
Association for
Computing Machinery

COMMUNICATIONS
OF THE ACMcACM.acm.org� 10/2010 VOL.53 NO.10

Peer-to-Peer
Systems

How Offshoring
Affects IT Workers

Linear Logic

Photoshop Scalability

Version Aversion

http://CACM.ACM.ORG

mailto:info@eics2011.org
http://WWW.EICS2011.ORG

014712x

ABCD springer.com

Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER
7 Fax: 1-201-348-4505 7 Email: orders-ny@springer.com or for outside the Americas 7 Write: Springer Customer Service Center GmbH, Haberstrasse 7,
69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 7 Email: orders-hd-individuals@springer.com
7 Prices are subject to change without notice. All prices are net prices.

Springer References & Key Library Titles
Handbook of
Ambient
Intelligence
and Smart
Environments
H. Nakashima, Future
University, Hakodate,
Hokkaido, Japan;

H. Aghajan, Stanford University, Stanford,
CA, USA; J. C. Augusto, University of Ulster at
Jordanstown, Newtownabbey, UK (Eds.)

Provides readers with comprehensive, up-to-
date coverage in this emerging field. Organizes
all major concepts, theories, methodologies,
trends and challenges into a coherent, unified
repository. Covers a wide range of applications
relevant to both ambient intelligence and
smart environments. Examines case studies
of recent major projects to present the reader
with a global perspective of actual develop-
ments.

2010. XVIII, 1294 p. 100 illus. Hardcover
ISBN 978-0-387-93807-3 7 $229.00

Handbook of
Multimedia
for Digital
Entertainment
and Arts
B. Furht, Florida Atlantic
University, Boca Raton,
FL, USA (Ed.)

The first comprehensive handbook to cover
recent research and technical trends in the field
of digital entertainment and art. Includes an
outline for future research directions within
this explosive field. The main focus targets
interactive and online games, edutainment,
e-performance, personal broadcasting, innova-
tive technologies for digital arts, digital visual
and other advanced topics.

2009. XVI, 769 p. 300 illus., 150 in color. Hardcover
ISBN 978-0-387-89023-4 7 $199.00

Handbook
of Natural
Computing
G. Rozenberg, T. Bäck,
J. N. Kok, Leiden Univer-
sity, The Netherlands
(Eds.)

We are now witnessing
an exciting interaction between computer
science and the natural sciences. Natural
Computing is an important catalyst for this
interaction, and this handbook is a major
record of this important development.

2011. Approx. 1700 p. (In 3 volumes, not available
seperately) Hardcover
ISBN 978-3-540-92909-3 7 $749.00

eReference
ISBN 978-3-540-92910-9 7 $749.00

Print + eReference
2011. Approx. 1700 p.
ISBN 978-3-540-92911-6 7 $939.00

Handbook of
Biomedical
Imaging
N. Paragios, École
Centrale de Paris, France;
J. Duncan, Yale Univer-
sity, USA; N. Ayache,
INRIA, France (Eds.)

This book offers a unique guide to the entire
chain of biomedical imaging, explaining how
image formation is done, and how the most
appropriate algorithms are used to address
demands and diagnoses. It is an exceptional
tool for radiologists, research scientists, senior
undergraduate and graduate students in health
sciences and engineering, and university
professors.

2010. Approx. 590 p. Hardcover
ISBN 978-0-387-09748-0 7 approx. $179.00

Encyclopedia of
Machine
Learning
C. Sammut, G. I. Webb
(Eds.)

The first reference work
on Machine Learning
Comprehensive A-Z

coverage of this complex subject area makes
this work easily accessible to professionals and
researchers in all fields who are interested in a
particular aspect of Machine LearningTargeted
literature references provide additional value
for researchers looking to study a topic in more
detail.

2010. 800 p. Hardcover
ISBN 978-0-387-30768-8 7 approx. $549.00

eReference
2010. 800 p.
ISBN 978-0-387-30164-8 7 approx. $549.00

Print + eReference
2010. 800 p.
ISBN 978-0-387-34558-1 7 approx. $689.00

Handbook of
Peer-to-Peer
Networking
X. Shen, University of
Waterloo, ON, Canada;
H. Yu, Huawei Technolo-
gies, Bridgewater, NJ,
USA; J. Buford, Avaya

Labs Research, Basking Ridge, NJ, USA;
M. Akon, University of Waterloo, ON,
Canada (Eds.)

Offers elaborate discussions on fundamentals
of peer-to-peer computing model, networks
and applications. Provides a comprehensive
study on recent advancements, crucial design
choices, open problems, and possible solution
strategies. Written by a team of leading
international researchers and professionals.

2010. XLVIII, 1500 p. Hardcover
ISBN 978-0-387-09750-3 7 $249.00

http://springer.com
mailto:orders-ny@springer.com
mailto:orders-hd-individuals@springer.com

2 communications of the acm | october 2010 | vol. 53 | no. 10

communications of the acm

P
h

o
t

o
g

r
a

p
h

 b
y

 M
a

t
t

h
e

w
 L

o
w

e

Departments

5	 President’s Letter
ACM is Built on
Volunteers’ Shoulders
By Alain Chesnais

7	 Letters To The Editor
How to Celebrate
Codd’s RDBMS Vision

8	 BLOG@CACM
In Search of Database Consistency
Michael Stonebraker discusses the
implications of the CAP theorem
on database management system
applications that span multiple
processing sites.

10	 CACM Online
The Mobile Road Ahead
By David Roman

21	 Calendar

105	 Careers

Last Byte

112	 Q&A
Gray’s Paradigm
Tony Hey talks about Jim Gray
and his vision of a new era of
collaborative, data-intensive science.
By Leah Hoffmann

News

11	 Linear Logic
A novel approach to computational
logic is reaching maturity,
opening up new vistas in
programming languages, proof
nets, and security applications.
By Alex Wright

14	 Personal Fabrication
Open source 3D printers
could herald the start of
a new industrial revolution.
By Graeme Stemp-Morlock

16	 Should Code be Released?
Software code can provide important
insights into the results of research,
but it’s up to individual scientists
whether their code is released—
and many opt not to.
By Dennis McCafferty

Viewpoints

19	 Historical Reflections
Victorian Data Processing
Reflections on the first
payment systems.
By Martin Campbell-Kelly

22	 Technology Strategy and Management
Platforms and Services:
Understanding
the Resurgence of Apple
Combining new consumer devices
and Internet platforms with online
services and content is proving to
be a successful strategy.
By Michael A. Cusumano

25	 Inside Risks
Risks of Undisciplined Development
An illustration of the problems
caused by a lack of discipline in
software development and our
failure to apply what is known
in the field.
By David L. Parnas

28	 Kode Vicious
Version Aversion
The way you number your releases
communicates more than
you might think.
By George V. Neville-Neil

30	 Viewpoint
SCORE: Agile Research
Group Management
Adapting agile software
development methodology
toward more efficient management
of academic research groups.
By Michael Hicks and Jeffrey S. Foster

Association for Computing Machinery
Advancing Computing as a Science & Profession

16

october 2010 | vol. 53 | no. 10 | communications of the acm 3

10/2010
vol. 53 no. 10

P
h

o
t

o
g

r
a

p
h

 b
y

 r
i

c
h

a
r

d
 m

o
r

t
g

e
n

s
t

e
i

n
,

Ill

u

s
t

r
a

t
i

o
n

 b
y

 p
e

t
e

r
 g

r
u

n
d

y

Practice

32	 Photoshop Scalability:
Keeping It Simple
Clem Cole and Russell Williams
discuss Photoshop’s long history
with parallelism, and what is now
seen as the chief challenge.
ACM Case Study

39	 Thinking Clearly About
Performance, Part 2
More important principles to
keep in mind when designing
high-performance software.
By Cary Millsap

46	 Tackling Architectural
Complexity with Modeling
Component models can help
diagnose architectural problems in
both new and existing systems.
By Kevin Montagne

 Articles’ development led by
 queue.acm.org

Contributed Articles

54	 A Neuromorphic Approach
to Computer Vision
Neuroscience is beginning
to inspire a new generation
of seeing machines.
By Thomas Serre and Tomaso Poggio

62	 How Offshoring Affects IT Workers
IT jobs requiring interpersonal
interaction or physical presence
in fixed locations are less likely
to be sent out of the country.
By Prasanna B. Tambe
and Lorin M. Hitt

Review Articles

72	 Peer-to-Peer Systems
Within a decade, P2P has become
a technology that enables innovative
new services, accounts for a fraction
of the Internet traffic, and is used
by millions of people every day.
By Rodrigo Rodrigues
and Peter Druschel

Research Highlights

84	 Technical Perspective
A VM ‘Engine’ That
Makes a Difference
By Carl Waldspurger

85	 Difference Engine:
Harnessing Memory Redundancy
in Virtual Machines
By Diwaker Gupta, Sangmin Lee,
Michael Vrable, Stefan Savage,
Alex C. Snoeren, George Varghese,
Geoffrey M. Voelker, and Amin Vahdat

94	 Technical Perspective
Belief Propagation
By Yair Weiss and Judea Pearl

95	 Nonparametric Belief Propagation
By Erik B. Sudderth, Alexander T. Ihler,
Michael Isard, William T. Freeman,
and Alan S. Willsky

About the Cover:
Peer-to-peer systems
have quickly evolved
beyond their music sharing,
anonymous data sharing,
and scientific computing
origins to become an
efficient means for content
distribution and deploying
innovative services. As
authors Rodrigo Rodrigues
and Peter Druschel
describe in their cover
story beginning on page 72,
peer-to-peer systems

are now being used for myriad purposes, including video
and telephony, live streaming applications, and to distribute
bulk data to many nodes, as depicted in this month’s
cover imagery by Marius Watz.

32 62

http://queue.acm.org
http://CACM-ACM.ORG

4 communications of the acm | october 2010 | vol. 53 | no. 10

communications of the acm
Trusted insights for computing’s leading professionals.

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fields.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

ACM, the world’s largest educational
and scientific computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing field’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Office of Information Systems
Wayne Graves
Director, Office of Financial Services
Russell Harris
Director, Office of Membership
Lillian Israel
Director, Office of SIG Services
Donna Cappo
Director, Office of Publications
Bernard Rous
Director, Office of Group Publishing
Scott Delman

ACM Council
President
Wendy Hall
Vice-President
Alain Chesnais
Secretary/Treasurer
Barbara Ryder
Past President
Stuart I. Feldman
Chair, SGB Board
Alexander Wolf
Co-Chairs, Publications Board
Ronald Boisvert and Jack Davidson
Members-at-Large
Carlo Ghezzi;
Anthony Joseph;
Mathai Joseph;
Kelly Lyons;
Bruce Maggs;
Mary Lou Soffa;
Fei-Yue Wang
SGB Council Representatives
Joseph A. Konstan;
Robert A. Walker;
Jack Davidson

Publications Board
Co-Chairs
Ronald F. Boisvert; Jack Davidson
Board Members
Nikil Dutt; Carol Hutchins;
Joseph A. Konstan; Ee-Peng Lim;
Catherine McGeoch; M. Tamer Ozsu;
Holly Rushmeier; Vincent Shen;
Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Office
Cameron Wilson, Director
1828 L Street, N.W., Suite 800
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

Director of Group Publishing
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
Zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia Kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Marketing & Communications Manager
Brian Hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour;
Martin Campbell-Kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter Harsha; Leah Hoffmann;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

Contact Points
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

Web SITE
http://cacm.acm.org

Author Guidelines
http://cacm.acm.org/guidelines

Advertising

ACM Advertising Department
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

editorial Board

Editor-in-chief
Moshe Y. Vardi
eic@cacm.acm.org

News
Co-chairs
Marc Najork and Prabhakar Raghavan
Board Members
Brian Bershad; Hsiao-Wuen Hon;
Mei Kobayashi; Rajeev Rastogi;
Jeannette Wing

Viewpoints
Co-chairs
Susanne E. Hambrusch; John Leslie King;
J Strother Moore
Board Members
P. Anandan; William Aspray;
Stefan Bechtold; Judith Bishop;
Stuart I. Feldman; Peter Freeman;
Seymour Goodman; Shane Greenstein;
Mark Guzdial; Richard Heeks;
Rachelle Hollander; Richard Ladner;
Susan Landau; Carlos Jose Pereira de Lucena;
Beng Chin Ooi; Loren Terveen

 Practice
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler; David J. Brown;
Bryan Cantrill; Terry Coatta; Mark Compton;
Stuart Feldman; Benjamin Fried;
Pat Hanrahan; Marshall Kirk McKusick;
George Neville-Neil; Theo Schlossnagle;
Jim Waldo

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

Contributed Articles
Co-chairs
Al Aho and Georg Gottlob
Board Members
Yannis Bakos; Elisa Bertino; Gilles
Brassard; Alan Bundy; Peter Buneman;
Andrew Chien; Anja Feldmann;
Blake Ives; James Larus; Igor Markov;
Gail C. Murphy; Shree Nayar; Lionel M. Ni;
Sriram Rajamani; Jennifer Rexford;
Marie-Christine Rousset; Avi Rubin;
Fred B. Schneider; Abigail Sellen;
Ron Shamir; Marc Snir; Larry Snyder;
Manuela Veloso; Michael Vitale;
Wolfgang Wahlster; Andy Chi-Chih Yao;
Willy Zwaenepoel

Research Highlights
Co-chairs
David A. Patterson and Stuart J. Russell
Board Members
Martin Abadi; Stuart K. Card; Deborah Estrin;
Shafi Goldwasser; Monika Henzinger;
Maurice Herlihy; Dan Huttenlocher;
Norm Jouppi; Andrew B. Kahng;
Gregory Morrisett; Michael Reiter;
Mendel Rosenblum; Ronitt Rubinfeld;
David Salesin; Lawrence K. Saul;
Guy Steele, Jr.; Madhu Sudan;
Gerhard Weikum; Alexander L. Wolf;
Margaret H. Wright

Web
Co-chairs
James Landay and Greg Linden
Board Members
Gene Golovchinsky; Jason I. Hong;
Jeff Johnson; Wendy E. MacKay

 

ACM Copyright Notice
Copyright © 2010 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profit or commercial
advantage and that copies bear this
notice and full citation on the first
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specific permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the first or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
An annual subscription cost is included
in ACM member dues of $99 ($40 of
which is allocated to a subscription to
Communications); for students, cost
is included in $42 dues ($20 of which
is allocated to a Communications
subscription). A nonmember annual
subscription is $100.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide financial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

Communications of the ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offices.

POSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S M A G A Z

I
N

E

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

october 2010 | vol. 53 | no. 10 | communications of the acm 5

president’s letter

It is a great honor to have been elected ACM
President. I must say it’s been an interesting
road to this juncture. My first ACM role was
volunteering to maintain the mailing list of

my local SIGGRAPH chapter in Paris in
the mid-1980s. Over the last 25 years, I
have continued to volunteer for many
different roles within the organiza-
tion. I am proud to be the first French
citizen and the second European to
hold this position, as it clearly illus-
trates that ACM has become a truly in-
ternational organization. I’m looking
forward to the day when we can look
back at this time as the beginning of
a long chain of volunteer leaders com-
ing from countries throughout every
region of the world.

This organization is largely built
on the energy and devotion of many
dedicated volunteers. I’d like to
take this opportunity to share some
thoughts on the value of volunteering
at ACM. When you look at all of the
activities that make up the offerings
of our organization, it is amazing to
note that members who volunteer
their time to deliver the content we
provide do the vast majority of the
work. There are many opportunities
for members to step forward and
donate their time to the success of
ACM’s various endeavors.

I recently attended the annual SIG-
GRAPH conference in Los Angeles
where volunteer efforts are highly visi-
ble. With a multimillion-dollar budget,
it is by far the largest conference that
ACM sponsors, attracting tens of thou-
sands of attendees every year. Though
a conference of that size calls upon
many highly skilled professional con-
tractors to implement the vision of the

conference organizers, the content is
selected and organized by volunteers. I
encourage you to visit Communications’
Web site (http://cacm.acm.org) to view
a dynamic visual representation of
how much work went into the prepa-
ration of the conference over a three-
year period. Created by Maria Isabel
Meirelles, of Northeastern University,
Boston, the series of graphs illustrate
how volunteer involvement increased
dramatically over the 40-month pre-
paratory period as we got closer to
the dates of the event. By the time the
conference took place a total of over
580 volunteers had put in over 70,000
hours of work to make the conference
successful. That’s over eight years of
cumulated effort!

Not all ACM endeavors require
as much volunteer effort as the an-
nual SIGGRAPH conference. There
are a multitude of tasks that you, as a
member of this organization, can vol-
unteer your services for. You can start
by checking out the ACM professional
chapter in your area. We have ACM
general interest chapters as well as
more specialized chapters associated
with any of ACM’s 34 special interest
groups, (SIGs) that can use volunteer
support. Tasks cover everything from
greeting people at an event hosted by
your local chapter to maintaining a
Web presence for a particular activity.
If a chapter does not yet exist in your
area, you can volunteer to establish
one. From there you can consider vol-
unteering to help organize a confer-

ence or being a referee to evaluate the
quality of submitted content to ACM’s
40+ journals and periodicals or the
more than 170 conferences and work-
shops that we sponsor.

By starting off with a task that is
small and easily manageable, you can
get a sense of the time requirements
involved. As you proceed you might
find you want to take on more. Work-
ing as a volunteer at ACM is extremely
rewarding. You can see the value of
your effort in the results of the activity
you have supported. Little did I imag-
ine, when I first volunteered so long
ago to manage a mailing list for my
local SIGGRAPH chapter, that I would
one day wind up elected to the position
of president of the organization.

Over the decades I’ve held mul-
tiple positions including contributing
to the publication of the SIGGRAPH
quarterly, serving as director for Chap-
ters on the Local Activities Board,
chairing the SIG Governing Board, and
serving on the organizing committee
of the annual SIGGRAPH conference.
Each experience has carried with it the
satisfaction of giving back to the com-
munity that ACM represents. I’d like to
encourage you to donate your time to
help make ACM a success. Volunteer-
ism is the core of what makes ACM
what it is. 	

Alain Chesnais (chesnais@acm.org) heads Visual
Transitions, a Toronto-based consulting company.

