marginals, 
or beliefs, qi (xi) will converge to the true marginals p(xi | y) 
once messages from each node have propagated across 
the graph. With an efficient update schedule, the mes-
sages for each distinct edge need only be computed once, 
and BP can be seen as a distributed variant of dynamic 
programming.

Because each iteration of the BP algorithm involves only 
local message updates, it can be applied even to graphs 
with cycles. For such graphs, the statistical dependen-
cies between BP messages are not accounted for, and the 
sequence of beliefs qi(xi) will  not converge to the true mar-
ginals. In many applications, however, the resulting loopy 
BP algorithm37 exhibits excellent empirical performance.8, 

14, 15,  49 Recently, several theoretical studies have provided 
insight into the approximations made by loopy BP, estab-
lishing connections to other  variational inference algo-
rithms47 and partially justifying its application to graphs 
with cycles.20, 23, 34, 50, 51

The BP algorithm implicitly assumes messages mji(xi) have 
a finite parameterization, which can be tractably updated 
via the integral of Equation 2. Most implementations 

structure provides an intuitive language for expressing 
domain-specific knowledge about variable relationships 
and facilitates the transfer of modeling advances to new 
applications.

Several different formalisms have been proposed that 
use graphs to represent probability distributions.28, 30, 47, 50  
Directed graphical models, or Bayesian networks, are widely 
used in artificial intelligence to encode causal, generative 
processes. Such directed graphs provided the basis for the 
earliest versions of the BP algorithm.37 Alternatively, undi-
rected graphical models, or Markov random fields (MRFs), 
provide popular models for the symmetric dependencies 
arising in such areas as signal processing, spatial statistics, 
bioinformatics, and computer vision.

2.1. Pairwise Markov random fields
An undirected graph G is defined by a set of nodes V and a 
corresponding set of undirected edges E (see Figure 1). Let 
Γ(i)  ∆= { j | (i, j) Î E} denote the neighborhood of a node i Î V. 
MRFs associate each node i Î V with an unobserved, or hid-
den, random variable xi Î Xi. Let x = {xi | i Î V} denote the 
set of all hidden variables. Given evidence or observations y, 
a pairwise MRF represents the posterior distribution p(x | y) 
in factored form:

Here, the proportionality sign indicates that p(x, y) may 
only be known up to an uncertain normalization constant, 
chosen so that it integrates to one. The positive potential 
functions ψij(xi, xj) > 0 can often be interpreted as soft, local 
constraints. Note that the local evidence potential ψi(xi, y) 
does not typically equal the marginal distribution p(xi | y), 
due to interactions with other potentials.

In this paper, we develop algorithms to approximate the 
conditional marginal distributions p(xi | y) for all i Î V. These 
densities lead to estimates of xi, such as the posterior mean 
[xi | y], as well as corresponding measures of uncertainty. 
We focus on pairwise MRFs due to their simplicity and popu-
larity in practical applications. However, the nonparametric 
updates we present may also be directly extended to models 
with higher-order potentials.

xi

y

qi (xi) ∝ ψi(xi, y) Π
j∈Γ(i)

mji(xi)

mji(xi) ∝ ÚXj

ψij(xi, xj)ψj(xj, y) Π
k∈Γ( j)\ i

mkj(xj) dxj

xj

y

xi

Figure 2. Message-passing recursions underlying the BP algorithm. Left: Approximate marginal (belief) estimates combine the local 
observation potential with messages from neighboring nodes. Right: A new outgoing message (red) is computed from all other incoming 
messages (blue).
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assume each hidden variable xi takes one of K discrete values 
(|Xi| = K), so that messages and marginals can be represented 
by K-dimensional vectors. The message update integral then 
becomes a matrix–vector product, which in general requires 
O(K2) operations. This variant of BP is sometimes called the 
sum–product algorithm.30

For graphical models with continuous hidden vari-
ables, closed-form evaluation of the BP update integral 
is only possible when the posterior is jointly Gaussian. 
The resulting Gaussian BP algorithm, which uses linear 
algebra to update estimates of posterior mean vectors 
and covariance matrices, generalizes Kalman smoothing 
algorithms for linear dynamical systems.2 More gener-
ally, a fixed K-point discretization sometimes leads to an 
effective histogram approximation of the true continuous 
beliefs.13, 14 However, as K must in general grow exponen-
tially with the dimension of Xi, computation of the dis-
crete messages underlying such approximations can be 
extremely demanding.

2.3. Monte Carlo methods
By using random samples to simulate probabilistic models, 
Monte Carlo methods3 provide flexible alternatives to varia-
tional methods like BP. Given a target distribution p(x  | y), 
many inference tasks can be expressed via the expected 
value Ep[ f (x)] of an appropriately chosen function. Given L 
independent samples  from p(x | y), the desired sta-
tistic can be approximated as follows:

This estimate is unbiased, and converges to Ep[ f (x)] almost 
surely as L → ∞. For the graphical models of interest here, 
however, exact sampling from p(x | y) is intractable.

Importance sampling provides an alternative based on a 
proposal distribution q(x), chosen so that q(–x) > 0 wherever 
p(–x  | y) > 0. Defining the importance weight function as 
w(x)  =  –p(x | y)/q(x), where p(x | y) ∝ –p(x | y) up to some poten-
tially unknown normalization constant, the expectation of 
Equation 4 can be rewritten as follows:

Importance sampling thus estimates the target expectation 
via a collection of L weighted samples .

For high-dimensional models like the full joint distri-
bution of Equation 1, designing tractable proposal dis-
tributions that closely approximate p(x | y) is extremely 
challenging. Even minor discrepancies can produce 
widely varying importance weights w(l), which may in turn 
cause the estimator of Equation 5 to have a huge variance 
even for large  L. Instead, we use importance sampling to 
locally approximate intermediate computations in the BP 
algorithm.

2.4. Particle filters
Our approach is inspired by particle filters, an approximate 
inference algorithm specialized for hidden Markov models 
(HMMs). As depicted graphically in Figure 1, an HMM mod-
els a sequence of T observations y = {y1, …, yT} via a corre-
sponding set of hidden states x:

Recognizing this factorization as a special case of the pair-
wise MRF of Equation 1, the “forward” BP messages passed 
to subsequent time steps are defined via the recursion

For continuous Xt where this update lacks a closed form, 
particle filters6, 11 approximate the forward BP messages 
mt−1, t(xt) via a collection of L weighted samples, or particles, 

. Importance sampling is used to recursively 
update the particle locations and weights via a single, 
forward pass through the observations. A variety of proposal 
distributions q(xt+1 | xt, yt+1), which aim to approximate 
p(xt+1 | xt,  yt+1), have been suggested.6 For example, the 
“bootstrap filter” samples , and incorporates 
evidence via weights .

For the simple algorithm sketched above, each message 
update introduces additional approximations, so that the 
expected variance of the importance weights w(l)

t increases 
over time. Particle filters avoid such sample depletion via a 
resampling operation, in which the highest-weight particles 
at time t determine a larger proportion of the outgoing mes-
sage particles  . The bootstrap filter then becomes:

After such resampling, outgoing message particles are 
equally weighted as , l = 1, …, L. By stochastically 
selecting the highest-weight particles multiple times, resam-
pling dynamically focuses the particle filter’s computational 
resources on the most probable regions of the state space.

3. Nonparametric BP
Although particle filters can be adapted to an extremely wide 
range of dynamical models and observation types, they are 
specialized to the structure of temporal filtering problems. 
Conversely, loopy BP can in principle be applied to graphs of 
any structure, but is only analytically tractable when all hidden 
variables are discrete or jointly Gaussian. In this section, we 
describe an NBP algorithm26, 44 that generalizes sequential 
Monte Carlo methods to arbitrary graphs. As in regularized 
particle filters,11 we approximate the true BP messages and 
beliefs by nonparametric density estimates. Importance 
sampling and MCMC approximations then update these 
sample-based messages, propagating information from local 
observations throughout the graph.

3.1. Nonparametric representations
Consider again the BP algorithm of Section 2.2, and suppose 

(8)
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that messages mji(xi) are approximated by a set of weighted, 
discrete samples. If Xi is continuous and these messages are 
constructed from independent proposal distributions, their 
particles will be distinct with probability one. For the mes-
sage product operation underlying the BP algorithm to pro-
duce sensible results, some interpolation of these samples 
to nearby states is thus needed.