© 2010 ACM 0001-0782/10/1000 $10.00

ACM is Built on
Volunteers’ Shoulders

DOI:10.1145/1831407.1831408		 Alain Chesnais

http://cacm.acm.org
mailto:chesnais@acm.org

Priority Code: AD10

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

o ACM Professional Membership: $99 USD

o ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

o ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

o ACM Student Membership: $19 USD

o ACM StudentMembershipplus theACMDigital Library: $42USD

o ACM StudentMembership PLUSPrintCACMMagazine: $42USD

o ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

o Visa/MasterCard o American Express o Check/money order

o Professional Member Dues ($99 or $198) $ ______________________

o ACM Digital Library ($99) $ ______________________

o Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

letters to the editor

october 2010 | vol. 53 | no. 10 | communications of the acm 7

How to Celebrate Codd’s RDBMS Vision
DOI:10.1145/1831407.1831409		

implement Codd’s rules in their purest form,
as McGoveran and Date point out.

Gary Anthes, Arlington, VA

Past Future Visions of
Two-Way Cable Television
The name “PLATO” in “Celebrat-
ing the Legacy of PLATO” by Kirk L.
Kroeker (Aug. 2010) triggered my own
memories from the early 1970s when
I was researching a technology called
two-way cable television, whereby in-
teractive broadband services would be
possible by blending computers and
communications systems. I eventually
published Talk-Back TV: Two-Way Cable
Television (Tab Books, 1976), including
an overview of the PLATO system.

I was reminded I had good things to
say about the system, including about
its plasma-panel display. But in consid-
ering PLATO as something that would
work in a two-way-television environ-
ment, I suggested there would be a
problem putting it onto a cable-televi-
sion network because ordinary televi-
sions could not do many things plasma
panels could do. Leaving wiggle room,
I added that PLATO researchers had
produced considerable material that
would work with ordinary CRTs.

Kroeker quoted Brian Dear saying
PLATO was a computer system focused
on connecting people and an excellent
predictor of how the Internet would
evolve. Maybe so, but the same could
be said about technology being devel-
oped or envisioned as “two-way cable
television” at the time.

In the same way an exploration of
PLATO’s history could “enrich every-
one’s overall perspective” of today’s
interactive, networked technologies,
so, too, could a look back at visions of
interactive broadband originally con-
jured 40 years ago.

Richard H. Veith, Port Murray, NJ 	

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2010 ACM 0001-0782/10/1000 $10.00

W
hile we were pleased
Communications cel-
ebrated E.F. Codd’s
seminal article “A Re-
lational Model of Data

for Large Shared Data Banks” (June
1970) in “Happy Birthday, RDBMS!” by
Gary Anthes (May 2010), we were also
dismayed by its inaccuracies and mis-
representations, including about more
than just pre-RDBMS history.

For example, saying “Codd’s rela-
tional model stored data in rows and
columns…” (emphasis added) is com-
pletely at odds with Codd’s goal that
“Future users of large data banks must
be protected from having to know how
data is organized in the machine.”
Rows and columns are the canonical
representation of Codd’s relations,
not a constraint on physical data struc-
tures. Getting this wrong completely
undermines Codd’s contribution.
Moreover, no viable commercial RD-
BMS has stored data purely in rows
and columns, nor has any vendor com-
pletely implemented the logical and
physical data independence his theory
made possible.

Other inaccuracies and misleading
statements abound:

DB2 did not “edge out IMS and IDMS.”
It took a long time for the transac-
tion rates of any commercial RDBMS
to compete with those of IMS, which
remains an important commercial
DBMS;

Ingres and its derivatives did not have
the “DEC VAX market to themselves.”
Interbase, Oracle, and Rdb/VMS were
early players (1980s), and Ingres was
initially available on VAX/VMS but—
like many RDBMS products that pre-
ceded the IBM products—introduced
on Unix;

The “database wars” raged for almost
two decades. Relational repeatedly had
to prove itself against network, hier-
archical, and object-oriented DBMSs,
continuing with XML and Hadoop con-
tenders;

Map/Reduce is a non-declarative pro-
grammer’s distributed query template,
and the Hadoop Distributed File System

is a storage model. Neither rises to the
level of data model or programming
language;

Whether it was “easier to add the
key features of OODBs to the relational
model than start from scratch with a
new paradigm” never happened. At best,
features were added to SQL and SQL-
based products, but these misguided
additions did violence to the relational
model’s way of achieving desired ca-
pabilities, namely extensible domain
support;

“Querying geographically distrib-
uted relational databases” is not un-
solved. Implementing the relational
model’s physical data independence
solved it;

Since 1980, numerous RDBMS prod-
ucts have provided partial implementa-
tion of physical data independence and
been widely used in industry. Perhaps
David DeWitt [cited by Anthes and di-
rector of Microsoft’s Jim Gray Systems
Laboratory at the University of Wis-
consin-Madison] was referring to the
problems of querying heterogeneous,
distributed data with inadequate
metadata, since he was quoted saying
databases “created by different orga-
nizations” and “almost but not quite
alike”; and

Database scalability has always been
about numbers of concurrent users and
locations, user variety, and manage-
ability, not just data volumes. One of
us (McGoveran) published (late 1980s,
1990s) studies evaluating scalability
of commercial products along these
lines.

�David McGoveran, Boulder Creek, CA
C.J. Date, Healdsburg, CA

Author’s Response:
E.F. Codd’s model let users “see” their
data as if it were stored in ordinary tables,
rows, and columns. This was easier for
them to understand than the pointers and
hierarchical trees used in other models.
Such simplification was one reason the
RDBMS model edged out IMS and IDMS,
though IMS is still used in a few narrow (but
important) niches. Alas, vendors did not

mailto:letters@cacm.acm.org

8 communications of the acm | october 2010 | vol. 53 | no. 10

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

and that recovery from errors has more
dimensions to consider. We assume a
typical hardware model of a collection
of local processing and storage nodes
assembled into a cluster using LAN
networking. The clusters, in turn, are
wired together using WAN networking.

Let’s start with a discussion of what
causes errors in databases. The follow-
ing is at least a partial list:

1.	 Application errors. The applica-
tion performed one or more incorrect
updates. Generally, this is not dis-
covered for minutes to hours there-
after. The database must be backed
up to a point before the offending
transaction(s), and subsequent activity
redone.

2.	 Repeatable DBMS errors. The
DBMS crashed at a processing node.
Executing the same transaction on
a processing node with a replica will
cause the backup to crash. These er-
rors have been termed “Bohr bugs.”2

3.	 Unrepeatable DBMS errors. The
database crashed, but a replica is like-
ly to be ok. These are often caused by
weird corner cases dealing with asyn-
chronous operations, and have been
termed “Heisenbugs.”2

4.	 Operating system errors. The OS
crashed at a node, generating the “blue
screen of death.”

5.	 A hardware failure in a local clus-
ter. These include memory failures,
disk failures, etc. Generally, these
cause a “panic stop” by the OS or the
DBMS. However, sometimes these fail-
ures appear as Heisenbugs.

6.	 A network partition in a local
cluster. The LAN failed and the nodes

Michael Stonebraker
“Errors in Database
Systems, Eventual
Consistency, and
the CAP Theorem”
http://cacm.acm.org/

blogs/blog-cacm/83396

Recently, there has been considerable
renewed interest in the CAP theorem1
for database management system
(DBMS) applications that span multi-
ple processing sites. In brief, this theo-
rem states that there are three interest-
ing properties that could be desired by
DBMS applications:

C: Consistency. The goal is to al-
low multisite transactions to have the
familiar all-or-nothing semantics,
commonly supported by commercial
DBMSs. In addition, when replicas are
supported, one would want the repli-
cas to always have consistent states.

A: Availability. The goal is to sup-
port a DBMS that is always up. In other
words, when a failure occurs, the sys-
tem should keep going, switching over
to a replica, if required. This feature
was popularized by Tandem Comput-
ers more than 20 years ago.

P: Partition-tolerance. If there is a

network failure that splits the process-
ing nodes into two groups that cannot
talk to each other, then the goal would
be to allow processing to continue in
both subgroups.

The CAP theorem is a negative result
that says you cannot simultaneously
achieve all three goals in the presence
of errors. Hence, you must pick one ob-
jective to give up.

In the NoSQL community, the CAP
theorem has been used as the justifi-
cation for giving up consistency. Since
most NoSQL systems typically disallow
transactions that cross a node bound-
ary, then consistency applies only to
replicas. Therefore, the CAP theorem is
used to justify giving up consistent rep-
licas, replacing this goal with “eventual
consistency.” With this relaxed notion,
one only guarantees that all replicas
will converge to the same state even-
tually, i.e., when network connectiv-
ity has been reestablished and enough
subsequent time has elapsed for rep-
lica cleanup. The justification for giv-
ing up C is so that the A and P can be
preserved.

The purpose of this blog post is to as-
sert that the above analysis is suspect,

In Search of
Database Consistency
Michael Stonebraker discusses the implications of
the CAP theorem on database management system applications
that span multiple processing sites.

doi:10.1145/1831407.1831411			 http://cacm.acm.org/blogs/blog-cacm

http://cacm.acm.org
http://twitter.com/blogcacm
http://cacm.acm.org/blogs/blog-cacm
http://cacm.acm.org/blogs/blog-cacm/83396
http://cacm.acm.org/blogs/blog-cacm/83396

blog@cacm

october 2010 | vol. 53 | no. 10 | communications of the acm 9

can no longer all communicate with
each other.

7.	 A disaster. The local cluster is
wiped out by a flood, earthquake, etc.
The cluster no longer exists.

8.	 A network failure in the WAN con-
necting the clusters together. The WAN
failed and clusters can no longer all
communicate with each other.

First, note that errors 1 and 2 will
cause problems with any high avail-
ability scheme. In these two scenarios,
there is no way to keep going; i.e., avail-
ability is impossible to achieve. Also,
replica consistency is meaningless; the
current DBMS state is simply wrong.
Error 7 will only be recoverable if a lo-
cal transaction is only committed after
the assurance that the transaction has
been received by another WAN-con-
nected cluster. Few application build-
ers are willing to accept this kind of
latency. Hence, eventual consistency
cannot be guaranteed, because a trans-
action may be completely lost if a disas-
ter occurs at a local cluster before the
transaction has been successfully for-
warded elsewhere. Put differently, the
application designer chooses to suf-
fer data loss when a rare event occurs,
because the performance penalty for
avoiding it is too high.

As such, errors 1, 2, and 7 are exam-
ples of cases for which the CAP theorem
simply does not apply. Any real system
must be prepared to deal with recovery
in these cases. The CAP theorem can-
not be appealed to for guidance.

Let us now turn to cases where the
CAP theorem might apply. Consider
error 6 where a LAN partitions. In my
experience, this is exceedingly rare,
especially if one replicates the LAN (as
Tandem did). Considering local fail-
ures (3, 4, 5, and 6), the overwhelming
majority cause a single node to fail,
which is a degenerate case of a net-
work partition that is easily survived by
lots of algorithms. Hence, in my opin-
ion, one is much better off giving up P
rather than sacrificing C. (In a LAN en-
vironment, I think one should choose
CA rather than AP.) Newer SQL OLTP
systems appear to do exactly this.

Next, consider error 8, a partition
in a WAN network. There is enough
redundancy engineered into today’s
WANs that a partition is quite rare. My
experience is that local failures and
application errors are way more likely.

Moreover, the most likely WAN fail-
ure is to separate a small portion of
the network from the majority. In this
case, the majority can continue with
straightforward algorithms, and only
the small portion must block. Hence, it
seems unwise to give up consistency all
the time in exchange for availability of
a small subset of the nodes in a fairly
rare scenario.

Lastly, consider a slowdown either
in the OS, the DBMS, or the network
manager. This may be caused by a skew
in load, buffer pool issues, or innu-
merable other reasons. The only deci-
sion one can make in these scenarios
is to “fail” the offending component;
i.e., turn the slow response time into a
failure of one of the cases mentioned
earlier. In my opinion, this is almost
always a bad thing to do. One simply
pushes the problem somewhere else
and adds a noticeable processing load
to deal with the subsequent recovery.
Also, such problems invariably occur
under a heavy load—dealing with this
by subtracting hardware is going in the
wrong direction.

Obviously, one should write software
that can deal with load spikes without
failing; for example, by shedding load
or operating in a degraded mode. Also,
good monitoring software will help
identify such problems early, since the
real solution is to add more capacity.
Lastly, self-reconfiguring software that
can absorb additional resources quick-
ly is obviously a good idea.

In summary, one should not throw
out the C so quickly, since there are
real error scenarios where CAP does
not apply and it seems like a bad trade-
off in many of the other situations.

References
1.	E ric Brewer, “Towards Robust Distributed Systems,”

http://www.cs.berkeley.edu/~brewer/cs262b-2004/
PODC-keynote.pdf

2.	 Jim Gray, “Why Do Computers Stop and What Can be
Done About It,” Tandem Computers Technical Report
85.7, Cupertino, CA, 1985. http://www.hpl.hp.com/
techreports/tandem/TR-85.7.pdf

Disclosure: Michael Stonebraker is associated with four
startups that are producers or consumers of database
technology.

Readers’ comments
“Degenerate network partitions” is a very
good point—in practice I have found that
most network partitions in the real world
are of this class.

I like to term certain classes of network
partitions “trivial.” If there are no clients
in the partitioned region, or if there are
servers in the partitioned region, it is then
trivial. So it could involve more than one
machine, but it is then readily handled.

—Dwight Merriman

I think a lot of the discussion about
distributed database semantics, much like
a lot of the discussion about SQL vs. NoSQL,
has been somewhat clouded by a shortage
of pragmatism. So an analysis of the
CAP theorem in terms of actual practical
situations is a welcome change :-)

My company, GenieDB, has developed
a replicated database engine that
provides “AP” semantics, then developed
a “consistency buffer” that provides
a consistent view of the database as
long as there are no server or network
failures; then providing a degraded
service, with some fraction of the records
in the database becoming “eventually
consistent” while the rest remain
“immediately consistent.” Providing a
degraded service rather than no service
is a good thing, as it reduces the cost
of developing applications that use a
distributed database compared to existing
solutions, but that is not something that
somebody too blinded by the CAP theorem
might consider!

In a similar vein, we’ve provided both
NoSQL and SQL interfaces to our database,
with different trade-offs available in both,
and both can be used at once on the same
data. People need to stop fighting over X vs.
Y and think about how to combine the best
of both in practical ways!

—Alaric Snell-Pym

Michael Stonebraker is an adjunct professor at the
Massachusetts Institute of Technology.

© 2010 ACM 0001-0782/10/1000 $10.00

“In the NoSQL
community,
the CAP theorem
has been used
as the justification
for giving up
consistency.”

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf

10 communications of the acm | october 2010 | vol. 53 | no. 10

cacm online

The Mobile Road Ahead

ACM is planning to launch a mobile version of the Communications Web site and
a series of mobile applications in the coming months. To determine how best to
proceed, we have been directly and indirectly collecting data from members for
months to help guide our decision making. We have conducted surveys, met with
focus groups, and examined usage statistics.

The following table and pie chart show how users with mobile devices have
been getting to the Communications Web site. The percentage of users accessing
the site with mobile devices is small, but the number is trending upward. This
report is based on sampled data.

Here are some of the key takeaways from our research that will influence our
decisions going forward:

˲˲ The Time Is Right. There is a growing need to access Communications content
from mobile platforms. “[This] is the way things are moving,” said one software
engineer.

˲˲ Keep It Simple. Users want to be able to find the content quickly and easily on
their devices, from anywhere anytime.

˲˲ Search, Save, Share. Most “small screen” mobile devices are being used
primarily to find, collect, and share articles.

˲˲ Consumption Devices Are Coming. Media-ready platforms like the iPad will
create new ways to present and consume content.

˲˲ This Is The Beginning. We’ve collected valuable data on which mobile devices
are being used to access Communications content, and that is guiding our path in
the short term. But for the long term we will remain platform agnostic, and will
support the systems that are most heavily used and called for by members.

DOI:10.1145/1831407.1831412	 David Roman

ACM
Member
News
Supercomputing
in New Orleans

The 23rd
	 meeting of the
	 world’s largest
	 conference on
	 supercomputing,
	 SC10, takes
	 place this
November 13–19 in New
Orleans. “SC10 will have more
conference space than any
previous SC conference,” says
Barry V. Hess, SC10 general
chair and deputy chief
information officer at Sandia
National Laboratories, “and we
have expanded our technical
program sessions, education
program, and exhibit space to
showcase the technical
advances in high-performance
computing [HPC], networking,
storage, and analysis, all in one
location.”

SC10’s three main thrust
areas are climate simulation,
which will explore the latest
R&D efforts that are taking
advantage of HPC systems to
enable climate simulation
applications and techniques;
heterogeneous computing,
which will focus on software
infrastructure for making
effective use of accelerator or
heterogeneous supercomputers;
and data-intensive computing,
whose focus will be on how data
is shared and communicated
among scientists.

Like the last four SC
conferences, SC10 will feature a
disruptive technologies program.
This year’s focus will be new
computing architectures and
interfaces that will significantly
impact the HPC field.

“New Orleans is about the
music, the food, the culture,
the people, and the wonderful
fusion of all these things,” says
Hess. “The SC10 committee has
been meeting in New Orleans
for three years of planning
and has enjoyed all aspects
of the city, from the unique
food to the historical tours.
Our recommendation is to get
out and visit the shops, the
restaurants, Jackson Square,
Café Du Monde, take a cemetery
or swamp tour, and enjoy your
time in a unique city.”

For more information, visit
http://sc10.supercomputing.org/.

—Jack Rosenberger

Operating System Percent of Visits

	 iPhone 58.46%

	 Android 15.51%

	 iPad 14.56%

	 iPod 7.76%

	B lackBerry 1.68%

	 SymbianOS 1.19%

	 Windows 0.51%

	 PalmOS 0.13%

	 Samsung 0.08%

	 Other 0.05%

Source: Google Analytics

http://sc10.supercomputing.org/

 N
news

october 2010 | vol. 53 | no. 10 | communications of the acm 11

P
h

o
t

o
g

r
a

p
h

 b
y

 A
n

n
e

 v
a

n
 d

e
r

 S
t

e
g

e
n puter science, Girard began to see a way

out of this “foundational aphoria.” His
chief insight was that logic could func-
tion without this unspoken assumption
of perenniality. “This was a big shock,”
Girard recalls. “The discovery of linear
logic went completely against all the
things I had been taught in logic.”

Linear Logic
A novel approach to computational logic is reaching
maturity, opening up new vistas in programming languages,
proof nets, and security applications.

Science | doi:10.1145/1831407.1831413	 Alex Wright

W
h e n t h e F r e n c h lo-
gician Jean-Yves Gi-
rard first visited Xerox
PARC during a trip to
Silicon Valley in 1984,

he knew he was in the right place. See-
ing computer scientists collaborating
with linguists, ethnographers, and
other non-programmers, he started to
consider the possibilities of bridging
computer science with his own branch
of philosophy. “What impressed me
most was the change of spirit,” he re-
calls. “It was a very special time.”

Following his trip to California, Gi-
rard began work on his breakthrough
paper “Linear Logic,” which postulated
an entirely new approach to logic, one
deeply informed by computational
principles. In the ensuing years, the
principles of linear logic have found
their way into a broad range of other are-
nas including programming languages,
proof nets, security applications, game
semantics, and even quantum physics.

In the early 1980s, logicians like Gi-
rard were just starting to take an inter-
est in computer science, while a hand-
ful of computer scientists were starting
to recognize the potential of logical
proof systems as a framework for func-
tional programming. Linear logic rep-
resented an important step forward

for computer science because it chal-
lenged the conceptual limitations of
traditional classical logic. For thou-
sands of years, the study of logic had
hinged on the assumption of perma-
nent Aristotelian truths, or unchanging
essences. A was A, B was B, and would
ever be thus. Through the lens of com-

French logician Jean-Yves Girard, author of the seminal paper “Linear Logic.”

12 communications of the acm | october 2010 | vol. 53 | no. 10

news

to implement a proof-carrying file sys-
tem (PCFS), featuring an access con-
trol policy that is stated as a logical
theory, wherein file access is granted
on the condition of a logical proof of
policy compliance. “Linear logic is tre-
mendously useful here,” he explains,
“because we can easily represent the
change of state that takes place, for ex-
ample, when you read or write a file.”

Working with Symantec, Pfenning
and CMU postdoctoral researcher
Deepak Garg have applied PCFS to for-
malize the access control policies of
the national intelligence community in
the United States. In collaboration with
Jamie Morgenstern, an undergraduate
student from the University of Chicago,
Pfenning is now working on extending
the implementation to handle even
more complex policies. Pfenning feels
the biggest challenges lie in translating

complex real-world rule sets into un-
ambiguous logic. The ideal outcome is
what he calls “an abstract logical form
that is theoretically tractable and at the
same time practically useful.”

Proof Nets
Linear logic has also opened new doors
in the field of proof nets. Prior to the
introduction of linear logic, most com-
puter scientists working in the field
relied on intuitionistic logic, follow-
ing the well-established Curry-Howard
Correspondence, which suggested that
formal proof calculi shared a common
structure with computational models.
Before the advent of linear logic, this
model had served as the de facto stan-
dard for types. “Linear logic enriched
this world greatly,” says Dale Miller,
director of research at INRIA Saclay,
who has spent the last several years ap-
plying the principles of linear logic to
proof systems.

“Originally, proof systems were
used to build ‘big-step’ inference rules
from the ‘small-step’ inference rules
of linear logic,” Miller explains. Now,
he is exploring the possibilities of so-
called focused proof systems by using
those “small-step” inference rules to
build a range of proof systems for clas-
sical and intuitionistic logic. “If one
has an interpreter for focused linear
logic, that interpreter can be used as an
interpreter for many proof systems,”
says Miller, citing the examples of em-
ulating sequent calculus and tableaux.
“Different choices yield different and

Whereas classical logic might sup-
port an assertion like type A → B, com-
puter programs require a set of concrete
instructions for transforming A into B,
such as applications, variables, or excep-
tion handlers. In the eyes of a computer
program, then, A is not a permanent
entity but a consumable resource. To
address this problem, Girard proposed
a resource-conscious approach to logic,
laying out an entirely new framework
capable of describing resources that
could be used and depleted during the
course of an operation.

In the nearly quarter of a century
since Girard published his seminal pa-
per, most of the foundational theoreti-
cal work in linear logic has been com-
pleted. However, computer scientists
continue to find new applications of the
theory across a wide range of disciplines
like proof nets, categorical semantics,
and computer security applications.

At Carnegie Mellon University
(CMU), computer science professor
Frank Pfenning has been exploring the
application of linear logic to distrib-
uted security problems. After one of
his students introduced him to linear
logic, he became convinced it provided
the ideal conceptual framework for
specifying difficult-to-encode rules like
complex privacy policies or resource
conservation strategies. “I was most
interested in characterizing, logically,
complex properties of distributed sys-
tems,” Pfenning explains.

Working with a team of students,
he used the principles of linear logic

“The discovery
of linear logic went
completely against
all the things I had
been taught in
logic,” says
Jean-Yves Girard.

Obituary

Nicolas Georganas, Multimedia Guru, Dies at 67
Nicolas D. Georganas, a leader
in multimedia networking, died
on July 27 at age 67. Georganas
was founding editor-in-chief,
in 2004, of ACM Transactions
on Multimedia Computing,
Communications, and
Applications (ACM TOMCCAP).
He promoted the linking of
video, audio, and other sensory
input—lately focusing on
haptics—for a wide variety of
distributed interactive systems,
from telemedicine to high-level
gaming to security.

“He is one of the godfathers of
multimedia,” says Ralf Steinmetz,

editor-in-chief of ACM TOMCCAP
and adjunct professor at
Technical University Darmstadt.
“Whatever we did in this area,
particularly with ACM, he was
from the beginning involved in it.”

“He was incredibly kind
and very friendly,” says Klara
Nahrstedt, a computer science
professor at the University of
Illinois at Urbana-Champaign,
who described Georganas as an
elder statesman in a young field.
“He truly served many people as
a mentor.”

Born and educated in
Athens, Greece, Georganas

earned a Ph.D. in electrical
engineering at the University
of Ottawa, where he served on
the faculty from 1970 until his
death. Georganas’ research
contributions included ambient
multimedia intelligence systems,
multimedia communications,
and collaborative virtual
environments. He published
more than 425 technical papers
and is co-author of Queueing
Networks—Exact Computational
Algorithms: A Unified Theory by
Decomposition and Aggregation.

Georganas was dedicated
to building a multimedia

community, and was known for
encouraging his students, many
of whom are now professors in
Canada and elsewhere. Steinmetz
said Georganas, who was fluent in
English, French, and Greek and
spoke some Spanish and German,
wanted the community to have
an international flavor and
championed tolerance among its
members. At the same time, he
demanded people do their share
of the work, and he’d push to get
what he wanted. “He tried always
to be fair,” Steinmetz says. “He
was also good at twisting arms.”

—Neil Savage

news

october 2010 | vol. 53 | no. 10 | communications of the acm 13

Milestones

CS Awards
Nevanlinna Prize
Daniel Spielman, a professor of
computer science and applied
mathematics at Yale University,
won the Rolf Nevanlinna Prize,
one of the highest honors in
the field of mathematics, from
the International Mathematical
Union. The Nevanlinna Prize
recognizes researchers under
the age of 40 for “outstanding
contributions in mathematical
aspects of information science.”
Spielman’s research has
included smoothed analysis
of linear programming,
algorithms for graph-based
codes, and applications of
graph theory to numerical
computing.

“The same way that
physicists grow up dreaming
about winning the Nobel Prize,
I’ve dreamed of winning the
Nevanlinna Prize ever since
I was a graduate student,”
Spielman said in a statement.
“I was in shock when László
Lovász, the president of the
International Mathematical
Union, called me up to tell me
that I had won. I had to hear
him say it a few times before I
believed him. It is an incredible
honor. Many of my heroes have
won this prize.”

Microsoft Award
Cheryl Arnett from Sunset
Elementary School in Craig,
CO, and Rawya Shatila from
Maskassed Khalil Shehab
School in Beirut, Lebanon,
won first place in the 2010
U.S. Innovative Education
Forum, a Microsoft-sponsored
competition for teachers
who use technology in their
curriculum to improve
student learning. Arnett and
Shatila’s joint project, called
“Digital Stories: A Celebration
of Learning and Culture,”
connected Arnett’s class of
first- and second-graders in
Craig, CO, to Shatila’s second-
graders in Beirut. The two
teachers, who had never met
prior to their collaboration,
used wikis, blogs, and online
mapping tools to share stories
and activities to help students
increase their global awareness
of the similarities and
differences between children
from different nations. Arnett
and Shatila will represent the
United States at the Worldwide
Innovative Education Forum in
South Africa this fall.

—Jack Rosenberger

from the problems of computing to set
his sights on more esoteric quanda-
ries. “I would like to understand why
certain things are difficult, why the
world is not transparent,” he says. Alas,
perhaps some questions are better left
to logicians.	

Further Reading

Abramsky, S., Jagadeesan, R., and Malacaria, P.
Full abstraction for PCF (extended abstract).
Lecture Notes in Computer Science 789,
Proceedings of Conference on Theoretical
Aspects of Computer Software, 1994.

Bowers, K.D., Bauer, L., Garg, D., Pfenning, F.,
and Reiter, M.K.
Consumable credentials in logic-based
access-control systems. Proceedings of
the 14th Annual Network and Distributed
System Security Symposium, San Diego, CA,
Feb. 28–March 2, 2007.

Girard, J.-Y.
Linear logic. Theoretical Computer Science
50, 1, 1987.

Lincoln, P., Mitchell, J., Scedrov, A.,
and Shankar, N.
Decision problems for propositional linear
logic. Proceedings of the 31st Annual
Symposium on Foundations of Computer
Science, St. Louis, MO, Oct. 22-24, 1990.

Miller, D.
An overview of linear logic programming.
Linear Logic in Computer Science, Ehrhard,
T., Girard, J.-Y., Ruet, P., and Scott, P. (Eds.),
Cambridge University Press, London, U.K.
2004.

Alex Wright is a writer and information architect who
lives and works in Brooklyn, NY. Patrick Lincoln, SRI
International, contributed to the development of this
article.

© 2010 ACM 0001-0782/10/1000 $10.00

often, known proof systems.”
In recent years, linear logic has also

given rise to a new genre of program-
ming languages like Forum, Lolli, and
Lygon that incorporate richer forms of
expression to allow more powerful ap-
proaches to proofs.

Looking ahead, Pfenning believes
there is still work to do in improving
the state of automation in linear log-
ic. “We need theorem provers, model
checkers, and other tools for working
with linear logic to make its applica-
tion to real-world problems easier.”
Miller agrees that linear logic has the
potential to support the automation
of theorem proving. “Focused proof
systems give a central role to inference
rules that are invertible,” he explains.
“When a formula is introduced by an
invertible rule, that formula can be dis-
carded. Such information is useful in
building theorem provers.”

Miller also sees an opportunity to
use linear logic and proof search to
provide specifications of algorithms,
using proof theory research to help
in reasoning about such algorithmic
specifications. He also hopes to see the
day when a large “logic of unity” might
take shape that would encompass clas-
sical, intuitionistic, and linear logic in
one grand system.

Where could linear logic go from
here? Other active research areas in-
clude concurrency theory, quantum
computing, game semantics, implicit
computational complexity, and the ver-
ification of imperative programs with
heaps using separation logic, a close
cousin of linear logic.

With the field maturing, the funda-
mental principles of linear logic are re-
ceding into the background as an area
of active inquiry as computer scientists
learn to apply the established princi-
ples to emerging computational prob-
lems. “Linear logic is no longer alive as
a specific subject in which you work,”
says Girard. “It’s become something
classical. It is part of the toolbox.”

Pfenning agrees with Girard’s as-
sessment, but thinks linear logic lacks
the widespread exposure it deserves
at every level of the computer science
curriculum. “It should be part of the
standard toolkit,” he says, “but I don’t
think it is taught in enough places right
now, especially in the United States.”

Girard, meanwhile, has moved on

Active research
areas for linear
logic include
concurrency theory,
quantum computing,
game semantics,
and implicit
computational
complexity.

14 communications of the acm | october 2010 | vol. 53 | no. 10

news

p
h

o
t

o
g

r
a

p
h

 b
y

 B
r

e
 P

e
t

t
i

s

Personal Fabrication
Open source 3D printers could herald
the start of a new industrial revolution.

Technology | doi:10.1145/1831407.1831414	 Graeme Stemp-Morlock

W
h i l e a t t e n d i n g a

health and beauty trade
show in the fall of 2009,
Nick Starno watched
as countless exhibitors

struggled with cosmetic tubes, vainly at-
tempting to squeeze the last few drops
out of them. Starno, however, is a me-
chanical design engineer, and familiar
with 3D printers. When he got home,
he designed a tube squeezer and posted
his prototype on a community Web site
for 3D printer designs. Within hours,
several 3D printer enthusiasts in Europe
had downloaded his design and manu-
factured the tube squeezer. Since then,
Starno’s design has been downloaded
more than 500 times and people around
the world have produced his tube
squeezer at a cost about 30 cents each.

“I knew that as long as I could model
it on the computer, it could be made,”
says Starno, who now works with Mak-
erbot, a 3D printer company. “No worry-
ing about tooling costs, post processing,
surface finishes, packaging, shipping
quantities, or advertising. Anyone with
a 3D printer could search for my design,
download it, and make one on demand
without ever leaving their house.”

Printing simple devices such as tube
squeezers might not seem very excit-
ing or sexy, but it heralds the begin-
ning of a technological revolution in-
volving thousands of hobbyists around
the world who are using 3D printers to
fabricate wine glasses, toy cars, cooling
fans, mechanical arms, and countless
types of nuts, bolts, and gears.

To many observers, this revolution
mirrors the personal computer revo-
lution, with its kits for hobbyists, of
the 1970s. “There are many parallels
between personal computing and per-
sonal fabrication,” says Hod Lipson, an
associate professor of mechanical and
aerospace engineering and computing
and information science at Cornell Uni-
versity. “I think you can look at the histo-
ry of computers and how they changed
our world, and you can anticipate many

aspects of 3D printing and how they will
interface with every aspect of our lives.”

Open Source Printers
While large-scale, commercial 3D print-
ers have existed for years, personal 3D
printers are a recent, fast-spreading phe-
nomenon. Dozens of startup companies
are developing and marketing 3D print-
ers, but two of the most widely used 3D
printers are open source projects.

Based at the University of Bath, Rep-
Rap is the brainchild of Adrian Bowyer, a
senior lecturer in the department of me-
chanical engineering. The other project
is Fab@Home, which is led by Lipson.

To design a printable object, a user
needs a computer equipped with a com-
puter-assisted design (CAD) program.
The different RepRap and Fab@Home
3D printers are the size of a standard
office photocopier, and feature off-the-
shelf components including a chas-
sis, tool heads, and electronics. The
3D printers work almost the same as a

standard printer, but instead of using
multi-colored inks, a printer’s mobile
arm includes a syringe that ejects melt-
ed plastic, slowly building up the “im-
age,” layer after layer, into a real object.
Simple objects like a gear, for instance,
can be completed in less than an hour.

The parts for the latest RepRap print-
er, Mendel, cost about $525, but an
online network of artists and inventors
are constantly modifying and improv-
ing Mendel’s design. Moreover, Mendel
prints about 50% of its own parts, ex-
cluding nuts and bolts, so it is almost a
self-replicating machine.

“It’s designed to copy itself because
that’s the most efficient way of getting
a large number of them out there,” says
Bowyer, who estimates more than 4,000
RepRap printers have been made since
the plans for the original RepRap Dar-
win printer were first released in 2008.
“If you’ve got something that copies it-
self, then, in principle, the numbers can
grow exponentially fast, and that’s fast-

Nick Starno, a mechanical design engineer, in the process of building a 3D printer.

news

october 2010 | vol. 53 | no. 10 | communications of the acm 15

students the combined power of math,
science, and engineering. The MacAr-
thur Foundation and Motorola have
awarded $435,000 to the Fab@School
group to develop curriculum, build more
3D printers, and expand the project.

A Larger Ink Palette
Although Play-Doh and other squishy
substances can be used in 3D printers,
melted plastic remains the primary
material. Other desirable materials, in-
cluding various metals and ceramics,
are more challenging to use. Progress
has been made in printing with metal,
but more experimentation is needed to
make the process easier and overcome
fundamental properties in the materi-
als like melting point and viscosity.

For Lipson’s Fab@Home project, the
ultimate goal is to design a robot that
can walk out of the printer. Before that
can happen, “inks” for batteries, actua-
tors, wires, transistors, and numerous
other pieces must be developed. How-
ever, Lipson’s lab has already developed
an actuator that operates with low volt-
age and a printable battery.

Adrian Bowyer at the University of
Bath has had success making a print-
able conductor that melts at a lower
temperature than the plastic does. Due
to the temperature difference, the 3D
printer can manufacture plastic chan-
nels that do not melt when filled with
the hot conductor for wires or other
electrical circuitry.

“At the moment the way we manu-
facture goods is from economies of

scale,” says Bowyer. “It is more efficient
to make lots of one thing in one place
and that’s how conventional industry
works all over the world. But there are
many things we used to do that way that
we don’t do anymore. For instance, I’m
old enough to remember my parents
getting personalized letterhead printed
at a local printer, whereas now we have
computer printers. Imagine the idea of
a whole industry disappearing, and ev-
erybody making what they want in their
own home. That would be a pretty pro-
found economic change.” 	

Further Reading

Bradshaw, S., Bowyer, A., and Haufe, P.
The intellectual property implications of
low-cost 3D printing. SCRIPTed 7, 1, April
2010.

Hiller, J. and Lipson, H.
Design and analysis of digital materials
for physical 3D voxel printing. Rapid
Prototyping Journal 15, 2, 2009.

Malone, E. and Lipson, H.
Fab@Home: the personal desktop fabricator
kit. Rapid Prototyping Journal 13, 4, 2007.

Sells, E., Smith, Z., Bailard, S., Bowyer, A., and
Olliver, V.
RepRap: the replicating rapid prototype:
maximizing customizability by breeding the
means of production. Handbook of Research
in Mass Customization and Personalization,
Piller, F.T. and Tseng, M.M. (Eds.), World
Scientific Publishing Company, Singapore,
2009.