We accomplish this interpolation, and ensure that mes-
sages are smooth and strictly positive, by convolving raw 
particle sets with a Gaussian distribution, or kernel:

Here, N(x; m, L) denotes a normalized Gaussian density 
with mean m and covariance L, evaluated at x. As detailed 
later, we use methods from the nonparametric density 
estimation literature to construct these mixture approxi-
mations.42 The product of two Gaussians is itself a scaled 
Gaussian distribution, a fact which simplifies our later 
algorithms.

3.2. Message fusion
We begin by assuming that the observation potential is a 
Gaussian mixture. Such representations arise naturally 
from learning-based approaches to model identification.14 
The BP belief update of Equation 3 is then defined by a 
product of d = (|G(i)| + 1) mixtures: the observation poten-
tial ψi(xi,  y), and messages mji(xi) as in Equation 9 from 
each neighbor. As illustrated in Figure 3, the product of d 
Gaussian mixtures, each containing L components, is itself 
a mixture of Ld Gaussians. While in principle this belief 
update could be performed exactly, the exponential growth 
in the number of mixture components quickly becomes 
intractable.

The NBP algorithm instead approximates the product 
mixture via a collection of L independent, possibly impor-
tance weighted samples   from the “ideal” 
belief of Equation 3. Given these samples, the bandwidth 
Li of the nonparametric belief estimate (Equation 10) is 
determined via a method from the extensive kernel den-
sity estimation literature.42 For example, the simple “rule 
of thumb” method combines a robust covariance estimate 
with an asymptotic formula that assumes the target density 
is Gaussian. While fast to compute, it often oversmooths 

multimodal distributions. In such cases, more sophisti-
cated cross-validation schemes can improve performance.

In many applications, NBP’s computations are domi-
nated by the cost of sampling from such products of 
Gaussian mixtures. Exact sampling by explicit construc-
tion of the product distribution requires O(Ld) operations. 
Fortunately, a number of efficient approximate samplers 
have been developed. One simple but sometimes effec-
tive approach uses an evenly weighted mixture of the d 
input distributions as an importance sampling proposal. 
For higher-dimensional variables, iterative Gibbs sam-
pling algorithms are often more effective.44 Multiscale 
KD-tree density representations can improve the mixing 
rate of Gibbs samplers, and also lead to “epsilon-exact” 
samplers with accuracy guarantees.25 More sophisticated 
importance samplers5 and multiscale simulated or par-
allel tempering algorithms39 can also be highly effective. 
Yet more approaches improve efficiency by introducing 
an additional message approximation step.19, 22, 31 By  first 
reducing the complexity of each message, the product can 
be approximated more quickly, or even computed exactly. 
When ψi(xi, y) is a non-Gaussian analytic function, we can 
use any of these samplers to construct an importance 
sampling proposal from the incoming Gaussian mixture 
messages.

3.3. Message propagation
The particle filter of Section 2.4 propagates belief estimates 
to subsequent time steps by sampling . 
The consistency of this procedure depends critically on the 
HMM’s factorization into properly normalized conditional 
distributions, so that ∫p(xt+1 | xt)dxt+1 = 1 for all xt Î Xt. By def
inition, such conditional distributions place no biases on xt. 
In contrast, for pairwise MRFs, the clique potential ψij(xi, xj) 
is an arbitrary nonnegative function that may influence the 
values assumed by either linked variable. To account for 
this, we quantify the marginal influence of ψij(xi, xj) on xj via 
the following function:

If ψij(xi, xj) is a Gaussian mixture, ψij(xj) is simply the mixture 
obtained by marginalizing each component. In the common 
case where ψij(xi, xj) = ~ψij(xi − xj) depends only on the differ-
ence between neighboring variables, the marginal influence 
is constant and may be ignored.

As summarized in the algorithm of Figure 4, NBP 
approximates the BP message update of Equation 2 in two 
stages. Using the efficient algorithms discussed in Section 
3.2, we first draw L independent samples  from a partial 
belief estimate combining the marginal influence func-
tion, observation potential, and incoming messages. For 
each of these auxiliary particles , we then interpret the 
clique potential as a joint distribution and sample par-
ticles   from the conditional density proportional to

.
Particle-based approximations are only meaningful 

when the corresponding BP messages mji(xi) are finitely inte-
grable. Some models, however, contain nonnormalizable 

Figure 3. A product of three mixtures of L = 4 1D Gaussians. Although 
the 43 = 64 components in the product density (thin lines) vary widely 
in position and weight (scaled for visibility), their normalized sum 
(thick line) has a simple form.
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potentials that nevertheless encode important constraints. 
For example, the kinematic tracking and sensor localiza-
tion applications considered in Section 4 both involve 
“repulsive” potentials, that encourage pairs of variables to 
not take similar values. In such cases, the NBP algorithm 
in Figure 4 instead stores the weighted particles needed 
to evaluate mji(

–xi) at any location –xi of interest. These mes-
sages then influence subsequent iterations via importance 
weighting.

As illustrated in Figure 2, the BP update of message 
mji(xi) is most often expressed as a transformation of the 
incoming messages from all other neighboring nodes 
k Î G( j)\i. From Equations 2 and 3, however, it can also be 
expressed as

This transformation suggests an alternative belief sampling 
form of the NBP algorithm, in which the latest belief esti-
mate provides a proposal distribution for auxiliary particles 

. Overcounting of mij(xj) may then be avoided 
via importance weights . Computationally, 
belief sampling offers clear advantages: computation of 
new outgoing messages to d neighbors requires O(dL) oper-
ations, versus the O(d2L) cost of the approach in Figure 4. 
Statistically, belief sampling also has potentially desirable 
properties,26, 29 but can be less stable when the number of 
particles L is small.22

4. Illustrative Applications
In this section we show several illustrative examples of 
applications that use NBP to reason about structured col-
lections of real-valued variables. We first show examples 
of kinematic tracking problems in computer vision, in 
which the variables represent the spatial position of parts 
of an object. We then show how a similar formulation can 
be used for collaborative self-localization and tracking 
in wireless sensor networks. Other applications of NBP 
include deformable contour tracking for medical image 
segmentation,46 image denoising and super-resolution,38 
learning flexible models of dynamics and motor response 
in robotic control,17 error correcting codes defined for 
real-valued codewords,31, 43 and sparse signal reconstruc-
tion using compressed sensing principles.4 NBP has also 
been proposed as a computational mechanism for hier-
archical Bayesian information processing in the visual 
cortex.32

4.1. Visual tracking of articulated motion
Visual tracking systems use video sequences from one 
or more cameras to estimate object motion. Some of the 
most challenging tracking applications involve articu-
lated objects, whose jointed motion leads to complex 
pose variations. For example, human motion capture is 
widely used in visual effects and scene understanding 
applications.33 Estimates of human, and especially hand, 
motion are also used to build more expressive computer 
interfaces.48

To illustrate the difficulties, we consider a toy 2D object 
localization problem in Figure 5. The model consists of 
nine nodes: a central circle, and four jointed arms com-
posed of two rectangular links. The circle node’s state x0 
encodes its position and radius, while each rectangular 
link node’s state xi encodes its position, angle, width, and 
height. Each arm prefers one of the four compass direc-
tions, arms pivot around their inner joints, and geometry is 
loosely enforced via Gaussian pairwise potentials ψij(xi , xj); 
for details see Isard.26

Our goal is to find the object in a sea of clutter (white 
shapes in Figure 5) whose elements look exactly like com-
ponents of the object. This mimics the difficulties faced 
in real video sequences: statistical detectors for individ-
ual object parts often falsely fire on background regions, 
and global geometric reasoning is needed to disambigu-
ate them. Applied to this model, NBP’s particles encode 
hypotheses about the pose xi of individual object parts, 
while messages use geometric constraints to propagate 
information between parts. When all of the true object’s 
parts are visible, NBP localizes it after a single iteration. By 
using Gaussian mixture potentials ψi(xi , y) that allow occa-
sional outliers in observed part locations, NBP remains 
successful even when the central circle is missing. In this 
case, however, it takes more iterations to propagate infor-
mation from the visible arms.