Graeme Stemp-Morlock is a science writer based in
Elora, Ontario, Canada.

© 2010 ACM 0001-0782/10/1000 $10.00

er than any other means of production
that humanity currently has.”

New Design Frontiers
In addition to enabling people to manu-
facture objects they never could before,
3D printers could lead to radically new
designs that are not possible with tra-
ditional fabrication techniques. “Your
first instinct when you have one of these
machines is that instead of making
something in the machine shop, you are
just going to print it,” says Lipson. “But
at some point you realize you can make
new things with complicated geometry
that you cannot make any other way.
You don’t have to stick to straight edges
and flat surfaces that can be easily ma-
chined or thin walls that can be injec-
tion molded. You can make absolutely
any shape that you want.”

For instance, Lipson’s team has ex-
perimented with printing objects with
both hard and soft materials. When the
materials are printed at a random 50%-
50% ratio, the results are ordinary. How-
ever, when the dots of hard and soft ma-
terial are printed in special patterns, the
material, when stretched like an elastic,
actually gets thicker.

Indeed, one of Lipson’s favorite 3D
printer materials is Play-Doh. He re-
cently used it to create miniature copies
of the U.S. space shuttle during a school
visit as part of the Fab@School project,
led by himself and Glen Bull, a professor
of instructional technology at the Uni-
versity of Virginia. The Fab@School’s
goal is to use 3D printers to show K–12

Crowdsourcing

Foldit Research Paper’s 57,000+ Co-authors
Since May 2008, tens of
thousands of Foldit video
game players have competed
online against each other,
and a computer program, in
figuring out how 10 different
proteins fold into their three-
dimensional configurations. In
the end, the players managed
to outperform the computer
program—and are cited as co-
authors on the resulting paper,
which was published in Nature.

While scientists understand
the general process of how the
primary structure of a protein
is transformed into a three-

dimensional structure, the
method of using statistical and
related software algorithms to
predict protein structures is
computationally demanding.

“If you were blindfolded and
all you’re doing is picking pieces
at random, that’s more or less
what the computer is doing,”
says Zoran Popovíc, an associate
professor of computer science
at the University of Washington.
“The computational methods
are eating up huge amounts of
resources.”

Foldit’s top scores are
posted online, allowing

the players, who compete
individually or in groups, to
compare their scores. In the
10 separate protein-folding
puzzles, the players matched
the results of the computer-
generated solutions in three
of the puzzles, outscored them
in five puzzles, and created
significantly better solutions in
two puzzles, according to the
scientists.

When the results were
published in the August 5 issue
of Nature, Popovíc and his
fellow researchers cited “Foldit
players” at the end of the paper’s

author list in appreciation of
the more than 57,000 players’
contributions “through their
feedback and gameplay.”

Such extensive author lists
will soon become commonplace
given the increasing online
collaboration between citizen
volunteers and scientists, says
Popovíc, who plans to establish
a Center for Game Science at the
University of Washington this
fall, and will work on problems
that can be solved with the
symbiosis of human volunteers
and computers.

—Phil Scott

16 communications of the acm | october 2010 | vol. 53 | no. 10

news

P
h

o
t

o
g

r
a

p
h

 b
y

 M
a

t
t

h
e

w
 L

o
w

e

cancer or study tectonic plates will
write software code to do a specific task
in a lab,” Hissam says. “They aren’t
concerned about the same things that
computer programmers are, such as
scalability and design patterns and
software architecture. So imagine how
daunting of a task it would be to review
and try to understand how such a code
was written.”

U.K.’s Climategate
This issue has gained considerable at-
tention ever since Climategate, which
involved the illegal hacking of re-
searchers’ email accounts last year at
the Climate Research Unit at the Uni-
versity of East Anglia, one of world’s
leading institutions on global climate
change. More than 1,000 email mes-
sages and 2,000 documents were
hacked, and source code was released.
Global warming contrarians have con-
tended the email reveals that scientists

Society | doi:10.1145/1831407.1831415	 Dennis McCafferty

Should Code
be Released?
Software code can provide important insights into
the results of research, but it’s up to individual scientists
whether their code is released—and many opt not to.

O
n any given day, medical re-
searchers at Carnegie Mel-
lon University (CMU) may
be investigating new ways
to thwart the development

of epilepsy or designing an implant-
able biosensor to improve the early
detection of diseases such as cancer
and diabetes. As with any disciplined
pursuit of science, such work is subject
to rigorous rounds of peer review, in
which documents revealing methodol-
ogy, results, and other key details are
examined.

But, assuming software was created
for the research, should a complete
disclosure of the computer code be
included in the review process? This
is a debate that doesn’t arrive with
any ready answers—not on the cam-
pus grounds of CMU or many other
institutions. Scott A. Hissam, a senior
member of the technical staff at CMU’s
Software Engineering Institute, sees
validity in both sides of the argument.

“From one perspective, revealing the
code is the way it should be in a perfect
world, especially if the project is taking
public money,” says Hissam, who, as
a coauthor of Perspectives on Free and
Open Source Software, has explored the
topic. “But, in practice, there are ques-
tions. The academic community earns
needed credentialing by producing
original publications. Do you give up
the software code immediately? Or do
you wait until you’ve had a sufficient
number of publications? If so, who de-
termines what a sufficient number is?”

Another dynamic that adds com-
plexity to the discussion is that scien-
tific researchers are not software devel-
opers. They often write their own code,
but generally don’t follow the same
practices, procedures, and standards
as professional software programmers.

“Researchers who are trying to cure

manipulated data, among other charg-
es. Climate Research Unit scientists
have denied these allegations and in-
dependent reviews conducted by both
the university and the House of Com-
mons’ Science and Technology Select
Committee have cleared the scientists
of any wrongdoing.

Still, Darrel Ince, professor of com-
puting at the U.K’s Open University, cit-
ed the Climate Research Unit’s work as
part of his argument that code should
be revealed. He wrote in the Manchester
Guardian that the university’s climate-
research team depended on code that
has been described as undocumented,
baroque, and lacking in data needed
to pass information from one program
and research team to another.

Ince noted that Les Hatton, a pro-
fessor at the Universities of Kent and
Kingston, has conducted an analysis of
several million lines of scientific code
and found that the software possessed
a high level of detectable inconsisten-
cies. For instance, Hatton found that
interface inconsistencies between
software modules that pass data from
one part of a program to another hap-
pen, on average, at the rate of one in
every seven interfaces in Fortran and
one in every 37 interfaces in C.

“This is hugely worrying when you
realize that one error—just one—will
usually invalidate a computer pro-
gram,” Ince wrote. Those posting
comments on the Guardian Web site
have been largely supportive of his ar-
guments. “The quality of academic
software code should absolutely be
scrutinized and called out whenever
needed,” wrote one commenter. “It
should be the de facto criteria for ac-
cepting papers,” wrote another.

Still, not all were in agreement. “I
work in scientific software,” wrote one
commenter. “The sort of good pro-

news

october 2010 | vol. 53 | no. 10 | communications of the acm 17

ited with the work. But in order to be
trusted, much of the work should be
released. If they can’t release key por-
tions, then the rest is suspect.”

While ethical considerations and
those conveyed in the greater interest
of science are often made to encourage
more information sharing, those same
considerations can be used to state
the case that some information needs
to remain undisclosed. Had the Man-
hattan Project happened today, for in-
stance, surely few people would call for
an open dissection of its software DNA,
says Mike Rozlog, developer tools prod-
uct manager at Embarcadero Technol-
ogies.

Also, science is a highly competitive
endeavor, and funding is often based
on a track record of success. “If you’re
forced to release proprietary [code],”
Rozlog says, “this could give a signifi-
cant advantage to rogue organizations
that don’t follow the same rules.”

Opening Up Science
For the past seven years, researchers
at Purdue University have attempted
to resolve this issue, especially with
the study of nanotechnology. Funded
by the National Science Foundation,
nanoHUB.org has been established
as a site where scientists and educa-
tors share simulation and modeling
tools and run their code on high-per-
formance computer resources, says
software architect Michael McLennan,
a senior research scientist at Purdue.
A toolkit called Rappture standard-
izes the input and output for the tools
and tracks details about execution,
such as which user ran which version
of the code, the computer used, and

the date of the usage. Simulations run
in a cloud of computing resources,
and the most demanding computa-
tions are sent to national grid comput-
ing resources such as the TeraGrid.
nanoHUB.org now has a core group of
110,000 users from more than 170 na-
tions, who launch more than 340,000
online simulations each year.

The project encourages users to
release their work as open source or
under a creative commons license,
McLennan says. “But even if the codes
are not open source, the unique mid-
dleware allows scientists to run the
tools and test the behavior of the mod-
els,” McLennan says. Since launching
it, Purdue has developed other hubs
using the same software platform to
study cancer research and care, bio-
fuels, environmental modeling, phar-
maceutical engineering, among other
pursuits. It’s now constructing a dozen
more hubs as well, and some are for
outside agencies, such as the Envi-
ronmental Protection Agency. And re-
searchers at Notre Dame are using the
software to build their own hub for bio-
logical adaption to climate change.

“Having our software as open
source allows these other sites to pick
this up and create their own hubs in
their own machines,” McLennan says.
“It shows that this kind of effort can
go far beyond nanoHUB.org, and take
hold across a wide variety of science
and engineering disciplines.”	

Further Reading

Feller, J., Fitzgerald, B., Hissam, S.A.,
and Lakhani, K.R.
Perspectives on Free and Open Source
Software. MIT Press, Cambridge, MA, 2005.

Ince, D.
If you’re going to do good science, release
the computer code too. Manchester
Guardian, Feb. 5, 2010.

McLennan, M. and Kennell, R.
HUBzero: a platform for dissemination and
collaboration in computational science
and engineering. Computing in Science and
Engineering 12, 2, March/April 2010.

PurdueRCAC
HUBzero Cyberinfrastructure for Scientific
Collaboration.
http://www.youtube.com/watch?v=Mr0GA_
TluGY

Dennis McCafferty is a Washington, D.C.-based
technology writer.

© 2010 ACM 0001-0782/10/1000 $10.00

gramming practices you talk about are
things … [that are] absolutely useless
for one person wanting do a calcula-
tion more quickly. That’s all the com-
puter models are, fancy calculators.
I’ve seen plenty of Fortran and VB code
to do modeling written by academics
and it’s mostly awful but it also nearly
always does the job.”

To Share or Not
Efforts to encourage scientists to reveal
software code stem from philosophies
that began with the birth of comput-
ers. Because the big, clunky invention
was so expensive, software was freely
shared. “There wasn’t much that peo-
ple had written anyway,” says John
Locke, manager of Freelock Comput-
ing, an open-source business services
firm. “Sharing code was like sharing
scientific ideas, and was treated in the
same way.”

The U.S. Constitution provides pat-
ent and copyright protection to scien-
tists and their sponsors so they can
place their work in the public domain
while still being able to profit, Locke
argues. And this, he says, provides
enough protection to open up the code.

“Not sharing your code basically
adds an additional burden to others
who may try to review and validate your
work,” Locke says. “If the code is instru-
mental in testing a hypothesis, keeping
it closed can prevent adequate peer re-
view from taking place. After all, source
code is nothing more than a very spe-
cific set of steps to achieve a desired re-
sult. If those steps cannot be reviewed
in detail, the whole test is suspect.”

There is often hesitancy, however,
for these very reasons. Opening up the
code essentially throws “the books”
open. It further peels away the curtain
to reveal how the work was done. These
days, scientists are wary of providing
additional fodder that could impede
their work or damage their reputations.

“There are downsides [to revealing
code],” says Alan T. DeKok, a former
physicist who now serves as CTO of
Mancala Networks, a computer se-
curity company. “You may look like a
fool for publishing something that’s
blatantly wrong. You may be unable
to exploit new ‘secret’ knowledge and
technology if you publish. You may
have better-known people market your
idea better than you can, and be cred-

“Not sharing your
code basically adds
an additional burden
to others who may
try to review and
validate your work,”
says John Locke.

http://nanoHUB.org
http://nanoHUB.org
http://www.youtube.com/watch?v=Mr0GA_TluGY
http://www.youtube.com/watch?v=Mr0GA_TluGY
http://nanoHUB.org

Call for Nominations
The ACM Doctoral Dissertation Competition

Rules of the competition
ACM established the Doctoral Dissertation Award
program to recognize and encourage superior research
and writing by doctoral candidates in computer science
and engineering. These awards are presented annually
at the ACM Awards Banquet.

Submissions
Nominations are limited to one per university or college,
from any country, unless more than 10 Ph.D.’s are
granted in one year, in which case two may be nominated.

Deadline
Submissions must be received at ACM headquarters by
October 31, 2010 to qualify for consideration.

eligibility
Each nominated dissertation must have been accepted
by the department between October 2009 and
September 2010. Only English language versions will
be accepted. Please send a copy of the thesis in PDF
format to emily.eng@acm.org.

Sponsorship
Each nomination shall be forwarded by the thesis advisor
and must include the endorsement of the department
head. A one-page summary of the signifi cance of the
dissertation written by the advisor must accompany
the transmittal.

Publication Rights
Each nomination must be accompanied by an assignment to
ACM by the author of exclusive publication rights. (Copyright
reverts to author if not selected for publication.)

Publication
Winning dissertations will be published by Springer.

Selection Procedure
Dissertations will be reviewed for technical depth and
signifi cance of the research contribution, potential impact
on theory and practice, and quality of presentation.
A committee of fi ve individuals serving staggered fi ve-year
terms performs an initial screening to generate a short list,
followed by an in-depth evaluation to determine the winning
dissertation.

The selection committee will select the winning dissertation
in early 2011.

award
The Doctoral Dissertation Award is accompanied by a prize
of $20,000 and the Honorable Mention Award is accompanied
by a prize of $10,000. Financial sponsorship of the award
is provided by Google.

for Submission Procedure
See http://awards.acm.org/html/dda.cfm

mailto:emily.eng@acm.org
http://awards.acm.org/html/dda.cfm

V
viewpoints

october 2010 | vol. 53 | no. 10 | communications of the acm 19

P
h

o
t

o
g

r
a

p
h

 b
y

 H
u

lt
o

n
 A

r
c

h
i

v
e

/G
e

t
t

y
 Im

a

g
e

s

Historical Reflections
Victorian Data
Processing
Reflections on the first payment systems.

doi:10.1145/1831407.1831417	 Martin Campbell-Kelly

I
A m one of those individuals
known as a “historian of com-
puting.” Perhaps we are stuck
with that appellation, but it
can lead one to suppose that

all the most significant and important
things in information processing hap-
pened after the invention of the digital
computer. Of course, we usually give
a nod to Charles Babbage’s calculat-
ing engines and Herman Hollerith’s
punched card machines. But this, too,
is misleading because it suggests that
machinery was always central to data
processing. The fact is that the Victo-
rian world was awash with data and
with organizations that processed it;
and they usually used nothing more
technologically advanced than pen and
paper. The Bankers’ Clearing House—
the first payment system—is just one
of many examples.

The Bankers’ Clearing House was es-
tablished in London in the early 1800s.
Interestingly, we owe the first descrip-
tion of the Bankers’ Clearing House
to Charles Babbage. Today we think of
Babbage primarily as the inventor of
calculating machines, but in his life-
time he was better known as a scien-

tist and an economist of international
standing. In 1832 he published the first
economic treatise on mass production,
The Economy of Machinery and Manu-
factures.1 It is there that he published
his account of the Bankers’ Clearing
House. When Babbage wrote his book,
the Bankers’ Clearing House was a se-

cretive organization that was practical-
ly unknown to the general public (not
least because the organization handled
very large sums of cash). It happened,
however, that Babbage was on good
terms with Sir John Lubbock, a partner
of Lubbock’s Bank and a founder of
the Clearing House. Lubbock was an

London bankers’ clerks meet at the Clearing House in Post Office Court, Lombard Street, to
exchange cheques and settle accounts, circa 1830.

20 communications of the acm | october 2010 | vol. 53 | no. 10

viewpoints

P
h

o
t

o
g

r
a

p
h

 f
r

o
m

 J
.S

.
G

i
b

b
o

n
s

,
T

he

 B
anks

 of

 N

e
w

 Y
ork

,
their

 D
ealers

,

the

 C

learing

H
o

u
se

,

and

 the

 P
anic

 of

 1

8
5

7
,

Appl

e
t

o
n

,
N

e
w

 Y
o

r
k

,
1

8
6

4

amateur scientist in his spare time and
both he and Babbage were members of
the Royal Society. Using this connec-
tion, Babbage talked his way in.

Walk Clerks
The origins of the Bankers’ Clearing
House are obscure, but they date back
to at least the late 1700s.3 At that time,
when a firm or an individual received
a check (still spelled “cheque” in the
U.K.), it would be deposited in the
recipient’s bank. It was then neces-
sary for a clerk to physically present
the check to the originating bank, ex-
change it for cash, and return with the
money to his home bank. As the volume
of checks grew, each bank employed a
“walk clerk” whose job it was to take all
the checks due for payment, visit each
bank in turn, obtain payment, and re-
turn to his bank with a large amount of
cash. Walking through the City of Lon-
don with a large bag of money was, to
say the least, unwise, although it went
on for many years.

Around 1770, the walk clerks made
an informal arrangement to aban-
don their walks and instead meet at
an agreed time in the Five Bells pub-
lic house in Lombard Street. There
they could perform all their financial
transactions within the safe confines
of four walls. In the early 1800s, the
proprietors of the banks at last recog-
nized the merit of this arrangement
and formally created the Bankers’
Clearing House. When Babbage wrote
his account in 1832, it had already

been running for a quarter of a cen-
tury. Babbage described the opera-
tion of the Bankers’ Clearing House
almost in terms of an algorithm—
though one executed by people, not
machinery. He wrote: “In a large room
in Lombard Street, about 30 clerks
from the several London bankers take
their stations, in alphabetical order,
at desks placed round the room; each
having a small open box by his side,
and the name of the firm to which
he belongs in large characters on the
wall above his head. From time to
time other clerks from every house
enter the room, and, passing along,
drop into the box the checks due by
that firm to the house from which this
distributor is sent.”