Kinematic tracking of real hand motion poses far 
greater challenges. Even coarse models of the hand’s 
geometry have 26 continuous degrees of freedom: each 
finger’s joints have four angles of rotation, and the palm 

Figure 4. Nonparametric BP update for the message mji(xi) sent from 
node j to node i, as in Figure 2.

Given input messages mkj(xj) for each k Î G( j )\i, which may be either 

kernel densities mkj(xj) = {xkj
(l), wkj

(l), Λkj}
L
l=1 or analytic functions, construct an 

output message mji(xi) as follows:

	 1.	�D etermine the marginal influence ϕij(xj) of Equation (11).

	 2.	D raw L independent, weighted samples from the product

Optionally resample by drawing L particles with replacement 

according to , giving evenly weighted particles.

	 3.	� If ψij(xi, xj) is normalizeable (∫ψij(xi, xj = x–) dxi < ∞ for all x– Î Xj), 

construct a kernel-based output message: 

(a) �For each auxiliary particle , sample an outgoing particle

Using importance sampling or MCMC methods as needed.

(b) �Set to account for importance weights in steps 2–4(a).

(c) �Set Λi via some bandwidth selection method (see Silverman42).

4.	 Otherwise, treat mji(xi) as an analytic function

parameterized by the auxiliary particles .



100    communications of the acm   |   october 2010  |   vol.  53  |   no.  10

research highlights 

 

may take any 3D position and orientation.48 The graphi-
cal models in Figure 6 instead encode hand pose via the 
3D pose of 16 rigid bodies.45 Analytic pairwise potentials 
then capture kinematic constraints (phalanges are con-
nected by revolute joints), structural constraints (two 
fingers cannot occupy the same 3D volume), and Markov 
temporal dynamics. The geometry of individual rigid bod-
ies is modeled via quadric surfaces (a standard approach 
in computer graphics), and related to observed images via 
statistical color and edge cues.45

Because different fingers are locally similar in appear-
ance, global inference is needed to accurately associate 
hand components to image cues. Discretization of the 6D 
pose variable for each rigid body is intractable, but as illus-
trated in Figure 6, NBP’s sampling-based message approx-
imations often lead to accurate hand localization and 
tracking. While we project particle outlines to the image 
plane for visualization, we emphasize NBP’s estimates are 
of 3D pose.

Finally, Figure 7 illustrates a complementary approach 
to multicamera tracking of 3D person motion.41 While the 
hand tracker used rigid kinematic potentials, this graphi-
cal model of full-body pose is explicitly “loose limbed,” 
and uses pairwise potentials estimated from calibrated, 
3D motion capture data. Even without the benefit of 
dynamical cues or highly accurate image-based likeli-
hoods, we see that NBP successfully infers the full human 
body pose.

4.2. Sensor self-localization
Another problem for which NBP has been very successful 

is sensor localization.22 One of the critical first tasks in 
using ad-hoc networks of wireless sensors is to deter-
mine the location of each sensor; the high cost of manual 
calibration or specialized hardware like GPS units makes 
self-localization, or estimating position based on local in-
network information, very appealing. As with articulated 
tracking, we will be estimating the position of a number 
of objects (sensors) using joint information about the 
objects’ relative positions. Specifically, let us assume that 
some subset of pairs of sensors (i, j) Î E are able to measure 
a noisy estimate of their relative distance (e.g., through 
signal strength of wireless communication or measuring 
time delays of acoustic signals). Our measurements yij tell 
us something about the relative positions xi, xj of two sen-
sors; assuming independent noise, the likelihood of our 
measurements is

We can see immediately that this likelihood has the form 
of a pairwise graphical model whose edges are the pairs of 
sensors with distance measurements. Typically we assume 
a small number of anchor sensors with known or partially 
known position to remove translational, rotational, and 
mirror image ambiguity from the geometry.

Figure 6. Articulated 3D hand tracking with NBP. Top: Graphical 
models capturing the kinematic, structural, and temporal 
constraints relating the hand’s 16 rigid bodies. Middle: Given a 
single input image, projected estimates of hand pose after one 
(left) and four (right) NBP iterations. Bottom: Two frames showing 
snapshots of tracking performance from a monocular video 
sequence.

Figure 5. Detection of a toy, four-armed articulated object (top 
row) in clutter. We show NBP estimates after 0, 1, and 3 iterations 
(columns), for cases where the circular central joint is either visible 
(middle row) or occluded (bottom row).
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A small 10-sensor network with 24 edges is shown in 
Figure  8, indicating both the true 2D sensor positions 
(nodes) and inter-sensor measurements (edges). The 
beliefs obtained using NBP are displayed on the right, by 
showing 500 samples from the estimated belief; the true 
sensor positions are also superimposed (red dots). The 
initial beliefs are highly non-Gaussian and often fairly 
diffuse (top row). As information propagates through the 
graph and captures more of the inter-sensor dependen-
cies, these beliefs tend to shrink to good estimates of the 
sensor positions. However, in some cases, the measure-
ments themselves are nearly ambiguous, resulting in a 
bimodal posterior distribution. For example, the sensor 
located in the bottom right has only three, nearly colin-
ear neighbors, and so can be explained almost as well by 
“flipping” its position across the line. Such bimodalities 
indicate that the system is not fully constrained, and are 
important to identify as they indicate sensors with poten-
tially significant errors in position.

5. Discussion
The abundance of problems that involve continuous variables 
has given rise to a variety of related algorithms for estimating 
posterior probabilities and beliefs in these systems. Here we 
describe several influential historical predecessors of NBP, 
and then discuss subsequent work that builds on or extends 
some of the same ideas.

As mentioned in Section 2.2, direct discretization of 
continuous variables into binned “histogram” poten-
tials can be effective in problems with low-dimensional 
variables.4 In higher-dimensional problems, however, 
the number of bins grows exponentially and quickly 
becomes intractable. One possibility is to use domain 
specific heuristics to exclude those configurations that 
appear unlikely based on local evidence.8, 14 However, if 
the local evidence used to discard states is inaccurate 
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Figure 7. Articulated 3D person tracking with NBP.41 Top: Graphical model 
encoding kinematic and dynamic relationships (left), and spatial and 
temporal potential functions (right) learned from mocap data. Middle: 
Bottom-up limb detections, as seen from two of four camera views. 
Bottom: Estimated body pose following 30 iterations of NBP.

Figure 8. NBP for self-localization in a small network of 10 sensors. Left: Sensor positions, with edges connecting sensor pairs with noisy 
distance measurements. Right: Each panel shows the belief of one sensor (scatterplot), along with its true location (red dot). After the first 
iteration of message passing, beliefs are diffuse with non-Gaussian uncertainty. After 10 iterations, the beliefs have stabilized near the true 
values. Some beliefs remain multimodal, indicating a high degree of uncertainty in that sensor’s position due to near-symmetries that remain 
ambiguous given the measurements.
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efficiency of Monte Carlo estimates given a set of samples. 
Another example, Hot Coupling,18 uses a sequential order-
ing of the graph’s edges to define a sequence of importance 
sampling distributions.

The intersection of variational and Monte Carlo meth-
ods for approximate inference remains an extremely active 
research area. We anticipate many further advances in the 
coming years, driven by increasingly varied and ambitious 
real-world applications.
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or misleading, these approximations will heavily distort 
the resulting estimates.

One advantage of Monte Carlo and particle filtering 
methods lies in the fact that their discretization of the 
state space is obtained stochastically, and thus has excel-
lent theoretical properties. Examples include statistical 
consistency, and convergence rates that do not depend 
on the dimension.10 While particle filters are typically 
restricted to “forward” sequential inference, the connec-
tion to discrete inference has been exploited to define 
smoothing (forward and backward) algorithms,6 and to 
perform resampling to dynamically improve the approxi-
mation.35 Monte Carlo approximations were also previ-
ously applied to other tree-structured graphs, including 
junction trees.9, 29

Gaussian mixture models also have a long history of use 
in inference. In Markov chains, an algorithm for forward 
inference using Gaussian mixture approximations was first 
proposed by Alspach and Sorenson1; see also Anderson 
and Moore.2 Regularized particle filters smooth each par-
ticle with a small, typically Gaussian kernel to produce a 
mixture model representation of forward messages.11 For 
Bayesian networks, Gaussian mixture-based potentials 
and messages have been applied to junction tree-based 
inference.12

NBP combines many of the best elements of these meth-
ods. By sampling, we obtain probabilistic approximation 
properties similar to particle filtering. Representing mes-
sages as Gaussian mixture models provides smooth esti-
mates similar to regularized particle filters, and interfaces 
well with Gaussian mixture estimates of the potential func-
tions.12, 14, 17, 38 NBP extends these ideas to “loopy” message 
passing and approximate inference.

Since the original development of NBP, a number of 
algorithms have been developed that use alternative 
representations for inference on continuous, or hybrid, 
graphical models. Of these, the most closely related is 
particle BP, which uses a simplified importance sam-
pling representation of messages, more closely resem-
bling the representation of (unregularized) particle 
filters. This form enables the derivation of convergence 
rates similar to those available for particle filtering,21 and 
also allows the algorithm to be extended to more general 
inference techniques such as reweighted message-pass-
ing algorithms.24

Other forms of message representation have also been 
explored. Early approaches to deterministic discrete mes-
sage approximation would often mistakenly discard states 
in the early stages of inference, due to misleading local 
evidence. More recently, dynamic discretization tech-
niques have been developed to allow the inference pro-
cess to recover from such mistakes by re-including states 
that were previously removed.7, 27, 36 Other approaches sub-
stitute alternative, smoother message representations, 
such as Gaussian process-based density estimates.40

Finally, several authors have developed additional ways 
of combining Monte Carlo sampling with the principles of 
exact inference. AND/OR importance sampling,16 for exam-
ple, uses the structure of the graph to improve the statistical 
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Auburn University
Department of Computer Science  
and Software Engineering
Assistant/Associate Professor

The Department of Computer Science and Soft-
ware Engineering (CSSE) invites applications for 
a tenure-track faculty position at the Assistant /
Associate Professor level to begin Spring 2011 or 
Fall 2011. We encourage candidates from all ar-
eas of computer science and software engineer-
ing to apply. We are especially interested in can-
didates specializing in software engineering and 
cyber security. Candidates selected for these posi-
tions must be able to meet eligibility requirements to 
work in the United States at the time appointment is 
scheduled to begin and continue working legally for 
the proposed term of employment; excellent commu-
nication skills required.

Applicants should submit a current curriculum 
vita, research vision, teaching philosophy, and the 
names and addresses of three references to Kai H. 
Chang, Professor and Chair, kchang@eng.auburn.
edu (with copy to bjl0002@auburn.edu).

The applicant review process will begin Octo-
ber 15 2010. Detailed announcement of this posi-
tion can be found at: http://www.eng.auburn.edu/
csse/ Auburn University is an Affirmative Action/
Equal Opportunity Employer. Women and minori-
ties are encouraged to apply.

Azusa Pacific University
Instructor / Lab Manager

Azusa Pacific University, an evangelical Christian 
university, announces the opening of a full-time 
faculty position in the Department of Computer 
Science beginning fall 2010. The ideal candidate 
should have a Master’s degree in Computer Sci-
ence or Computer Information Systems and be 
able to provide evidence of teaching excellence. 
Women and minorities are encouraged to ap-
ply. Position subject to final funding. For a full 
job description please go to http://www.apu.edu/ 
provost/employment/positions.

Duke University
Department of Computer Science
Tenure-track Faculty Positions - Assistant 
Professor Level

The Department of Computer Science at Duke 
University invites applications and nominations 
for tenure-track faculty positions at an assistant 
professor level, to begin August 2011. We are 
interested in strong candidates in all active re-
search areas of computer science -- including 
algorithms, artificial intelligence, computer ar-
chitecture, computer vision, database systems, 
distributed systems, machine learning, operating 
systems, optimization, programming languages, 
and security – as well as interdisciplinary areas 

to complement the increasing diversity of the 
student body.

Montana State University
RightNow Technologies Professorships in 
Computer Science

The Montana State University Computer Science 
Department is searching for two faculty members 
at either the Assistant, Associate or Full level, 
based on experience. Candidates at the Associ-
ate or Full level must have established or rising 
prominence in their field. A three-year start-up 
package is being provided by RightNow Tech-
nologies. Montana State University is a Carnegie 
Foundation RU/VH research university with an 
enrollment of approximately 13,000. The website 
www.cs.montana.edu/faculty-vacancies has infor-
mation on position requirements and application 
procedures. ADA/EO/AA/Veterans Preference.

NEC Laboratories America, Inc.
Research Staff Member - Distributed Systems

NEC Laboratories America, Inc. (http://www.nec-
labs.com) conducts research in support of NEC 
U.S. and global businesses. The research program 
covers many areas–reflecting the breadth of NEC 
business–and maintains a balanced mix of fun-
damental and applied research.

The Large-Scale Distributed Systems group 
conducts advanced research in the area of design, 
analysis, modeling and evaluation of distributed 
systems. Our current focus is to create innovative 
technologies to build next generation large-scale 
computing platforms and to simplify and auto-
mate the management of complex IT systems 
and services. Our researchers have expertise in 
networking, statistics, modeling, distributed sys-
tems, and operating systems. Our group has many 
ongoing projects, especially in the emerging Cloud 
Computing area. The group strongly believes in 
publishing our research and advancing the state-
of-the-art. We also build technologies that solve 
real world problems and ultimately help industry 
business needs. Many of our research results have 
been/will be transferred into industry products.

The group is seeking a member to work in the 
area of distributed systems. The candidate must 
have deep knowledge and extensive experience in 
system architecture design and implementation. 
He/she must have a PhD in CS/CE with strong 
publication records in the following areas:

˲˲ distributed systems, operating systems
˲˲ virtualization, resource provisioning
˲˲ �performance, reliability, dependability  

and security
˲˲ data centers and cloud computing

For consideration, please forward your re-
sume and a research statement to recruit@nec-
labs.com and reference “ASDS-RSM” in the sub-
ject line. EOE/AA/MFDV.

such as computational economics and computa-
tional biology.

The department is committed to increasing the 
diversity of its faculty, and we strongly encourage ap-
plications from women and minority candidates.

A successful candidate must have a solid 
disciplinary foundation and demonstrate prom-
ise of outstanding scholarship in every respect, 
including research and teaching. Please refer to 
www.cs.duke.edu for information about the de-
partment and to www.provost.duke.edu/faculty/ 
for information about the advantages that Duke 
offers to faculty.

Applications should be submitted online at 
www.cs.duke.edu/facsearch. A Ph.D. in computer 
science or related area is required. To guarantee 
full consideration, applications and letters of ref-
erence should be received by November 1, 2010.

Durham, Chapel Hill, and the Research Tri-
angle of North Carolina are vibrant, diverse, and 
thriving communities, frequently ranked among 
the best places in the country to live and work. 
Duke and the many other universities in the area 
offer a wealth of education and employment op-
portunities for spouses and families.

Duke University is an affirmative action, equal 
opportunity employer.

Michigan Technological University
Computer Network Systems Administration 
Faculty Opening

The School of Technology at Michigan Techno-
logical University in Houghton, Michigan invites 
applications for a faculty position in the Computer 
Network Systems Administration (CNSA) program 
starting January 2010. Primary responsibilities are 
to instruct students in the CNSA program and es-
tablish a record of sustained scholarship. Informa-
tion about the School of Technology, along with 
the curriculum, course descriptions, and complete 
announcement, can be found on-line at: http://
www.tech.mtu.edu/. Send requested application 
materials to Dean Frendewey at: jimf@mtu.edu

Michigan Technological University is an 
Equal Opportunity Educational Institution/Equal 
Opportunity Employer.

Middlebury College
Visiting Assistant Professor

Middlebury College invites applications for a 
three-year faculty position in computer science, 
at the rank of Visiting Assistant Professor, begin-
ning September 2011. Specialization is open, with 
preference for candidates working in systems or 
interdisciplinary areas. For more information, 
see http://www.cs.middlebury.edu/job.