Thus during the day each bank

dropped off the checks on which it was
owed payment and received checks on
which it was due to make payment. By
adding up all the checks on which it
owed money, and all those on which it
had to pay out, a bank could calculate
exactly the total amount it would have
to pay out or would receive that day. At
5 p.m. precisely, the Inspector of the
Clearing House took his place on a ros-
trum, and the debtor banks went up
one-by-one to pay what they owed on
the day. When this was complete, the
banks that were owed money stepped
up to the rostrum for payment. When
the last bank had been paid, the Inspec-
tor was left with a balance of exactly
zero. That, of course, assumed that no
one had made an arithmetic error. A pa-
per trail of preprinted forms completed
by each bank enabled any errors to be
traced—but this was a rare occurrence.

Transaction Processing
The amount of money flowing through
the Bankers’ Clearing House was stag-
gering. In the year 1839, £954 million
was cleared—equivalent to $250 bil-
lion in today’s currency. However, one
of the benefits of the system was that
the banks now needed to bring only a
relatively small amount of money to
the Clearing House. On any day, the to-
tals of checks received and checks paid
out would tend to cancel each other
out, so that a bank needed only the dif-
ference between these two amounts.
For example, on the busiest single day
of 1839, when £6 million was cleared,
only approximately £1/2 million in
bank notes was used for the settle-
ment. In his account of the Clearing
House, Babbage noted that if the banks
were to each open an account with the
Bank of England, no money in the form
of cash would be needed at all. All that
the Clearing House would have to do
would be to adjust the account that
each bank held with the Bank of Eng-
land at the close of the business day.
This innovation was instituted in 1850,
and the physical movement of money
was entirely replaced by pen-strokes in
an accounting ledger. It was a key mo-
ment in both fiscal and information
processing history, and Babbage rec-
ognized it as such.

The U.S. quickly adopted—and
improved on—the British clearing
system. The first clearing house was

The New York Clearing House circa 1853.

Babbage described
the operation of the
Bankers’ Clearing
House almost in terms
of an algorithm—
though one executed
by people, not
machinery.

viewpoints

october 2010 | vol. 53 | no. 10 | communications of the acm 21

opened in New York in 1853, located
on the fourth floor of the Bank of New
York on the corner of Wall Street and
William Street. One of the difficulties
of the New York clearing operation was
that there were over 50 banks in the city
and it was realized that the exchanging
of checks—as described by Babbage—
would create too much confusion and
foot traffic. Some nameless genius
came up with the brilliant solution
depicted in the image on the preced-
ing page of this column. The New York
Clearing House constructed a very large
oval table, approximately 70 feet in
length, with enough working space for
each bank. According to a contempo-
rary account,2 at 10 o’clock precisely,
two clerks from each bank took their
places at the table—one seated inside
the table and the other standing out-
side, facing his colleague. At the man-
ager’s signal, the clerks outside the
table would take one pace forward and
perform the day’s transactions with
the bank they now faced. The process
was then repeated, the circle of clerks
advancing one pace at a time to the
next station “resembling in its move-
ment a military company in lockstep.”

After about six minutes the clerks
were back in their original positions,
the distribution process completed.
After that, it was just a matter of bal-
ancing the books. If there was a failure
to get a zero balance, then there was
a system of checks and double-entry
accounting so that the error could be
detected. Another Yankee innovation,
which reputedly cut down on the num-
ber of errors, was a system of fines. If
an error was found quickly there was
no fine, but if it was not detected with-
in an hour a fine of two or three dollars
was imposed on the offender, which
doubled and quadrupled, the longer it
took to find.

The New York Clearing House flour-
ished, and other American financial
centers established their own clearing
houses—Boston in 1856, Philadelphia
in 1858, followed by Chicago and St.
Louis some years later.

Persistence of System
You might wonder what happens when
you write a check today. In terms of the
system, the process is not very different
from that of the 19th century. Of course,
the technology employed has changed

beyond recognition. In the 1960s the
great innovation was check-reading
machines—for which MICR and OCR
fonts were designed, and these still ap-
pear on the face of a check. Once data
had been extracted from the check, it
was transferred to magnetic tape for
computer processing. It was said at
the time that without banking automa-
tion it would not have been possible for
millions of ordinary Americans to have
checking accounts, or to write checks
for very small sums of money. By the
1980s, electronic data transfer elimi-
nated much of the physical handling of
data. But again, the underlying infor-
mation system was little altered.

The longevity of information sys-
tems is one of the great lessons of com-
puter history. Although new layers of
technology are constantly applied to
information systems, making transac-
tions faster and cheaper, the underly-
ing systems are remarkably stable and
persistent, although of course they do
gently evolve over time. We may glory
in today’s information technology, but
one day it will be swept aside—and
when it is, and we have logged off for
the last time, these venerable systems
will survive for another generation
of technology. Those Victorian office
makers perhaps built better than they
knew, and we should salute them.	

References
1.	B abbage, C. The Economy of Machinery and

Manufactures. Charles Knight, London, 1832.
2.	G ibbons, J.S. The Banks of New York, their Dealers, the

Clearing House, and the Panic of 1857. Appleton, New
York, 1864.

3.	 Matthews, P.W. The Banker’s Clearing House: What it
Is and What it Does. Pitman, London, 1921.

Martin Campbell-Kelly (M.Campbell-Kelly@warwick.
ac.uk) is a professor in the Department of Computer
Science at the University of Warwick, where he specializes
in the history of computing.

Copyright held by author.

The longevity
of information
systems is one of
the great lessons
of computer history.

Calendar
of Events
October 15–16
Consortium for Computing
Sciences
 in Colleges (CCSC) Eastern,
Huntingdon, PA,
Contact: Kruse Jerry,
Email: kruse@juniata.edu

October 15–16
Consortium for Computing
Sciences
in Colleges Rocky Mountain,
Fort Collins, CO,
Contact: Reeves Tim,
Email: reeves@sanjuancollege.
edu

October 16–20
6th Nordic Conference on
Human-Computer Interaction,
Reykjavik, Iceland,
Contact: Ebba Hvannberg,
Email: ebba@hi.is

October 17-21
The 13th ACM International
Conference on Modeling,
Analysis
and Simulation of Wireless and
Mobile Systems,
Bodrum, Turkey,
Contact: Azzedine Boukerche,
Email: boukerch@site.uottowa.
ca

October 17–21
Systems Programming
Languages and Applications:
Software for Humanity (formerly
known as OOPSLA),
Reno, NV,
Contact: William R Cook,
Email: wcook@cs.utexas.edu

October 18–20
Symposium on Algorithmic
Game Theory,
Athens, Greece,
Contact: Spirakis Pavlos,
Email: spirakis@cti.gr

October 20–22
International Conference
on Cyberworlds,
Singapore,
Contact: Alexei Sourin,
Email: assourin@ntu.edu.sg

October 21
Workshop on Facial Analysis
and Animation,
Edinburgh, UK,
Contact: Cosker Darren,
Email: D.P.Cosker@cs.bath.
ac.uk

mailto:M.Campbell-Kelly@warwick.ac.uk
mailto:M.Campbell-Kelly@warwick.ac.uk
mailto:kruse@juniata.edu
mailto:ebba@hi.is
mailto:wcook@cs.utexas.edu
mailto:spirakis@cti.gr
mailto:assourin@ntu.edu.sg
mailto:D.P.Cosker@cs.bath.ac.uk
mailto:D.P.Cosker@cs.bath.ac.uk
mailto:reeves@sanjuancollege.edu
mailto:reeves@sanjuancollege.edu
mailto:boukerch@site.uottowa.ca
mailto:boukerch@site.uottowa.ca

22 communications of the acm | october 2010 | vol. 53 | no. 10

V
viewpoints

Technology Strategy
and Management
Platforms and Services:
Understanding
the Resurgence of Apple
Combining new consumer devices and Internet platforms
with online services and content is proving to be a successful strategy.

doi:10.1145/1831407.1831418	 Michael A. Cusumano

O
n May 27, 2010 the technol-
ogy world experienced a
remarkable passing of the
baton: Apple went beyond
Microsoft to become the

world’s most valuable technology com-
pany in terms of stock market value. It
was also on that day the second most
valuable U.S. company overall, behind
only Exxon Mobil.a Given Apple’s strug-
gles with operating losses and a steep
decline in market value in the early
2000s, this resurgence is extraordinary.
It reflects not only a series of product
innovations but also a shift in strategy
that takes advantage of two important
trends in the world of high technology:
the rising importance and value of an
industrywide platform company with
a large and growing global ecosystem
for complementary innovation (versus
a standalone product company that has
to do the lion’s share of innovation on
its own); and the rising importance
and value of services, especially auto-
mated services that deliver the digital
content and software applications that
make these hardware products and
platforms so valuable to users.

a	 M. Helft and A. Vance, “Apple is No. 1 in Tech,
Overtaking Microsoft,” New York Times, May
27, 2010, p. B1.

In terms of platform leadership,
Apple has become more like archri-
val Microsoft, but Apple remains a
far more innovative and pioneering
product company as Steve Jobs and
his team have successfully blended
computers with consumer electronics

and telephony. The latest transforma-
tion began during 2001–2003 with the
iPod and iTunes music service. Apple
then gained speed from 2007 with the
iPhone and App Store. In 2010, the
innovations continued with the iPad,
which can run existing iPhone ap-

Microsoft and Apple financial comparison, 2000–2009. Units: $million, %

Microsoft Apple

Revenues
Operating
Profits (%)

Year-End
Market Value Revenues

Operating
Profits (%)

Year-End
Market Value

2009 $58,437 34.8% $267,323 $36,537 21.0% $190,980

2008 60,420 37.2 149,769 32,479 19.3 118,441

2007 51,122 36.2 287,617 24,006 18.4 74,499

2006 44,282 37.2 251,464 19,315 12.7 45,717

2005 39,788 36.6 233,927 13,931 11.8 29,435

2004 36,835 24.5 256,094 8,279 3.9 8,336

2003 32,187 29.7 252,132 6,207 (loss) 4,480

2002 28,365 29.2 215,553* 5,742 0.3 4,926

2001 25,296 46.3 258,033* 5,363 (loss) 7,924

2000 22,956 47.9 302,326* 7,983 6.5 5,384

1995 5,937 35.3 34,330* 11,062 6.2 4,481

Notes: Fiscal year data. Market value is for calendar year, except when marked with asterisk, then
fiscal year, and except for 2009, when market value is as of February 12, 2010.

Source: M. Cusumano, Staying Power: Six Enduring Principles for Managing Strategy and Innovation
in an Unpredictable World (Oxford University Press, 2010), p. 38. Derived from company Form 10-K
annual reports.

V
viewpoints

october 2010 | vol. 53 | no. 10 | communications of the acm 23

plications as well as elegantly display
digital content, including books, mag-
azines, and video.b

Access, Control,
and the User Experience
We have seen Apple rise even though
its products and services remain under
tight corporate control compared to
more “open” platforms championed
by Microsoft and Intel (the Win-Tel OS
and PC device), the Linux community
(Linux OS), Nokia and the Symbian al-
liance (mobile OS and cellphones),
and Google (Android, Chrome, and
the Open Handset Alliance for mo-
bile applications as well as the Google
OpenSocial APIs for social networking
applications). For example, Apple has
barred some applications from run-
ning on the iPhone, including Google
Voice. It does not permit its devices
to run the most common technology
for handling video on the Internet—
Adobe Flash. Legal use of the iPhone
remains limited to official Apple part-
ners such as AT&T in the U.S. Google

b	 This article is based on Chapter 1 of M. Cu-
sumano, Staying Power: Six Enduring Principles
for Managing Strategy and Innovation in an Un-
certain World (Oxford University Press, 2010),
30–31, 34–44.

also has criticized Apple’s program-
ming rules for the iPhone and iPad that
prohibit application developers from
using Google’s advertising technolo-
gy.c In my terminology, these kinds of
restrictions make Apple‘s platforms
neither fully open (such as Linux) nor
fully closed (such as a propriety system
owned and dominated by one compa-
ny), but rather “closed, but not closed,”
or perhaps “open, but not open.” That
is, the platforms are based on proprie-
tary technology, and Apple controls the
user experience as well as what appli-
cations or content or service contracts
can operate on its devices. At the same
time, though, Apple has been gradually
loosening up access for outside appli-
cation developers and content provid-
ers, especially during 2009–2010.

In an earlier column (‘The Puzzle
of Apple,” September 2008), I admit-
ted to being frustrated by Apple’s
historical reluctance to open up the
programming interfaces to its new
products and provide easier access
to its services or to license its supe-
rior software operating system. It
pursued this “closed” approach most

c	 S. Morrison and I. Sherr, “Google Blasts Apple
over iPhone Ad Changes,” Wall Street Journal,
June 9, 2010; http://online.wsj.com/

famously with the Macintosh, intro-
duced in 1984, but continued this
strategy with the initial versions of
the iPod, iTunes, the iPhone, and the
App Store. Nevertheless, the Apple
ecosystems are now as vibrant as any
in high technology. Not only are there
thousands of applications and acces-
sories available for the iPod made by
a wide variety of companies. There
were also some 225,000 applications
for the iPhone as of mid-2010, many
of which work on the iPod and iPad
as well as the Macintosh. Apple also
was receiving some 15,000 submis-
sions for iPhone applications each
week in 30 languages and approving
about 95% within seven days.d By con-
trast, Google’s Android community
had only built approximately 50,000
applications as of mid-2010. To be
sure, Apple and Google both trail by
far the millions of applications built
for Microsoft Windows since the early
1990s. But most computing devices
are now mobile phones, and that is
where the action lies in software ap-
plications development.

d	 G. Hora, “95% iPhone Apps Approved in
7 Days,” Cooltechzone.com, June 7, 2010;
http://www.cooltechzone.com/2010/06/07/95-
iphone-apps-approved-in-7-days/Ill

u
s

t
r

a
t

i
o

n
 b

y
 s

t
u

a
r

t
 B

r
a

d
f

o
r

d

http://online.wsj.com/
http://Cooltechzone.com
http://www.cooltechzone.com/2010/06/07/95-iphone-apps-approved-in-7-days/
http://www.cooltechzone.com/2010/06/07/95-iphone-apps-approved-in-7-days/

24 communications of the acm | october 2010 | vol. 53 | no. 10

viewpoints

Synergies and Network Effects
It is possible that Steve Jobs planned
all along to open up the iPod and
iPhone programming interfaces and
allow more open use of the iPhone be-
yond a few select partners. The reality
is that Apple finally seems to have fig-
ured out how to create synergies and
powerful network effects across its
products and complementary services
(see my earlier column “The Evolution
of Platform Thinking,” January 2010).
The iPod, iPhone, and iPad devices,
as well as the iTunes service, all work
particularly well with the Macintosh
computer, and have some interoper-
ability with Windows. And providing
its own essential complements—like
Microsoft has always done for DOS
and Windows—has become critical to
Apple’s success. Apple’s products, de-
spite their elegant designs and unique
user interfaces, are not very valuable
without external digital content such
as music and video files and a variety
of applications and accessories. Apple
cleverly found a way to provide the key
complementary platforms itself—the
iTunes Store and the Apple App Store,
and now an iBooks store. Moreover,
these are automated services, with low
costs and high potential profit mar-
gins. Apple is being smart and encour-
aging the ecosystem development by
sharing most (about 70%) of these rev-
enues with the content owners and ap-
plication developers.

Apple’s financial break with its past
is truly astounding (see the table on
the preceding page of this column). In
1995, Apple was nearly twice the size of
Microsoft in annual revenues (approxi-
mately $11 billion to $6 billion) but its
market valuation was only about 40% of
revenues. By contrast Microsoft’s value
was nearly six times revenues—reflecting
Microsoft’s greater growth prospects as
well as operating profit margins that
were also about six times Apple’s (35%
versus 6%). Indeed, Apple shrunk in
subsequent years whereas Microsoft’s
sales exploded as Windows 95 became
the basis for a new generation of desk-
top PCs as well as Internet-enabled con-
sumer and enterprise products.

When iPod sales began to surge in
2005, Apple’s revenues, profits, and
valuation also began to surge. In fact,
by moving beyond the computer busi-
ness and into consumer electronics

and then mobile phones, Apple’s rev-
enues have risen several times faster
than the overall PC industry. Its sales
jumped from $6.2 billion in 2003, with
an operating loss, to over $36 billion
in 2009, with a 21% operating profit
margin. In addition, Macintosh com-
puters in 2009 made up only 38% of
Apple’s revenues, down from 72% in
2003. The iPod accounted for 22% of
2009 revenues, music products 11%,
and the iPhone approximately 18%.
Software and services as well as hard-
ware peripherals generated the other
12% of sales. It is striking how Apple’s
market value remained less than its
annual revenues for so many years
while Microsoft’s market value was
8 to 13 times revenues. But here too,
by 2005, the tide had turned. Apple’s
value has continued to rise, reaching
five times revenues by the end of 2009
and then finally surpassing Microsoft,
whose value has been flat or dropping
for a decade due to commoditization
of PC hardware and software and its
inability to move much beyond the PC.
In particular, Microsoft’s attempts to
emphasize tablet computers as well
as copy the iPod with the Zune digital
media player and compete in smart-
phones with Windows devices have
failed miserably.

Current Situation
Not everything is completely smooth for
Apple, however. The company has been
clashing with Google and its rival mo-
bile OS (Android). Google is the cham-
pion of open systems and always tries

to force semi-open or semi-closed plat-
forms to “open up” so that it can get un-
restricted access to information on user
behavior through searches and thereby
sell more and better targeted ads. Apple
is also clashing with Adobe, refusing
to support the Flash technology on the
iPhone or the iPad, even though Flash
is used for the vast majority of videos
and advertisements on the Web. The
U.S. Department of Justice and the Fed-
eral Trade Commission are reportedly
reviewing Apple’s restrictive policies to
see if they violate antitrust laws.e Apple
has near-monopoly shares (approxi-
mately 70% or so of the market) for both
digital devices (iPod) and digital con-
tent services (iTunes). But, for the mo-
ment, users continue flocking to Apple
products because of their elegance and
the superior user experience.