Review of applications will begin October 15, 
2010, and continue until the position is filled.

Middlebury College is an Equal Opportunity 
Employer, committed to hiring a diverse faculty 
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promise, potential for developing an externally 
funded research program, and commitment to 
quality advising and teaching at the graduate and 
undergraduate levels. A hired candidate who has 
not defended his or her Ph.D. by September will be 
hired at the rank of Instructor, and must complete 
the Ph.D. by December 31, 2011 to be eligible for 
tenure-track title retroactive to start date.

Applicants should go to http://www.cs.rutgers.
edu/employment/ to apply. Required materials 
are a curriculum vitae, a research statement ad-
dressing both past work and future plans, a teach-
ing statement, and three references.

Applications should be received by November 
15, 2010 for full consideration.

Rutgers values academic diversity and encour-
ages applications from individuals with a variety 
of experiences, perspectives, and backgrounds. 
Females, minorities, dual-career couples, and per-
sons with disabilities are encouraged to apply.

Rutgers is an affirmative  
action/equal opportunity employer.

Stanford University
Department of Computer Science
Faculty Opening

The Department of Computer Science at Stanford 
University invites applications for a tenure-track 
faculty position at the junior level (Assistant or 
untenured Associate Professor). We give higher 
priority to the overall originality and promise of 
the candidate’s work than to the candidate’s sub-

Nuance Communications
Senior Software Engineer

Senior Software Engineer wanted to develop 
speech recognition software for OEM-based mo-
bility handsets. Must have Master’s deg. in Comp. 
Sci, Engineering or a rel. field & 2 yrs. software 
programming or engineering involving C/C++ 
programming & debugging & incl. embedded 
software development. Must have strong profi-
ciency in C language, as demonstrated through 
employer screening test. Must have strong inter-
personal skills for dealing directly with custom-
ers both verbally & in writing. Send resume to 
Melissa Cornell, Employment Specialist, Nuance 
Communications, Inc., One Wayside Road, Burl-
ington, MA 01803-4613.

Princeton University
Computer Science
Post Doctoral Research Associate
Postdoc Positions In Compilation For Parallel 
Architecture Performance And Reliability

The Liberty Research Group ( http://liberty.princ-
eton.edu/ ) at Princeton University’s Department 
of Computer Science is soliciting applications 
for a post-doctoral research positions in Compi-
lation for Parallel Architecture Performance and 
Reliability. The position is a one-year position, 
with possibility of renewal, starting immediately.

The ideal candidate will have recently com-
pleted a Ph.D. in Computer Science and will have 

expertise and experience with one or more of the 
following:

˲˲ Compiler Analysis and Optimization
˲˲ Affine Transformations
˲˲ Automatic Parallelization
˲˲ Parallel Applications
˲˲ Parallel Architectures
˲˲ Software Fault Tolerance
˲˲ Programming Language Design
˲˲ The LLVM Compiler

Princeton University is an equal opportunity em-
ployer and complies with applicable EEO and affir-
mative action regulations You may apply online at:

https://jobs.cs.princeton.edu/postdoc-august/ .
Questions regarding this position can be sent 

by e-mail to David August
(http://www.cs.princetone.edu/~august/ ), 

starting the subject line with “POSTDOC”

Rutgers University
Tenure-Track Position

The Department of Computer Science at Rutgers 
University invites applications for faculty positions 
at all ranks, with appointments starting in Septem-
ber 2011. The search focuses on theoretical and ap-
plied cryptography, although all candidates whose 
research deals with security will be considered.

Applicants for this position must have com-
pleted or be in the process of completing a disserta-
tion in Computer Science or a closely related field, 
and should show evidence of exceptional research 
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Los Alamos National Laboratory is a premier national security research 
institution, delivering innovative scienti c and engineering solutions for 
the nation's most crucial and complex problems. Currently, we have an 
excellent opportunity available for:

ASSOCIATE DIRECTOR, IT
As a key member of the Laboratory’s senior management team, the 
Associate Director for Information Technology will provide leadership, 
management, oversight, strategic planning and execution of information 
systems and technology programs and services.

The successful candidate we seek will have experience leading large, 
complex technical organizations/programs with signi cant  scal and 
programmatic responsibilities. Distinguished track record setting 
technical direction and goals, developing programs, implementing 
effective business practices and systems. A BS degree in a related 
technical discipline is required, while a graduate degree is preferred. 
The candidate must have the ability to obtain and maintain a DOE Q 
Clearance, which normally requires US citizenship.

To apply, please visit www.lanl.gov/jobs 
and reference job number 220100. 

Los Alamos suppor t s a drug-free 
workplace and is an Equal Opportunity 
Employer.
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        
       
          
        
        
     
         
         
         
     
         
       
           
          
        
    

     
     

        

  
   
       
  

http://liberty.princeton.edu/
http://liberty.princeton.edu/
https://jobs.cs.princeton.edu/postdoc-august/
http://www.lanl.gov/jobs
http://www.lanl.gov/jobs
http://www.cs.rutgers.edu/employment/
http://www.cs.rutgers.edu/employment/
http://www.cs.princetone.edu/~august/
mailto:cmscsearch@vcu.edu
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area of specialization within Computer Science.
We are seeking applicants from all areas of Com-

puter Science, spanning theoretical foundations, 
systems, software, and applications. We are also in-
terested in applicants doing research at the frontiers 
of Computer Science with other disciplines, espe-
cially those with potential connections to Stanford’s 
main multidisciplinary initiatives: Energy, Human 
Health, Environment and Sustainability, the Arts 
and Creativity, and the International Initiative.

Applicants must have completed (or be com-
pleting) a Ph.D., must have demonstrated the abil-
ity to pursue a program of research, and must have a 
strong commitment to graduate and undergraduate 
teaching. A successful candidate will be expected to 
teach courses at the graduate and undergraduate 
levels, and to build and lead a team of graduate stu-
dents in Ph.D. research. Further information about 
the Computer Science Department can be found at 
http://cs.stanford.edu. The School of Engineering 
website may be found at http://soe.stanford.edu.

Applications should include a curriculum 
vita, brief statements of research and teaching in-
terests, and the names of at least four references. 
Candidates are requested to ask references to 
send their letters directly to the search committee. 
Applications and letters should be sent to: Search 
Committee Chair, c/o Laura Kenny-Carlson, via 
electronic mail to search@cs.stanford.edu.

The review of applications will begin on Dec. 
1, 2010, and applicants are strongly encouraged 
to submit applications by that date; however, ap-
plications will continue to be accepted at least 
until March 1, 2011.

Stanford University is an equal opportunity 
employer and is committed to increasing the 
diversity of its faculty. It welcomes nominations 
of and applications from women and members 
of minority groups, as well as others who would 
bring additional dimensions to the university’s 
research and teaching missions.

Texas A&M University
Department of Computer Science and 
Engineering
Senior Faculty Position

In recognition of the increasing importance of 
computational sciences, the Department of Com-
puter Science and Engineering at Texas A&M 
University (http://www.cse.tamu.edu) is recruit-
ing for a senior faculty position in computational 
science as broadly defined. This position is one of 
three new senior hires dedicated to computation-
al science that were created as part of an initiative 
led by the Institute for Applied Mathematics and 
Computational Science (http://iamcs.tamu.edu). 
There is considerable startup funding available.

Applications are invited for a senior faculty 
position in computational sciences, starting fall 
2011, in the Department of Computer Science 
and Engineering of the Dwight Look College of 
Engineering at Texas A&M University.

The Department of Computer Science and 
Engineering has 39 tenured, tenure-track faculty 
and four senior lecturers. Texas A&M University 
CSE faculty members are well recognized for 
contributions to their fields. The department cur-
rently has one National Academy of Engineering 
member, seven IEEE Fellows, one ACM Fellow 
and over ten PYI/NYI/CAREER awardees. Addi-
tional information about the department can be 

http://cs.stanford.edu
http://soe.stanford.edu
mailto:search@cs.stanford.edu
http://www.cse.tamu.edu
http://iamcs.tamu.edu
http://www.cityu.edu.hk
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minorities are especially encouraged to apply.
A more extensive description of our search can 

be found at http://www.cs.jhu.edu/Search2011. 
More information on the department is available 
at http://www.cs.jhu.edu.

Applicants should apply using the online ap-
plication which can be accessed from http://www.
cs.jhu.edu/apply. Applications should be received 
by Dec 1, 2010 for full consideration. Questions 
should be directed to fsearch@cs.jhu.edu. The 
Johns Hopkins University is an EEO/AA employer.

Faculty Search
Johns Hopkins University
Department of Computer Science
Room 224 New Engineering Building
Baltimore, MD 21218-2682
Phone: 410-516-8775
Fax: 410-516-6134
fsearch@cs.jhu.edu
http://www.cs.jhu.edu/apply

Texas State University-San Marcos
Department of Computer Science

Applications are invited for a tenure-track position 
at the rank of Assistant Professor. Applicants must 
have completed all requirements for a PhD with spe-
cialization in software engineering by September 
1, 2011. Consult the department recruiting page at 
http://www.cs.txstate.edu/recruitment/ for job du-
ties, qualifications, application procedures, and in-
formation about the university and the department.

Texas State University-San Marcos will not dis-
criminate against any person (or exclude any person 
from participating in or receiving the benefits of any 
of its activities or programs) on any basis prohibited 
by law, including race, color, age, national origin, 
religion, sex or disability, or on the basis of sexual 
orientation. Texas State University-San Marcos is a 
member of the Texas State University System.

Toyota Technological Institute  
at Chicago
Computer Science Faculty Positions  
at All Levels

Toyota Technological Institute at Chicago (TTIC) 
is a philanthropically endowed degree-granting 
institute for computer science located on the 
University of Chicago campus. The Institute is 
expected to reach a steady-state of 12 traditional 
faculty (tenure and tenure track), and 12 limited 
term faculty. Applications are being accepted in 
all areas, but we are particularly interested in:

˲˲ Theoretical computer science
˲˲ Speech processing
˲˲ Machine learning
˲˲ Computational linguistics
˲˲ Computer vision
˲˲ Computational biology
˲˲ Scientific computing

Positions are available at all ranks, and we 
have a large number of limited term positions 
currently available.

For all positions we require a Ph.D. Degree or 
Ph.D. candidacy, with the degree conferred prior 
to date of hire. Submit your application electroni-
cally at: http://ttic.uchicago.edu/facapp/

Toyota Technological Institute at Chicago  
is an Equal Opportunity Employer

found at http://www.cse.tamu.edu.
Texas A&M University CSE faculty applicants 

should apply online at http://www.cse.tamu.edu/
dept_faculty. For questions concerning the posi-
tion, contact: search@cse.tamu.edu .

Texas A&M University is an equal opportunity/
affirmative action employer and actively seeks 
candidacy of women and minorities. Applica-
tions are welcome from dual career couples.

The Johns Hopkins University
Department of Computer Science
Tenure-track Faculty Positions

The Department of Computer Science at The 
Johns Hopkins University is seeking applications 
for tenure-track faculty positions. The search 

is open to all areas of Computer Science, with a 
particular emphasis on candidates with research 
interests in machine learning, theoretical com-
puter science, computational biology, computa-
tional aspects of biomedical informatics, or other 
data-intensive or health-related applications.

All applicants must have a Ph.D. in Computer 
Science or a related field and are expected to show 
evidence of an ability to establish a strong, inde-
pendent, multidisciplinary, internationally rec-
ognized research program. Commitment to qual-
ity teaching at the undergraduate and graduate 
levels will be required of all candidates. Prefer-
ence will be given to applications at the assistant 
professor level, but other levels of appointment 
will be considered based on area and qualifica-
tions. The Department is committed to building 
a diverse educational environment; women and 

http://www.cse.tamu.edu
http://www.cse.tamu.edu/dept_faculty
mailto:search@cse.tamu.edu
http://www.cs.txstate.edu/recruitment/
http://www.cse.tamu.edu/dept_faculty
http://www.cs.jhu.edu/apply
mailto:fsearch@cs.jhu.edu
http://www.cs.jhu.edu
http://www.cs.jhu.edu/apply
http://www.cs.jhu.edu/apply
mailto:fsearch@cs.jhu.edu
http://www.cs.jhu.edu/Search2011
http://ttic.uchicago.edu/facapp/
http://www.iis.sinica.edu.tw
mailto:recruit@iis.sinica.edu.tw
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Toyota Technological Institute
Faculty Position Open

Toyota Technological Institute has an opening for 
a full professor or a tenure-track professor posi-
tion in the Department of Advanced Science and 
Technology, Faculty of Engineering. For more in-
formation, please refer to the following website: 
http://www.toyota-ti.ac.jp/Jinji/home_E.htm

Research field: Intelligent information pro-
cessing including learning theory and its appli-
cation, information theory and its application, 
intelligent systems, computer vision, etc.
Qualifications: The successful candidate must 
have a Ph.D degree (or equivalent), a record of out-
standing research achievements, and the ability to 
conduct strong research programs in the specified 
area. The candidate is expected to teach math-
ematics and programming of the introductory 
level and machine learning, information theory 
and signal processing at the advanced level. The 
supervision of undergraduate and graduate stu-
dents in their research programs is also required.
Starting date: September 2011, or at the earliest 
convenience
Documents:

(1) Curriculum vitae
(2) List of publications
(3) Copies of 5 representative publications
(4) �Description of major accomplishments 

and future plans for research activities 
and education (3 pages)

(5) �Names of two references with e-mail 
addresses and phone numbers

(6) �Application form available from our 
website

Deadline: December 20th, 2010
Inquiry: Committee chair, 
Professor Tatsuo Narikiyo

�(Tel) +81-52-809-1816,  
(E-mail) n-tatsuo@toyota-ti.ac.jp

The above should be sent to:
Mr. Takashi Hirato
Administration Division
Toyota Technological Institute
2-12-1, Hisakata, Tempaku-ku
Nagoya, 468-8511 Japan
(Please write “Application for Intelligent In-

formation Processing Laboratory” in red on the 
envelope.)

The University of Alabama  
at Birmingham
Department of Computer and  
Information Sciences
Research Assistant Professor

The Department of Computer & Information Sci-
ences at the University of Alabama at Birmingham 
(UAB) is seeking candidates for a non-tenure-track 
faculty position at the Research Assistant Profes-
sor level beginning November 1, 2010 or until job 
is filled. Candidates with expertise in Bioinfor-
matics, Artificial Intelligence, and Data Mining 
who could interact with existing research groups 
in the School of Medicine and CIS to apply these 
techniques to the study of genetic diseases (in par-
ticular cystic fibrosis) are of interest. Also potential 
for multidisciplinary collaboration with research 
groups working in the areas of SNP analysis and 
the function of introns would be advantageous. 
The ideal candidate would also have a graduate 

degree in microbiology, biochemistry or genetics 
and actual laboratory experience. Experience as an 
internal consultant in artificial intelligence/bioin-
formatics in either industry or academia would be 
a plus. For additional information about the de-
partment please visit http://www.cis.uab.edu.

Applicants should have demonstrated the po-
tential to excel in one of these areas and in teach-
ing at all levels of instruction. They should also be 
committed to professional service including de-
partmental service. A Ph.D. in Computer Science 
or closely related field is required.

Applications should include a complete cur-
riculum vita with a publication list, a statement of 
future research plans, a statement on teaching ex-
perience and philosophy, and minimally two let-
ters of reference with at least one letter addressing 
teaching experience and ability. Applications and 
all other materials may be submitted via email to 
facapp@cis.uab.edu or via regular mail to:

Search Committee
Department of Computer and Information 

Sciences
115A Campbell Hall
1300 University Blvd
Birmingham, AL 35294-1170

Interviewing for the position will begin as 
soon as qualified candidates are identified, and 
will continue until the position is filled.

The department and university are commit-
ted to building a culturally diverse workforce and 
strongly encourage applications from women and 
individuals from underrepresented groups. UAB 
has an active NSF-supported ADVANCE program 

and a Spouse Relocation Program to assist in the 
needs of dual career couples. UAB is an Affirmative 
Action/Equal Employment Opportunity employer.