Apple is still less profitable than Mi-
crosoft because hardware devices are
more expensive to replicate than soft-
ware products. Apple also has dropped
its prices to counter copycat smart-
phone products from Nokia, Samsung,
HTC, and other firms. In the long run,
the most valuable part of the Apple
franchise might end up being its online
services and content platforms (iTunes
and App Store). The hardware products
may simply become platforms to drive
revenue from selling or aggregating
high-margin automated digital prod-
ucts. Apple’s acquisition in December
2009 of Lala, the streaming Web mu-
sic service, also provides “cloud-like”
technology that could enable Apple
customers to store their music, photos,
or videos and listen to or view their con-
tent from different devices, anywhere
and anytime. In short, rather than in a
Microsoft world, we are clearly now liv-
ing much more in a world defined by
Apple as well as Google, Facebook, and
other firms that have successfully mar-
ried new consumer devices and Internet
platforms with a variety of online servic-
es and content. 	

e	 J. Kosman, “An antitrust app: Apple may be in
the eye of a regulatory storm,” New York Post,
May 3, 2010; http://www.nypost.com/

Michael A. Cusumano (cusumano@mit.edu) is a
professor at the MIT Sloan School of Management and
School of Engineering and author of Staying Power: Six
Enduring Principles for Managing Strategy and Innovation
in an Uncertain World (Oxford University Press, 2010).

Copyright held by author.v

In the long run,
the most valuable
part of the Apple
franchise might
end up being its
online services
and content
platforms (iTunes
and the App store).

http://www.nypost.com/
mailto:cusumano@mit.edu

october 2010 | vol. 53 | no. 10 | communications of the acm 25

V
viewpoints

p
h

o
t

o
g

r
a

p
h

 b
y

 B
r

a
n

d
o

n
 S

h
i

g
e

t
a

Inside Risks
Risks of Undisciplined
Development
An illustration of the problems caused by a lack of discipline in software
development and our failure to apply what is known in the field.

doi:10.1145/1831407.1831419	 David L. Parnas

T
h e b r a n c h e s of engineer-
ing (such as civil, electrical,
and mechanical), are often
referred to as disciplines
for good reason. Associated

with each specialty is a set of rules
that specify:

˲˲ checks that must be made;
˲˲ properties that must be measured,

calculated, or specified;
˲˲ documentation that must be pro-

vided;
˲˲ design review procedures;
˲˲ tests that must be carried out on

the product; and
˲˲ product inspection and mainte-

nance procedures.
Like all professional education,

engineering education is designed to
prepare students to meet the require-
ments of the authorities that regulate
their chosen profession. Consequently,
most graduates are taught they must
carry out these procedures diligently
and are warned they can be deemed
guilty of negligence and lose the right to
practice their profession if they do not.

Because they are preparing stu-
dents for a career that can last many
decades, good engineering programs
teach fundamental principles that will
be valid and useful at the end of the
graduate’s career. Engineering proce-
dures are based on science and math-
ematics; and graduates are expected to
understand the reasons for the rules,
not just blindly apply them.

These procedures are intended to

assure that the engineer’s product:
˲˲ will be fit for the use for which it

is intended;
˲˲ will conform to precise stable

standards;
˲˲ is robust enough to survive all

foreseeable circumstances (including
incorrect input); and

˲˲ is conservatively designed with
appropriate allowance for a margin of
error.

In some areas, for example building
and road construction, the procedures

are enforced by law. In other areas, and
when engineers work in industry rather
than selling their services directly to the
public, employers rely on the profes-
sionalism of their employees. Profes-
sional engineers are expected to know
what must be done and to follow the
rules even when their employer wants
them to take inappropriate shortcuts.

Anyone who observes engineers at
work knows that exercising due dili-
gence requires a lot of “dog work.” The
dull, but essential, work begins in the

26 communications of the acm | october 2010 | vol. 53 | no. 10

viewpoints

design phase and continues through
construction, testing, inspection,
commissioning, and maintenance. Li-
censed engineers are given a unique
seal and instructed to use it to signify
the acceptability of design documents
only after they are sure the required
analysis has been completed by quali-
fied persons.

Real-World Experience
Recent experiences reminded me that
the activity we (euphemistically) call
software engineering does not come
close to deserving a place among the
traditional engineering disciplines.
Replacing an old computer with a new-
er model of the same brand revealed
many careless design errors—errors
that in all likelihood could have been
avoided if the developers had followed
a disciplined design process. None of
the problems was safety critical, but
the trouble caused was expensive and
annoying for all parties.

My “adventure” began when the
sales clerk scanned a bar code to ini-
tiate the process of creating a receipt
and registering my extended warranty.
There were three codes on the box; not
surprisingly, the sales clerk scanned
the wrong one. This is a common oc-
currence. The number scanned bore
no resemblance to a computer serial
number but was accepted by the soft-
ware without any warning to the clerk.
The nonsense number was duly print-
ed as the serial number on my receipt.
My extended warranty was registered
to a nonexistent product. I was billed,
and no problem was noted until I
phoned the customer care line with a
question. When I read the serial num-

ber from the receipt, I was told that I
had purchased nothing and was not
entitled to ask questions. After I found
the correct number on the box, I was
told that my computer was not yet
in their system although a week had
passed since the sale.

Correcting the problem required
a trip back to the store and tricking
the company computer by returning
the nonexistent machine and buying
it again. In the process, my name was
entered incorrectly and I was unable
to access the warranty information on-
line. After repeatedly trying to correct
their records, the help staff told me it
could not be done.

A different problem arose when
I used the migration assistant sup-
plied with the new computer to trans-
fer my data and programs to the new
machine. Although the description of
the migration assistant clearly states
that incompatible applications will
be moved to a special directory rather
than installed, a common software
package on the old machine, one that
was not usable or needed on the new
one, was installed anyway. A process
began to consume CPU time at a high
rate. Stopping that process required
searching the Internet to find an in-
staller for the obsolete product.

The next problem was an error
message informing me that a device
was connected to a USB 1.1 port and
advising me to move it to a USB 2.0
port. My new computer did not have
any 1.1 ports so I called the “care” line
for advice. They had no list of error
messages and could not guess, or find
out, which application or component
of their software would issue such a
message or under what conditions it
should be issued. They referred the
problem to developers; I am still wait-
ing for a return call.

These incidents are so petty and so
commonplace that readers must won-
der why I write about them. It is pre-
cisely because such events are com-
monplace, and so indicative of lack
of discipline, that such stories should
concern anyone who uses or creates
software.

As early as the late 1950s, some
compilers came with a complete list
of error messages and descriptions of
the conditions that caused them. To-
day, such lists cannot be found. Often,

Computer science
students are not
taught to work in
disciplined ways. In
fact, the importance
of disciplined analysis
is hardly mentioned.

ht
tp:
//w
ww
.ac
m
.or
g/
su
bs
cr
ibe

ACM’s
interactions
magazine explores
critical relationships
between experiences, people,
and technology, showcasing
emerging innovations and industry
leaders from around the world
across important applications of
design thinking and the broadening
field of the interaction design.
Our readers represent a growing
community of practice that
is of increasing and vital
global importance.

http://www.acm.org/subscribe

viewpoints

october 2010 | vol. 53 | no. 10 | communications of the acm 27

when reviewing a system, I will pick a
random message or output symbol and
ask, “When does that happen?” I never
get a satisfactory answer.

There are methods of design and
documentation that facilitate check-
ing that a programmer has considered
all possible cases (including such un-
desired events as incorrect input or the
need to correct an earlier transaction)
and provided appropriate mechanisms
for responding to them. When such
methods are used, people find serious
errors in software that has been tested
and used for years. When I talk or write
about such methods, I am often told by
colleagues, experienced students, and
reviewers that, “Nobody does that.”
They are right—that’s the problem!

Much of the fault lies with our
teaching. Computer science students
are not taught to work in disciplined
ways. In fact, the importance of disci-
plined analysis is hardly mentioned. Of
course, just telling students to be dili-
gent is not enough. We need to:

˲˲ teach them what to do and how to
do it—even in the first course;

˲˲ use those methods ourselves in ev-
ery example we present;

˲˲ insist they use a disciplined ap-
proach in every assignment in every
course where they write programs;

˲˲ check they have inspected and test-
ed their programs diligently, and

˲˲ test their ability to check code sys-
tematically on examinations.

Many of us preach about the impor-
tance of determining the requirements
a software product must satisfy, but we
do not show students how to organize
their work so they can systematically
produce a requirements specification
that removes all user-visible choices
from the province of the programmer.

Some of us advise students to avoid
dull work by automating it, but do not
explain that this does not relieve an en-
gineer of the responsibility to be sure
the work was done correctly.

Innovation and Disciplined Design
It has become modish to talk about
teaching creativity and innovation. We
need to tell students that inventiveness
is not a substitute for disciplined atten-
tion to the little details that make the
difference between a product we like
and a product we curse. Students need
to be told how to create and use check-

lists more than they need to hear about
the importance of creativity.

It is obviously important to give
courses on picking the most efficient
algorithms and to make sure that stu-
dents graduate prepared to under-
stand current technology and use new
technology as it comes along, but nei-
ther substitutes for teaching them to
be disciplined developers.

Disciplined design is both teachable
and doable. It requires the use of the
most basic logic, nothing as fancy as
temporal logic or any of the best-known
formal methods. Simple procedures
can be remarkably effective at finding
flaws and improving trustworthiness.
Unfortunately, they are time-consum-
ing and most decidedly not done by se-
nior colleagues and competitors.

Disciplined software design re-
quires three steps:

1.	 Determine and describe the set of
possible inputs to the software.

2.	 Partition the input set in such a
way that the inputs within each par-
tition are all handled according to a
simple rule.

3.	 State that rule.
Each of these steps requires careful

review:
1.	 Those who know the application

must confirm that no other inputs can
ever occur.

2.	 Use basic logic to confirm that ev-
ery input is in one—and only one—of
the partitions.

3.	 Those who know the applica-
tion, for example, those who will use
the program, must confirm the stat-
ed rule is correct for every element of
the partition.

These rules seem simple, but reality
complicates them:

1.	 If the software has internal mem-
ory, the input space will comprise
event sequences, not just current val-
ues. Characterizing the set of possible
input sequences, including those that
should not, but could, happen is diffi-
cult. It is very easy to overlook sequenc-
es that should not happen.

2.	 Function names may appear in
the characterization of the input set.
Verifying the correctness of the pro-
posed partitioning requires knowing
the properties of the functions named.

3.	 The rule describing the output
value for some of the partitions may
turn out to be complex. This is gener-
ally a sign that the partitioning must be
revised, usually by refining a partition
into two or more smaller partitions. The
description of the required behavior for
a partition should always be simple but
this may imply having more partitions.

Similar “divide and conquer” ap-
proaches are available for inspection
and testing.

While our failure to teach students
to work in disciplined ways is the pri-
mary problem, the low standards of
purchasers are also a contributing fac-
tor. We accept the many bugs we find
when a product is first delivered, and
the need for frequent error-correcting
updates, as inevitable. Even sophisti-
cated and experienced purchasers do
not demand the documentation that
would be evidence of disciplined de-
sign and testing.

We are caught in a catch-22 situa-
tion:

˲˲ Until customers demand evidence
that the designers were qualified and
disciplined, they will continue to get
sloppy software.

˲˲ As long as there is no better soft-
ware, we will buy sloppy software.

˲˲ As long as we buy sloppy software,
developers will continue to use undis-
ciplined development methods.

˲˲ As long as we fail to demand that
developers use disciplined methods,
we run the risk—nay, certainty—that
we will continue to encounter software
full of bugs. 	

David L. Parnas (parnas@mcmaster.ca) is Professor
Emeritus at McMaster University and the University of
Limerick as well as President of Middle Road Software.
He has been looking for, and teaching, better software
development methods for more than 40 years. He is still
looking!

Copyright held by author.

Even sophisticated and
experienced purchasers
do not demand the
documentation that
would be evidence
of disciplined design
and testing.

mailto:parnas@mcmaster.ca

28 communications of the acm | october 2010 | vol. 53 | no. 10

V
viewpoints

 Article development led by
 queue.acm.org

P
h

o
t

o
g

r
a

p
h

 b
y

 a
l

i
c

i
a

 k
u

b
i

s
t

a

Kode Vicious
Version Aversion
The way you number your releases communicates
more than you might think.

doi:10.1145/1831407.1831420	 George V. Neville-Neil

Dear KV,
I’m working on a small, open-source
project in my free time and trying to
figure out a reasonable way to number
releases. There are about 10 of us work-
ing on the project right now, and there
seem to be 10 different opinions about
when we should roll out the major and
minor numbers for our project. Since
the software is only in the alpha stage,
I thought it was premature to come up
with a numbering scheme; but once
someone else posted it on our mailing
list we decided we should tackle the
problem now so we don’t have to think
about it again later. When you’re work-
ing on software, when do you roll out a
new version number?

Averse to Aversion

Dear Aversion,
You have 10 developers and you have

only 10 opinions? I was expecting you
to say you had 20 opinions, so right
from the start it looks like you’re not
in as bad a shape as you might think.
Choosing a versioning scheme is more
important than most programmers
really understand, in part because a
versioning scheme is a form of human
communication, and human commu-
nication…well, let’s just say that many
programmers don’t get that at all.

A versioning scheme serves a few

important purposes. The most obvious
is allowing users to know where they
are in the evolution of your software,
but version numbers also communi-
cate a good deal more information.

A good version-numbering system
can be used to track the change in func-
tionality of a piece of software. A new
feature, or a major change to a feature,
should always result in a new version
number being assigned. I’ve always
been happiest, or perhaps least miser-

A good version-
numbering system
can be used to
track the change in
functionality of
a piece of software.

http://queue.acm.org

V
viewpoints

october 2010 | vol. 53 | no. 10 | communications of the acm 29

able, with three-number versioning—
Major.Minor.BugFix—where the major
version changes for large features, the
minor version changes for small fea-
tures, and the last number is a bug-fix
release. The bug-fix number is perhaps
the easiest to understand. After a num-
ber of bugs are fixed, you want to release
new software into the field so that users
can benefit from the work your team
has done. Increase the last number and
release a new version. Bug fixes should
never change an API in a library or intro-
duce or significantly change a feature.

The difference between a major and
a minor version change can be tricky
depending on the software you are
writing. Minor versions can be rolled
out so long as there are no backward-
incompatible changes to the system.
What this means is that if you have a
change to your software that will break
another piece of software that depends
on your code, or that breaks a user
assumption about how your system
works, that requires a major version
change. Additive changes, such as new
APIs, or new features that do not break
backward compatibility can be rolled
into minor version updates.

The slippery slope is figuring out
how many minor changes add up to a
major change. If your software has 30
features and you add 10 new ones, even
if none of them touches the original 30,
shouldn’t that necessitate a major ver-
sion change? I think it should, but not
everyone agrees. Of course those who
don’t agree—well, let’s just leave that
alone, shall we?

One thing that software versions
communicate is the rate of change in
your software. If your software goes
from 1.0 to 2.0 in a month, then either
your team is performing miracles,
which I find highly suspect, or they’re
claiming major changes when none
has really occurred. A very high rate of
minor or bug releases can also indicate
problems in a project—in particular,
that it is buggy. Although there is no
perfect rate for releases, they should
definitely slow down a bit as a product
matures. Too-frequent releases often
mean that a piece of software is imma-
ture and perhaps lacks staying power.

Another pattern, in some projects,
is never to release a 1.0, but to release
a lot of 0.x’s. A particularly egregious
version of this, pun intended, was the

Ethereal project, which, after more
than 10 years of development, got to
the point of releasing a 0.99.5. This was
just a way, as far as I could tell, of mov-
ing the version number to the right.
The software itself is quite good and
widely used, but its versioning system
was quite odd. Now that the project has
been renamed Wireshark, it seems to
have moved to a more traditional Ma-
jor.Minor style of versioning.

Version numbers should also be able
to correlate related pieces of software.
One of the banes of my existence is
the Linux versioning system, although
I believe this has more to do with the
way Linux itself is developed. The fact
that there are now many different
operating-system kernels that I might
have to choose from to use a piece of re-
lated software is simply maddening. A
recent example involves having to find
the correct bits so I could use a driver
for a new piece of hardware. The stan-
dard release was 2.6.18-194.3.1.el5, but
the version I needed was, 2.6.18-164.el.
And just what do those numbers mean?
Of course I could work them out with
some Web searches, but still, the fact
that kernel APIs have changed enough
within those minor releases that a
driver couldn’t work is madness. Even
looking at kernel.org, the source of all
things Linux kernel, isn’t much help. At
the time this column was written these
are the kernels that are listed as stable
for the 2.6 version of the kernel:

2.6.34 	 2010-05-16 	
2.6.33.5 	 2010-05-26
2.6.32.15 	 2010-06-01
2.6.31.13 	 2010-04-01
2.6.27.47 	 2010-05-26

Now, I ask you, how does 2.6.34
come out 10 days before 2.6.33.5, and
how can all of these be stable? How do
they even relate to each other?

Of course, it’s not just open-source
projects that have problems with ver-
sioning. The biggest software company
of them all seems to have one of the
most ridiculous versioning schemes
of all. Based on the names alone, how
does one figure the difference between
Windows 95, Windows 98, Windows
ME, Windows NT, Windows XP, Win-
dows XP Service Pack 2, and Vista? I
can list them in order only because I
have watched them all come and go,
and, happily, never installed any of
them on my own machines. Perhaps
if you hash the names just right, then
they turn into monotonically increas-
ing version numbers.

One last thing to note is that you
should not tie yourself down with your
versioning scheme; remember that you
may have to be flexible. I once worked
on a product with a 1.0.1b release. The
b release was necessitated by a not-so-
amusing mistake, wherein a developer
decided that if a user saved a file with-
out an extension, the developer would
provide one. The extension was a four-
letter word that is included in George
Carlin’s list of seven things you can
never say on TV, and which one should
never really have as a file extension ei-
ther. I think you get the idea. The devel-
oper had meant to remove that particu-
lar feature before the code was released
but forgot, and so, we had 1.0.1 and
1.0.1b releases. We could have made a
1.0.2 release, but, really, there was just
one change—though I do believe we
should have made the release 1.0.1f.