University of Chicago
Department of Computer Science
Professor, Associate Professor, Assistant 
Professor, and Instructor

The Department of Computer Science at the Univer-
sity of Chicago invites applications from exception-
ally qualified candidates in all areas of Computer 
Science for faculty positions at the ranks of Profes-
sor, Associate Professor, Assistant Professor, and 
Instructor. The University of Chicago has the high-
est standards for scholarship and faculty quality, 
and encourages collaboration across disciplines.

The Chicago metropolitan area provides a di-
verse and exciting environment. The local econ-
omy is vigorous, with international stature in 
banking, trade, commerce, manufacturing, and 
transportation, while the cultural scene includes 
diverse cultures, vibrant theater, world-renowned 
symphony, opera, jazz, and blues. The University 
is located in Hyde Park, a pleasant Chicago neigh-
borhood on the Lake Michigan shore.

All applicants must apply through the Univer-
sity’s Academic Jobs website, academiccareers. 
uchicago.edu/applicants/Central?quickFind=51071. 
A cover letter, curriculum vitae including a list of 
publications, a statement describing past and cur-
rent research accomplishments and outlining future 
research plans, a description of teaching experience, 
and a list of references must be uploaded to be con-

ACCEPT THE NAVY CHALLENGE
Become a member of an elite research and development community  

involved in basic and applied scientific research and  
advanced technological development for tomorrow’s Navy.

NAVAL RESEARCH LABORATORY
Senior Scientist for Advanced Computing Concepts

ST-1310, $119,554 to $179,700* per annum
*Rate limited to the rate for level III of the Executive Schedule (5U.S.C. 5304(g)(2))

Serves as the technical expert in the diverse areas of high performance computing and networking.  
The position provides expertise in scalable, massively parallel systems, the storage technologies 
required to service these systems, networking research, and application expertise for application 
to the memory – and speed-intensive Department of Navy computational problems.

Provides vision and technical direction to research efforts in massively parallel computing and 
high performance networking, including prototype systems.

As a distinguished scientist and recognized leader in his/her field the incumbent will be called 
upon to brief DoD senior officials regarding Laboratory research efforts in the above areas, to 
serve as an NRL liaison to the Navy and other national and international organizations, and to 
consult on important scientific and programmatic issues.  Because of the sensitivity of some of 
the applications the incumbent must be eligible for TS-SCI security clearance.

Applicants should be recognized as national/international authorities in the above areas of 
research, and should have demonstrated the scientific vision and organizational skills necessary 
to bring long term, multi-faceted research programs to successful completion.

A resume or Optional Application for Federal Employment (OF-612) must be received by 
November 1, 2010.  Apply to:  Naval Research Laboratory, ATTN:  Ginger Kisamore, Code 
1810 Announcement #NWO-XXXX-00-K9734979-FL, 4555 Overlook Avenue, SW, Washington, 
DC  20375-5324 or apply online at https://hro1.nrl.navy.mil/jobs/index.htm.  Faxed or emailed 
applications Will Not be accepted.  Please contact Ginger Kisamore atginger.kisamore@nrl.
navy.mil for more information.

Navy is an Equal Opportunity Employer

http://www.toyota-ti.ac.jp/Jinji/home_E.htm
mailto:n-tatsuo@toyota-ti.ac.jp
http://www.cis.uab.edu
mailto:facapp@cis.uab.edu
https://hro1.nrl.navy.mil/jobs/index.htm
mailto:atginger.kisamore@nrl.navy.mil
mailto:atginger.kisamore@nrl.navy.mil
http://academiccareers.uchicago.edu/applicants/Central?quickFind=51071
http://academiccareers.uchicago.edu/applicants/Central?quickFind=51071
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in science, engineering and technology, commit-
ted to educating students for lifelong success in 
a diverse world and conducting research and 
outreach activities that sustain the economic, 
environmental and social health of the region. 
In February 2009, a campus-wide strategic plan-
ning initiative was launched to reposition UMass 
Lowell as a world-class institution over the next 
decade. A major component of that initiative is 
to ensure that diversity and inclusion are in ev-
ery aspect of our strategic plan. We seek a diverse 
talented candidate pool to be part of our mission 
and achievements.

UMass Lowell is located about 25 miles north-
west of Boston in the high-tech corridor of Mas-
sachusetts. The Computer Science Department 
has 15 tenured and tenure-track faculty, serving 
about 220 BS students, 110 MS students, and 55 
PhD students. It also offers bioinformatics op-
tions at all levels, and a PhD in computational 
mathematics.

The Computer Science faculty received ap-
proximately $6M in the last two years in external 
research funding from the NSF, DOD, DOH, and 
corporations. The department has four NSF CA-
REER Award Recipients. See http://www.cs.uml.
edu for more information.

The Computer Science Department at the Uni-
versity of Massachusetts Lowell invites applica-
tions for one or two Assistant Professor positions, 
and one or two positions at the rank of Associate 
or Full Professor. Positions will start in September 
2011. Initial review of applications will begin im-
mediately. The application deadline is December 
1, 2010. Women and underrepresented minori-

sidered as an applicant. Candidates may also post 
a representative set of publications, to this website. 
The reference letters can be sent by mail or e-mail to:

Chair, Department of Computer Science
The University of Chicago
1100 E. 58th Street, Ryerson Hall
Chicago, IL. 60637-1581

Or to: �recommend-51071@mailman.cs. 
uchicago.edu 

�(attachments can be in pdf, postscript or 
Microsoft Word).

Please note that at least three reference letters 
need to be mailed or e-mailed to the above address-
es and one of them must address the candidate’s 
teaching ability. Applicants must have completed 
all requirements for the PhD except the disserta-
tion at time of application, and must have complet-
ed all requirements for the PhD at time of appoint-
ment. The PhD should be in Computer Science or 
a related field such as Mathematics or Statistics. 
To ensure full consideration of your application all 
materials [and letters] must be received by Novem-
ber 19. Screening will continue until all available 
positions are filled. The University of Chicago is an 
Affirmative Action/Equal Opportunity Employer.

University of Massachusetts Lowell
Computer Science Department
Tenure-Track and Tenured Faculty Positions

The University of Massachusetts Lowell is a com-
prehensive university with a national reputation 

ties are strongly encouraged to apply.
Assistant Professor. Applicants must hold 

a PhD in computer science or a closely related 
discipline, have two or more years of teaching 
and research experience as assistant professors 
or postdoctoral researchers, have participated 
in significant federal grant writing, and be com-
mitted to developing and sustaining an externally 
funded research program. We are especially seek-
ing candidates with strong ongoing research who 
are PIs of funded projects from major US funding 
agencies. These are tenure-track positions.

Associate or Full Professor. Applicants must 
hold a PhD in computer science or a closely re-
lated discipline, have substantial teaching and 
research experience, have made significant 
contributions to their fields on strong ongoing 
research projects, be current PIs of substantial 
grants from major US funding agencies, and be 
committed to sustaining and strengthening an 
externally funded research program. These are 
tenured or tenure-track positions depending on 
qualifications.

All ranks: Outstanding candidates in any ma-
jor computer science research area will be con-
sidered. In addition to developing/expanding a 
research program, the successful applicant will 
be encouraged to contribute to the collaborative 
research of the existing departmental groups. The 
successful candidate will be expected to teach 
undergraduate and graduate courses, including 
department core and specialty areas based on the 
candidate’s expertise, and must have prior effec-
tive teaching experience.

How to apply:
1. Submit a cover letter, a current CV, research 

statement, teaching statement, and selected rel-
evant research publications through our web site 
at http://jobs.uml.edu under “Faculty Positions”. 
You must apply using the online system. Make 
sure to apply to the correct rank.

2. Arrange for at least three letters of recom-
mendation to be included in your application.

3. Optional documents: If available, please in-
clude summaries of teaching evaluations.

The University of Massachusetts Lowell is 
committed to increasing diversity in its faculty, 
staff, and student populations, as well as curricu-
lum and support programs, while promoting an 
inclusive environment. We seek candidates who 
can contribute to that goal and encourage you to 
apply and to identify your strengths in this area.