KV

 Related articles
 on queue.acm.org

A Conversation with Steve Bourne,
Eric Allman, and Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1454460

Making Sense of Revision-Control Systems
Bryan O’Sullivan
http://queue.acm.org/detail.cfm?id=1595636

George V. Neville-Neil (kv@acm.org) is the proprietor of
Neville-Neil Consulting and a member of the ACM Queue
editorial board. He works on networking and operating
systems code for fun and profit, teaches courses on
various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

Copyright held by author.

The difference
between a major
and a minor version
change can be tricky
depending on
the software you
are writing.

http://kernel.org
http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1454460
http://queue.acm.org/detail.cfm?id=1595636
mailto:kv@acm.org

30 communications of the acm | october 2010 | vol. 53 | no. 10

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 f
r

o
m

 I
s

t
o

c
kp

h

o
t

o
.c

o
m

doi:10.1145/1831407.1831421	 Michael Hicks and Jeffrey S. Foster

W
orking with and men-
toring Ph.D. students
is the central activ-
ity in running an aca-
demic research group.

At the start of our careers as assistant
professors, we took a fairly typical ap-
proach to managing student interac-
tions: once or twice per week, we met
with each of our students in presched-
uled sessions of approximately half-
hour or hour-long duration. However,
this approach started breaking down
as we gained more students and our
other responsibilities increased: our
time became fragmented and ineffi-
ciently used; hard-earned lessons were
not shared effectively among students;
and our group lacked any real cohe-
sion or identity. In September 2006,
we learned about Scrum,1 an “agile”
software development methodology,
and realized we might be able to solve
some of the problems we were having
by adapting it to our research group.

In this Viewpoint, we briefly describe
the resulting process, which we call
SCORE (SCrum fOr REsearch). We have
been using SCORE for several years, and
have discovered it has many benefits,
some we intended and some that sur-
prised us. While every situation is differ-
ent, we hope others may learn from our
approach, in idea if not in form, and that
we might inspire further discussion of
research group management strategies.
A longer version of this Viewpoint, with
more information and space for feedback,
is available at the SCORE Web page.3

SCORE
The major feature of SCORE is its
meeting structure, which consists of
two parts:

Regular all-hands status meetings.
Several times a week (late mornings
on Tuesdays, Wednesdays, and Fridays
in our group), the group meets for a
15-minute, all-hands status meeting,
modeled after the daily “scrum” meet-
ing for which Scrum is named. During
the meeting each person gives a brief
update on what they did since the last
meeting, what problems they encoun-
tered, and what they plan to do for the
next meeting. If someone cannot physi-
cally attend the meeting, they may con-
ference-call in, but physical presence is
much preferred. Everyone stands dur-
ing the meeting, to encourage brevity.

Though brief, status reports are
information-rich. Students report on a
wide range of activities, such as prog-
ress in implementing code, carrying
out an experiment, reading a paper,
working on a proof, writing up a re-
sult, or preparing a talk. We encourage

students to present their status to the
group, rather than just to the faculty.
Students may also say there has been no
change in their status, typically because
of classwork or for personal reasons.

On-demand research meetings.
Whenever a student or one of us thinks
a more in-depth, one-on-one meeting
is needed, we schedule it on demand.
Since only the status meetings are pre-
scheduled, we are able to reserve large
blocks of time (most afternoons) for
holding on-demand meetings, and the
meetings can be of varying durations—
as long, or as short, as required. We of-
ten schedule on-demand meetings im-
mediately following a status meeting,
typically for the same afternoon.

We kicked off SCORE with a “re-
search review day” of conference-style
talks describing ongoing research proj-
ects, to provide context for the ensu-
ing status reports. As needed, we inject
some of these talks to inform the group
of a new project or to “checkpoint” a
recent major result. To help increase
group spirit further, we have a weekly
lunch, and we also hold a reading group
one day per week.

Why It Works for Us
Though simple, SCORE works remark-
ably well for us. After nine months of
using SCORE, we surveyed our students
for feedback, and their responses were
very positive. Since then, colleagues
at various institutions have adopted
aspects of SCORE, and they have of-
fered us feedback. From these and our

Viewpoint
SCORE: Agile Research
Group Management
Adapting agile software development methodology toward
more efficient management of academic research groups.

V
viewpoints

october 2010 | vol. 53 | no. 10 | communications of the acm 31

own assessments, we have identified
the following list of SCORE’s benefits.
While none of these benefits is unique
to SCORE, it is convenient that SCORE
has them all.

More efficient time use for faculty.
A major problem we had with prear-
ranged meetings was schedule frag-
mentation. When a student had only
a quick status update, the meeting
slot was too long, and the remaining
chunks of time were difficult to use.
On the other hand, when a student
had a deep technical issue to explore,
the slots were too short. Because we
had so many prescheduled meetings,
subsequent discussion might have to
wait a day or two, slowing progress.
Moreover, context-switching fre-
quently over the course of many meet-
ings was very draining, reducing the
meetings’ effectiveness.

SCORE solves these issues very well
by separating quick status reports
from in-depth technical discussions.
On-demand meetings have a clear
purpose and are therefore much more
productive than our weekly meetings
used to be.

Improved productivity for students.
By our own observations and those of
our students, frequent student-adviser
contact at SCORE status meetings has
improved student morale and produc-
tivity. In response to our survey, one
student said: “I like the frequency of
the status meetings. Frequent meetings
make incremental progress necessary:
to have something to say at each meet-
ing, you can’t goof off for an extended
period of time. Also, if you don’t know
where to go next, there isn’t much time
before another meeting, when you can
get back on track. On the other hand,
the frequency of the meetings means
that, if something came up and you
don’t have anything to report for today,
it’s not a big deal; you’ll have something
for tomorrow or the next day.”

Most graduate students struggle at
some point—one study found “At [UC]
Berkeley, 67% of graduate students said
they had felt hopeless at least once in
the last year.”2 With thrice-weekly sta-
tus meetings, we can identify struggling
students quickly and therefore help
them much sooner than we would have
when meeting once per week.

Improved group identity and shared
knowledge. By giving each person a

window onto the activities of others,
participants learn from others’ suc-
cesses and failures, which helps create
a group sense of momentum and ac-
complishment. One student specifical-
ly commented he liked hearing about
other students’ progress: “I can follow
other people’s research and ‘daily re-
search routine.’ That helps because it’s
interesting and I learn things, but also
because I can compare my productivity
and have a better idea of how I fare.”

More than half of the students sur-
veyed specifically cited a “research com-
munity” or “sense of belonging” as a
benefit of SCORE. The students said
they feel the joy of their fellows’ suc-
cesses, which then creates further mo-
tivation and enthusiasm for their own
work. At the same time, one student
mentioned it was consoling to learn that
other students hit slow patches, too: “It
helped me with the realization that ev-
eryone has rough patches and that it is
not a big deal.” Several students said
regular social gatherings and proximate
offices were also important in fostering
this sense of community. One student
said, “Status meetings and the office
atmosphere make it worth my while to
come to school.” Finally, group meet-
ings remove faculty as the bottleneck to
developing new ideas or solving techni-
cal problems, as students offer advice
and begin collaborations with their fel-
low students based on what they hear in
the meetings.

Can SCORE Work for You?
Every research group is different and
must find its own process that works
best. We hope knowing about SCORE
will prove useful to other groups, either
as a new process to experiment with or
as inspiration for other ideas. For ex-

ample, instead of SCORE’s status meet-
ings there may be other good stategies
to engender frequent contact and cre-
ate opportunities for focused, in-depth
meetings. Among others, some pos-
sible approaches are regular faculty “of-
fice hours” in a lab-space that co-locates
many students; less formal “coffee
hours”; or perhaps co-locating faculty
with students. Lessons learned might
be communicated more permanently
by incorporating group mailing lists,
wikis, or blogs. Prescheduled research
meetings may also play a role, for ex-
ample, for external collaborators who
do not attend status meetings.

SCORE can also be further improved,
as it is silent about some important el-
ements of running a research group.
For example, SCORE has no specific
process for generating and discussing
research ideas. Currently we explore
ideas during the on-demand meetings,
but doing so does not take advantage of
the perspective of the larger group, nor
does it give students a broader view of
this process.

We encourage interested readers to
read the longer version of this Viewpoint
at the SCORE Web page,3 and to pro-
vide comments on the ideas and issues
raised. The long version goes into more
detail about running SCORE in practice,
describes elements of SCORE that we
tried but did not work for us, and reports
more in-depth responses to our student
survey. We look forward to further ex-
ploring strategies for mentoring and
working with graduate students to pro-
duce high-quality academic research.	

References
1.	A gile Development Methods Inc. About Scrum—

Overview (2008); http://www.controlchaos.com/about/
2.	 Fogg, P. Grad-school blues: Students fighting

depression and anxiety are not alone. The Chronicle of
Higher Education, (Feb. 20, 2009).

3.	SCORE Web page; http://www.cs.umd.edu/projects/
PL/score

Michael Hicks (fmwh@cs.umd.edu) is an associate
professor in the Computer Science Department and
UMIACS, and an affiliate associate professor in the
Electrical and Computer Engineering Department, at the
University of Maryland, College Park.

Jeffrey S. Foster (jfoster@cs.umd.edu) is an associate
professor in the Computer Science Department and
UMIACS at the University of Maryland, College Park.

We would like to thank Jens Palsberg, Dan Boneh, David
Notkin, Alex Aiken, and Kathryn McKinley for helpful
comments on drafts of this Viewpoint. We would also like
to thank all those who have given us feedback on SCORE,
especially the students in the programming languages
group at the University of Maryland.

Copyright held by author.

On-demand meetings
have a clear purpose
and are therefore
much more productive
than our weekly
meetings used to be.

http://www.controlchaos.com/about/
http://www.cs.umd.edu/projects/PL/score
mailto:fmwh@cs.umd.edu
mailto:jfoster@cs.umd.edu
http://www.cs.umd.edu/projects/PL/score

32 communications of the acm | october 2010 | vol. 53 | no. 10

practice

P
h

o
t

o
g

r
a

p
h

 b
y

 r
i

c
h

a
r

d
 m

o
r

t
g

e
n

s
t

e
i

n

Over the past two decades, Adobe Photoshop
has become the de facto image-editing software
for digital photography enthusiasts, artists, and
graphic designers worldwide. Part of its widespread
appeal has to do with a user interface that makes
it fairly straightforward to apply some extremely
sophisticated image editing and filtering techniques.
Behind that façade, however, stands a lot of complex,
computationally demanding code. To improve the
performance of these computations, Photoshop’s
designers became early adopters of parallelism—in
the mid-1990s—through efforts to access the extra
power offered by the cutting-edge desktop systems
of the day that were powered by either two or four
processors. At the time, Photoshop was one of the

only consumer desktop applications to
offer such a capability.

Photoshop’s parallelism, born in the
era of specialized expansion cards, has
managed to scale well for the two- and
four-core machines that have emerged
over the past decade. As Photoshop’s
engineers prepare for the eight- and 16-
core machines that are coming, howev-
er, they have started to encounter more
and more scaling problems, primarily a
result of the effects of Amdahl’s Law and
memory-bandwidth limitations.

In this ACM Case Study, Adobe Pho-
toshop principal scientist Russell Wil-
liams speaks with Clem Cole, architect
of Intel’s Cluster Ready program, about
how the Photoshop team is addressing
these challenges. Although in their cur-
rent positions they represent different
aspects of the parallel-computing land-
scape, both have long histories of tack-
ling parallelism at the operating-system
level.

Prior to joining the Photoshop de-
velopment team, Williams had a long
career as an operating-system designer
at companies such as Apple, where he
worked on the Copland microkernel,
and Elxsi, where he helped develop
mini-supercomputers. The diversity
of that background now allows him to
maintain a well-rounded perspective
on parallelism at different levels of the
stack.

Cole is a veteran operating-system
developer with years of experience in
Unix kernel and tool development. His
current efforts to advance methods that
take advantage of multiple processors—
using Intel’s next generation of multi-
core chips—makes him a fitting inter-
viewer for Williams, whose work in large
part builds on top of the platforms Cole
helps to create at Intel.

While Photoshop comes with a
unique set of problems and constraints,
many of the engineering challenges it
presents will undoubtedly seem familiar
to any software engineer who has ever
attempted to achieve parallelism in an
application. Still, to get a handle on the
issues Photoshop’s engineers are facing
today, we must first consider the appli-

doi:10.1145/1831407.1831423

 Article development led by
 queue.acm.org

Clem Cole and Russell Williams discuss
Photoshop’s long history with parallelism,
and what is now seen as the chief challenge.

ACM CASE STUDY

Photoshop
Scalability:
Keeping It
Simple

http://queue.acm.org

october 2010 | vol. 53 | no. 10 | communications of the acm 33

Clem Cole (left) and Russell Williams

34 communications of the acm | october 2010 | vol. 53 | no. 10

practice

cation’s history with parallelism over
the past 15 years.

COLE: You’ve been writing software for
a long time, and for the past 11 years
you’ve been working with Photoshop
and have become increasingly engaged
with its parallel aspects. Which parts of
that have proved to be easy and what has
turned out to be surprisingly hard?

WILLIAMS: The easy part is that Pho-
toshop has actually had quite a bit of
parallelism for a long time. At a very sim-
plistic level, it had some worker threads
to handle stuff like asynchronous cursor
tracking while also managing asynchro-
nous I/O on another thread. Making
that sort of thing work has been pretty
straightforward because the problem
is so simple. There’s little data shared
across that boundary, and the goal is not
to get compute scaling; it’s just to get an
asynchronous task going.

I should note, however, that even
with that incredibly simple task of queu-
ing disk I/O requests so they could be
handled asynchronously by another
thread, the single longest-lived bug I
know of in Photoshop ended up being
nestled in that code. It hid out in there
for about 10 years. We would turn on
the asynchronous I/O and end up hit-
ting that bug. We would search for it for
weeks, but then just have to give up and
ship the app without the asynchronous
I/O being turned on. Every couple of
versions we would turn it back on so we
could set off looking for the bug again.

COLE: I think it was Butler Lampson
who said the wonderful thing about se-
rial machines is you can halt them and
look at everything. When we’re working
in parallel, there’s always something
else going on, so the concept of stop-
ping everything to examine it is really
hard. I’m actually not shocked your bug
was able to hide in the I/O system for
that long.

WILLIAMS: It turned out to be a very
simple problem. Like so many other
aspects of Photoshop, it had to do with
the fact that the app was written first for
the Macintosh and then moved over to
Windows. On the Macintosh, the set file
position call is atomic—a single call—
whereas on Windows, it’s a pair of calls.
The person who put that in there didn’t
think about the fact that the pair of calls
has to be made atomic whenever you’re
sharing the file position across threads.

COLE: Now, of course, you can look
back and say that’s obvious.

WILLIAMS: In fact, the person who
originally put that bug in the code was
walking down the hallway one of the
many times we set off looking for that
thing, smacked his forehead, and real-
ized what the problem was—10 years
after the fact.

Anyway, the other big area in Pho-
toshop where we’ve had success with
parallelism involves the basic image-
processing routines. Whenever you run
a filter or an adjustment inside Photo-
shop, it’s broken down into a number
of basic image-processing operations,
and those are implemented in a library
that’s accessed through a jump table.
Early on, that allowed us to ship acceler-
ated versions of these “bottleneck rou-
tines,” as they’re called. In the 1990s,
when companies were selling dedicated
DSP (digital signal processor) cards for
accelerating Photoshop, we could patch
those bottlenecks, execute our routine
on the accelerator card, and then return
control to the 68KB processor.

That gave us an excellent opportu-
nity to put parallelism into the app in a
way that didn’t complicate the imple-
mentations for our bottleneck-routine
algorithms. When one of those routines
was called, it would be passed a point-
er—or two or three pointers—to bytes
in memory. It couldn’t access Photo-
shop’s software-based virtual memory
and it couldn’t call the operating sys-
tem; it was just a math routine down at
the bottom. That gave us a very simple
way—prior to getting down to the math
routine—of inserting something that
would slice up the piece of memory we
wanted to process across multiple CPUs
and then hand separate chunks of that
off to threads on each CPU.

COLE: The key there is you had an
object that could be broken apart into
smaller objects without the upper-level
piece needing to worry about it. It also
helps that you had a nice, clean place to
make that split.

WILLIAMS: The other nice aspect is that
the thing on the bottom didn’t need to
know about synchronization. It was still
nothing more than a math routine that
was being passed a source pointer—or
maybe a couple of source pointers and
counts—along with a destination point-
er. All the synchronization lived in that
multiprocessor plug-in that inserted

itself into the jump table for the bottle-
neck routines. That architecture was put
into Photoshop in about 1994. It allowed
us to take advantage of Windows NT’s
symmetric multiprocessing architec-
ture for either two or four CPUs, which
was what you could get at the time on a
very high-end machine. It also allowed
us to take advantage of the DayStar mul-
tiprocessing API on the Macintosh. You
could buy multiprocessor machines
from DayStar Digital in the mid- to late-
1990s that the rest of the Mac operating
system had no way of taking advantage
of—but Photoshop could.

Photoshop has well over a decade of
using multiple processors to perform
the fundamental image-processing
work it does on pixels. That has scaled
pretty well over the number of CPUs
people have typically been able to obtain
in a system over the past decade—which
is to say either two or four processors.
Essentially, no synchronization bugs
ended up surfacing in those systems
over all that time. 	

COLE: That’s an amazing statement!
Is there an insight associated with that
that you can share? What do you think
the rest of us can learn from that?

WILLIAMS: I think the big win came
from not having to write synchroniza-
tion for the processing routines that
were to be parallelized. In other words,
people could write convolution kernels
or whatever else it was they needed to
do in terms of pixel processing without
having to worry about getting all those
synchronization issues right. If acquir-
ing one asynch I/O thread was all it took
for us to introduce a bug that managed
to elude us for 10 years, then it’s clear
that minimizing synchronization issues
is very important.

That said, the way synchronization
was approached 10 years ago involved
the use of far more error-prone synchro-
nization primitives than what we’ve got
available to us today. Things like “enter
critical section” and “leave critical sec-
tion” on Windows could be really fast,
but they were also very error prone. Try-
ing to keep track of whether you’ve put
critical sections every place you might
need them, and whether or not you’ve
remembered to leave as many times as
you entered, that can all tend to be very
difficult and error prone.