York University
Faculty Applications, Assistant Professor level

York University, Toronto, Canada: The Depart-
ment of Computer Science and Engineering in 
collaboration with the Departments of Biology, 
and Science and Technology Studies invite fac-
ulty applications in the following areas: (i) Vi-
sual Neuroscience or Computational Neurosci-
ence of Vision, and; (ii) Digital Media (Computer 
Graphics) with research interest in Technosci-
ence - both at the Assistant Professor level in the 
tenure track stream. The deadline for applica-
tions is November 30, 2010 with a start date of 
July 1, 2011. For details, please visit http://yorku.
ca/acadjobs. York University is an Affirmative 
Action Employer.

Department Head
Department of Electrical 
Engineering & Computer Science
South Dakota State University
Brookings, SD
South Dakota State University invites applications 
and nominations for the position of Department 
Head of Electrical Engineering & Computer Science. 
SDSU, the state’s land-grant and largest university, 

is a Carnegie RU/H (high research activity) institution with 12,400 
students. The university is seeking an energetic academic leader with 
strategic vision, outstanding academic credentials and successful 
administrative experience. The Department Head, who reports to the 
Dean of Engineering, holds a 12-month position and oversees all of 
the department’s administrative functions including academic, budget, 
facilities, research and outreach. In FY 2010 the department had 25 
base-funded faculty and 390 students enrolled in undergraduate and 
graduate programs in electrical engineering, computer science and 
software engineering. The department is enjoying strong growth in 
enrollments and funded research, strong ties to industry and a beautiful 
new $12 million-72,000 sq. ft. building.

The successful applicant must have an earned Ph.D. and distinguished 
record of performance consistent with appointment as a tenured full 
professor in a discipline appropriate to the department. He/she must 
also have a record of innovative and strategic leadership that would 
apply to a progressive and growing academic environment and a record 
of effective university administrative experience.

For detailed electronic application instructions, a full description of the 
position and information on the department, university and community, 
please visit http://www.sdstate.edu/eecs/. For the most complete 
consideration, applications should be received by Nov. 1, 2010. For 
questions on the electronic employment process, contact SDSU Human 
Resources at (605) 688-4128. 

South Dakota State University is an AA/EEO employer.

http://mailman.cs.uchicago.edu
http://www.sdstate.edu/eecs/
http://jobs.uml.edu
http://mailman.cs.uchicago.edu
http://www.cs.uml.edu
http://www.cs.uml.edu
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arms to the 
scientific and computer science com-
munity.

It’s also a great testament to what can 
happen when scientists and computer 
scientists collaborate.

Yes. One of the tools we have pro-
duced in a project with the Berkeley 
Water Center is called SciScope. The 
researchers have been looking at the 
hydrology of the Russian River Valley 
in California, in which the patterns of 
use have completely changed over the 
last 50 years. Trees have been chopped 
down, rivers have been dammed, hous-
es have been built, and all those sorts of 
things. The U.S. Geological Survey has 
stream data going back many years, 
but if you want to combine it with the 
rainfall data over the same period, 
that’s held by National Oceanic and At-
mospheric Administration, a different 
government agency. 

So SciScope enables you to combine 
the two data sets. 

You can add your own data and do 
new research. It’s an example of what 
I call “scientific mashups,” and it is, I 
think, increasingly how much research 
will be done in some fields. It’s a little 
like Tim Berners-Lee’s vision of the Se-
mantic Web, but in a scientific context.

Astronomy is another field that has 
benefited from computer science.

The Sloan Digital Sky Survey 
changed everything, because it gener-
ated a high-resolution survey of 25% of 
the night sky. So, instead of an astrono-
mer getting time on a telescope to look 
at a particular star system, going back 
to the university, analyzing the data, 
and publishing the results with one or 
two grad students, you’ve now got data 
on more than 300 million celestial ob-
jects available to study. In this case, the 
data is published before any detailed 
analysis has been done.

Gray was instrumental in building on-
line databases to house the Sloan Digi-
tal Sky Survey data.

Jim and Alex Szalay also thought 
they could apply the same sort of in-
frastructure to a sensor network, so we 
built a sensor network in the grounds 
of Johns Hopkins University to inves-
tigate soil science. The exciting thing 

[contin ue d  f rom  p.  112]

is that a similar sensor network is now 
being deployed in Latin America, in the 
Atlantic rainforest near São Paulo.

What have these projects taught you 
about fostering meaningful collabora-
tion between the scientific and com-
puter science communities?

I’ve come to the conclusion that 
you cannot force scientists to adopt a 
technology no matter how useful you 
think it would be for them! You have to 
get as close to their way of working as 
possible and give them an immediate 
win. You can’t say, “Go climb this cliff, 
and at the top there’s a reward.” So 
you need to form a partnership where 
there’s an early win for the scientist 
and a win for you in that they’re using 
at least some of your great research 
technology, suitably packaged to be us-
able by scientists.

What sort of reception has The Fourth 
Paradigm received?

It’s been very complimentary, which 
is gratifying, and there’s been a huge 
explosion on Twitter and in the blogo-
sphere. We’re working on ideas for a 
follow-up, and I’m working with the 
National Science Foundation’s Advi-
sory Committee on Cyberinfrastruc-
ture on a data task force. It would be 
premature to say we know exactly what 
people need, since that’s what the sci-
entific community has to tell us. We 
haven’t got there yet, and that’s one of 
the reasons why it’s a very exciting time 
in science and computer science.	

Leah Hoffmann is a Brooklyn, NY-based technology 
writer.

© 2010 ACM 0001-0782/10/1000 $10.00

“We are now seeing 
the emergence  
of a fourth paradigm 
for scientific 
research, namely 
data-intensive 
science.”

http://www.acm.org/trets
http://www.acm.org/subscribe
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And that’s an idea you carry on in your 
work with Microsoft?

Indeed. Computer science has pow-
erful technologies it can offer scien-
tists, but also things it can learn from 
tackling some of the difficult scientific 
challenges.  So I really have a wonderful 
job, working both with great computer 
scientists and with great scientists.

The essays in The Fourth Paradigm fo-
cus on new research in areas like envi-
ronmental science, health, infrastruc-
ture, and communication. 

There are important problems fac-
ing the world that we need to solve. The 
book is a call to 

data cleansing, data visualization, and 
how relational databases work. The 
new data-intensive research paradigm 
does not replace the other ones—it’s 
quite clear that data-intensive science 
uses both theory and computation. 

How did you come to be involved in 
this line of research?

I first met Jim Gray in 2001, when I 
was running the U.K.’s e-Science Pro-
gram. In discussions with Jim over the 
next five years, I came to agree with his 
view that the computer science com-
munity can really make a difference to 
scientists who are trying to solve diffi-
cult problems.

To n y  H e y,  v i c e  pre sident  of the Ex-
ternal Research Division of Microsoft 
Research, has long straddled the sci-
entific and computational worlds. Hey 
began his career as a particle physi-
cist at the University of Southampton 
before changing fields and serving as 
head of its School of Electronics and 
Computer Science. Prior to his ap-
pointment at Microsoft, Hey served 
as director of the United Kingdom’s  
e-Science Program, where he worked 
to develop technologies to enable 
collaborative, multidisciplinary, and 
data-intensive science. Here, he talks 
about a book of essays he co-authored, 
The Fourth Paradigm, which commem-
orates the work of his late colleague 
Jim Gray and points the way to a new 
era of scientific collaboration.

The title of your book, The Fourth Par-
adigm, refers to the idea that we need 
new tools to cope with the explosion of 
data in the experimental sciences.

Jim Gray’s insight was that experi-
mental science and theoretical science 
have been with us since Newton, and 
over the last 50 years, computational 
science has matured as a methodology 
for scientific research. Jim thought that 
we are now seeing the emergence of a 
fourth paradigm for scientific research, 
namely data-intensive science. For this, 
researchers need a different set of skills 
from those required for experimental, 
theoretical, and computational science.  

Different skill sets such as?
For data-intensive science, research-

ers need a totally new set of skills such 
as an understanding of data mining, 

Tony Hey speaking at the ninth annual Microsoft Research Faculty Summit, which brought 
together 400 academics from 150 universities across five continents.

[continued on p.  111]

Q&A 
Gray’s Paradigm
Tony Hey talks about Jim Gray and his vision  
of a new era of collaborative, data-intensive science.
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