The nettlesome bug that managed to re-

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 35

main obscured within Photoshop’s syn-
chronization code for 10 years serves to
illustrate just how tricky parallel pro-
gramming can be. But it also highlights
how much progress has been made in
terms of improved resources for man-
aging some of this complexity. Had Pho-
toshop’s synchronization been written
today using C++’s stack-based locking,
for example, it’s unlikely a bug of that
sort would have been introduced. As
processors get more cores and grow in
complexity, the need will only intensify
for new tools and better programming
primitives for hiding the complexity
from developers and allowing them to
code at higher levels of abstraction.

At the same time, software archi-
tects also need to keep an eye on some
other fundamental issues. For example,
despite using less-sophisticated syn-
chronization primitives in the original
design, the Photoshop team was able
to essentially forget about complex
thread-synchronization problems, in
part because the image-processing
problem itself was so amenable to par-
allelization. Also, however, Photoshop’s
architecture made it possible to estab-
lish some very clean object boundaries,
which in turn made it easy for program-
mers to slice up objects and spread the
resulting pieces across multiple proces-
sors. Indeed, the architects of Photo-
shop were keenly aware of where their
best opportunities for parallelization
existed, and they designed the applica-
tion accordingly.

Generalizing on this, it’s clear that—
with or without advances in tools and
programming abstractions—in order
for developers to fully leverage the mul-
ticore architectures that are coming,
they’ll need to be adept at identifying
those parts of a program that can ben-
efit most from parallelization. It’s in
these portions of the code that new
tools, techniques, and parallel pro-
gramming abstractions are likely to
have the greatest impact.

COLE: As operating-system designers, we
both grew up in a world where we had
to deal with parallelism. It’s not always
clear that the solutions we came up with
for our operating systems proved to be
the right ones. In an earlier conversa-
tion, you mentioned your experience
with creating and removing mutexes.
We’ve gotten smarter over the years.

We’ve learned how to do things that are
more efficient, but that doesn’t mean it
has gotten any easier. What do we have
up our sleeves to make it easier?

WILLIAMS: Parallelism remains diffi-
cult in a couple of ways. It’s one thing
to ask for a new Photoshop filter for
processing a grid of pixels to do that in
parallel. It’s quite another thing to say,
“I’m going to parallelize and thus speed
up the way that Photoshop runs JavaS-
cript actions.” For example, I’ve got a
JavaScript routine that opens 50 files
one after the other and then performs a
set of 50 steps on each one. I don’t have
control over that script. My job is just to
make that—or any other script the user
has to run—faster.

I could say, “Rewrite all your scripts
so we can design a completely new in-
terface that will let you specify that all
these images are to be processed in par-
allel.” That’s one answer, but it would
require a lot of work on the user’s part,
as well as on our part. And it would still
leave us with the problems associated
with parallelizing the opening of an
image, parsing the image contents, in-
terpreting the JavaScript, running the
key command object through the ap-
plication framework, and updating the
user interface—all of which typically is
tied into an app framework and thus
involves calling some horrendously se-
quential script interpreter. Once you
start looking at the Amdahl’s Law num-
bers on something like that, it soon be-
comes apparent that trying to get that
to parallelize eight ways would just be
completely hopeless.

At the other end of the spectrum you
might find, for example, a mathemati-
cal algorithm that conceptually lends
itself to parallelism simply because it
has a bunch of data structures it needs
to share. So how hard would it be to cor-
rectly implement that mathematically
parallelizable algorithm?

I think we’ve made some incremen-
tal gains in our ability to deal with par-
allelism over the past 20 years, just as
we’ve made stepwise progress on all
other programming fronts. Remember
that back in the 1970s, there was a lot of
talk about the “software crisis,” regard-
ing how software was getting more and
more complicated, to the point where
we couldn’t manage the bugs anymore.
Well, in response to that, there was no
huge breakthrough in software produc-

Russell williams

I think we’ve made
some incremental
gains in our ability
to deal with
parallelism over
the past 20 years,
just as we’ve
made stepwise
progress on all
other programming
fronts.

36 communications of the acm | october 2010 | vol. 53 | no. 10

practice

tivity, but we did realize a bunch of in-
cremental gains from object-oriented
programming, improved integrated
development environments, and the
emergence of better symbolic debug-
ging and checker tools that looked for
memory leaks. All of that has helped us
incrementally improve our productivity
and increase our ability to manage com-
plexity.

I think we’re seeing much the same
thing happen with parallelism. That
is, whereas the earliest Photoshop syn-
chronization code was written in terms
of “enter critical section, leave critical
section,” we now have tools such as
Boost threads and OpenGL, which es-
sentially are programming languages,
to help us deal with those problems. If
you look at Pixel Bender [the Adobe li-
brary for expressing the parallel compu-
tations that can be run on GPUs], you’ll
find it’s at a much higher level and so
requires much less synchronization
work of the person who’s coding the al-
gorithm.

COLE: The key is that you try to go to a
higher level each time so you have less
and less of the detail to deal with. If we
can automate more of what happens
below that, we’ll manage to become
more efficient. You also mentioned that
we have better tools now than we did be-
fore. Does that suggest we’ll need even
better tools to take our next step? If so,
what are we missing?

WILLIAMS: Debugging multithreaded
programs at all remains really hard.
Debugging GPU-based programming,
whether in OpenGL or OpenCL, is still
in the Stone Age. In some cases you run
it and your system blue-screens, and
then you try to figure out what just hap-
pened.

COLE: That much we’re aware of.
We’ve tried to build stronger libraries so
that programmers don’t have to worry
about a lot of the low-level things any-
more. We’re also creating better librar-
ies of primitives, such as open source
TBB (Threading Building Blocks). Do
you see those as the kinds of things de-
velopers are looking to suppliers and
the research community for? 	

WILLIAMS: Those things are absolutely
a huge help. We’re taking a long hard
look at TBB right now. Cross-platform
tools are also essential. When some-
body comes out with something that’s
Windows only, that’s a nonstarter for

us—unless there is an exact-equivalent
technology on the Mac side as well. The
creation of cross-platform tools such as
Boost or TBB is hugely important to us.

The more we can hide under more
library layers, the better off we are.
The one thing that ends up limiting
the benefit of those libraries, though,
is Amdahl’s Law. For example, say that
as part of some operation we need to
transform the image into the frequency
domain. There’s a parallel implementa-
tion of FFT (Fast Fourier Transform) we
can just call, and maybe we even have a
library on top of that to decide whether
or not it makes any sense to ship that
all down to the GPU to do a GPU im-
plementation of FFT before sending
it back. But that’s just one step in our
algorithm. Maybe there’s a parallel li-
brary for the next step, but getting from
the FFT step to the step where we call
the parallel library is going to require
some messing around. It’s with all that
inter-step setup that Amdahl’s Law just
kills you. Even if you’re spending only
10% of your time doing that stuff, that
can be enough to keep you from scaling
beyond 10 processors.

Still, the library approach is fabu-
lous, and every parallel library imple-
mentation of common algorithms we
can lay our hands on is greatly appreci-
ated. Like many of the techniques we
have available to us today, however, it
starts to run out of steam at about eight
to 16 processors. That doesn’t mean
it isn’t worth doing. We’re definitely
headed down the library path ourselves
because it’s the only thing we can even
imagine working if we’re to scale to
eight to 16 processors.

For the engineers on the Photoshop
development team, the scaling limita-
tions imposed by Amdahl’s Law have
become all too familiar over the past
few years. Although the application’s
current parallelism scheme has scaled
well over two- and four-processor sys-
tems, experiments with systems featur-
ing eight or more processors indicate
performance improvements that are far
less encouraging. That’s partly because
as the number of cores increases, the
image chunks being processed, called
tiles, end up getting sliced into a greater
number of smaller pieces, resulting in
increased synchronization overhead.
Another issue is that in between each

clem cole

Locking your data
structures is truly
only the beginning.
The new tuning
problem is going to
be a real nightmare.

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 37

of the steps that process the image data
in parallelizable chunks, there are se-
quential bookkeeping steps. Because
of all this, Amdahl’s Law quickly trans-
forms into Amdahl’s wall.

Photoshop’s engineers tried to miti-
gate these effects by increasing the tile
size, which in turn made each of the
sub-pieces larger. This helped to re-
duce the synchronization overhead,
but it presented the developers with yet
another parallel-computing bugaboo:
memory-bandwidth limitations. Com-
pounding the problem was the fact that
Photoshop cannot interrupt pixel-pro-
cessing operations until an entire tile is
complete. So to go too far down the path
of increasing tile sizes would surely re-
sult in latency issues, as the application
would become unable to respond to
user input until it had finished process-
ing an entire tile.

Although Williams remains confi-
dent his team can continue to improve
Photoshop’s scaling in the near future
through the use of better tools, librar-
ies, and incremental changes to the
current approach to parallel process-
ing, eventually those techniques will
run out of steam. This means the time
has come to start thinking about mi-
grating the application to a different
approach altogether that involves new
parallel methods and the increased use
of GPUs.

COLE: I think you already have some in-
teresting ways of splitting things apart
for image processing, but for your base
application, have you considered other
programming paradigms, such as MPI
(message passing interface)? 	

WILLIAMS: No, we haven’t because
we’ve been occupied with moving from
the four-core world to the eight- to 16-
core world, and what we see is that Pho-
toshop is just going to be stuck in that
world for the next few years. Another
reason we haven’t looked all that seri-
ously at changing to a message-passing-
style interface is that it would require
such a huge re-architecture effort and
it’s not at all clear what the win would
be for us there.

COLE: The reason I ask is that Intel
is obviously looking to enable as many
cores in a box as possible, and you men-
tioned you had previously had prob-
lems with memory bandwidth. That’s
part of the reason why another division

of Intel has become interested in the
NUMA (non-uniform memory architec-
ture) way of putting things together. I
certainly feel we’re going to have appli-
cations that have both threadish parts
and heavily parallel parts, and we’re go-
ing to see the processors inside of work-
stations become more cluster-like in
many ways. We may not necessarily go
off-chip or out of the box, but we’re go-
ing to break memory up somehow. And
we’re going to have to do lots of other
things to give back some memory band-
width just because that’s going to have a
huge impact for somebody like you.

WILLIAMS: This comes up in a num-
ber of different ways. We get asked a lot
about how we’re going to handle some-
thing like Larrabee [the engineering
chip for Intel’s MIC—Many Integrated
Cores—architecture]. The answer is:
basically nothing for now. The reason
is that any of these future architectures
that promise to solve some particular
parallelism problem or some particular
part of the performance problem are all
kind of speculative at this point. Photo-
shop, on the other hand, is a mass-mar-
ket application. So, unless we are fairly
certain there are going to be millions
of one of these platforms out there, we
can’t afford to bet our software’s archi-
tectural direction on that. Right now, we
don’t see desktop architectures moving
beyond the mild and cache-coherent
form of NUMA we see today.

As a rule, we avoid writing large
amounts of processor-specific or man-
ufacturer-specific code, although we do
some targeted performance tuning. For
us, life will start to get interesting once
we can use libraries such as OpenGL,
OpenCL, and Adobe’s Pixel Bender—or
any higher-level libraries that take ad-
vantage of these libraries—to get access
to all that GPU power in a more general
way.

We’ve also been looking at the
change Intel’s Nehalem architecture
presents in this area. On all previous
multicore CPUs, a single thread could
soak up essentially all of the memory
bandwidth. Given that many of our
low-level operations are memory-band-
width limited, threading them would
have only added overhead. Our experi-
ence with other multicore CPUs is that
they become bandwidth limited with
only a couple of threads running, so
parallel speedups are limited by mem-

ory bandwidth rather than by Amdahl’s
Law or the nature of the algorithm.
With Nehalem, each processor core is
limited to a fraction of the chip’s total
memory bandwidth, so even a large
memcpy can be sped up tremendously
by being multithreaded.

COLE: I actually was just trying to
make more of an architectural state-
ment than anything. Rest assured,
you’re going to see just as many cores
as we can possibly get in there, but at a
certain point, what I refer to as “conser-
vation of memory bandwidth” starts to
become the big trade-off; that’s when
other architectural tricks are going
to have to be used that will have some
software impact. The question is, if
you can’t fire a gun and get everybody
to change software overnight, at what
point does it become economically in-
teresting for a company such as Adobe
to say, “OK, if I know I’m going to have
to deal with a cluster in a box, I’ve got
to slowly start moving my base so I’ll be
able to do that”?

WILLIAMS: I suspect we’ll end up see-
ing the same progression we saw with
SMP. That is, the hardware and operat-
ing-system support will be introduced
such that these platforms will be able
to run multiple programs, or multiple
instances of programs, not yet modi-
fied to take advantage of the new archi-
tecture. This has already proved to be
true with SMP and GPU use. There will
be some small handful of applications
that will absolutely depend on being
able to leverage the brand-new capa-
bility right away—as was the case with
video games and 3D rendering applica-
tions and their need to take advantage
of GPUs as soon as possible. The bulk
of applications, however, will not start
to take significant advantage of new ar-
chitectures until: (a) there’s an installed
base; (b) there’s software support; and
(c) there’s a clear direction for where
things are heading.

I assume the NUMA and MPI stuff
is at the research-lab level at this junc-
ture. And even though the MIC chip is
on its way, it’s still unclear to us what
the programming API will be other than
OpenGL and DirectX.

Now, just to throw a question back at
you: what do you see the progression be-
ing in terms of how the programming
API and operating-system support is
going to be rolled out, since people like

38 communications of the acm | october 2010 | vol. 53 | no. 10

practice

me are going to need that if we’re to
take advantage of these kinds of archi-
tectural innovations?

COLE: As we develop specialty hard-
ware, be it GPUs or network engines,
the machine is becoming essentially
a federation of processing elements
designed to handle specific tasks. The
graphics processor was highly tuned
for doing its job of displaying pixels and
performing certain mathematical func-
tions that are important to the graphics
guys and the gamers. Then other people
came along and said, “Hey, I want to be
able to do those same functions. Can I
get at them?” That’s when engineers
like me in the operating-systems world
start scratching our heads and saying,
“Yeah, well, I suppose we could expose
that.”

But I wonder if that’s what you re-
ally want. My experience has been that
every time we’ve had a specialty engine
like that and we’ve tried to feed it to the
world, you may have been able to write
an application library as you did with
Photoshop that was able to call some
graphics card, but that typically lived for
only a couple of generations. That is, it
proved to be cost-effective for only that
one particular application. So I think
the GPU will continue to get smarter
and smarter, but it will retain its focus
as a graphics engine just the same.
That’s really where it’s going to be most
cost-effective.

The rest of the box needs to be more
general, maybe with a bunch of spe-
cialty execution engines around it that
you’re able to call up and easily exploit.
Then the question becomes: how can
the operating system make all those en-
gines available?

Having been one of the early micro-
kernel guys, I smiled when I learned
about the early microkernel work you
were doing. Many of us in the operating-
system community have thought that
would be the right way to go.

WILLIAMS: Elxsi was a message-based
operating system. It was similar to the
GNU Hurd of independent processes
in that it talked via messages. One of
the things that really hit us hard and is
showing up today with GPUs in a differ-
ent context—and, in fact, was the very
first thing I thought of when I started
looking at NUMA—is that message-
based operations are horrendously ex-
pensive relative to everything else you

do. This is something the video apps
have run into as well. They went down
this path of doing a rendering graph to
represent the stack of effects you had
on your video frames, and then they
would go down and start rendering and
compositing those things. As soon as
they got to anything they could do on
the GPU, they would send it down there
to get processed, and then they would
work on it until they hit a node in the
compositing stack graph that couldn’t
be handled on the GPU, at which point
they would suck it back into the CPU.

What they found was that even with
the fastest-bandwidth cards on the fast-
est-bandwidth interfaces, one trip was
all you got. Anything beyond that meant
you would have been better off just stay-
ing on the CPU in the first place. When
you start moving data around, the band-
width consumption associated with
that can quickly overwhelm the cost of
doing the computation. But the GPU
vendors are continually improving this.

COLE: That’s part of why I asked about
MPI. I come back to that now only be-
cause it seems to be today’s popular
answer. I’m not saying it is the answer;
it’s just a way of trying to control what
has to get shifted and when and how to
partition the data so you can write code
that will be able to exploit these execu-
tion units without having to move lots
of data around.

This is why companies such as Intel
are exploring interfaces such as RDMA
(remote direct memory access), which
is something you find inside of IB (In-
finiBand). About a year ago, Intel pur-
chased one of the original iWARP (Inter-
net Wide Area RDMA Protocol) vendors,
and the company is also heavily com-
mitted to the OpenFabrics Alliance’s
OFED (OpenFabrics Enterprise Distri-
bution) implementations, so we’re now
exposing that same RDMA interface
you find with InfiniBand in both Ether-
net form and IB. I certainly think that
kind of hardware is going to start show-
ing up inside the base CPU and will be-
come available to you as you try to move
those objects around. So you’re going to
have computational resources and data
movement resources, and the process-
ing power will become the federation of
all that stuff underneath.

That means the operating system
has got to change. And I think you’re
right: what will happen then is that the

apps will become richer and will be able
to exploit some of those pieces in the
hardware base, provided that the op-
erating system exposes it. That’s also
when you guys at Adobe will want to
start exploiting that, since you’ll have
customers who already have machines
with those capabilities built in.

WILLIAMS: When we started to look at
NUMA, we ran into some issues with
predictability. Ideally, on a big NUMA
system, you would want your image to
be spread evenly across all the nodes
so that when you did an operation, you
would be able to fire up each CPU to
process its part of the image without
having to move things around.

What actually happens, however, is
that you’ve got a stack of images from
which somebody makes a selection,
and maybe selects some circle or an
area from a central portion of the image
containing pixels that live on three out
of your 10 nodes. In order to distribute
the computation the user then invokes
on that selection, you now have to copy
those things off to all 10 nodes. You
quickly get to a point where your data
is fragmented all over the place, and
any particular selection or operation is
unlikely to get nicely distributed across
the NUMA nodes. Then you pay a huge
cost to redistribute it all as part of start-
ing up your operation. This, along with
the more general issue of bandwidth
management, is going to prove to be an
even harder parallelism problem than
the already well-documented problem
people have with correctly locking their
data structures.

COLE: Yes, we’re in violent agreement
on that score. Locking your data struc-
tures is truly only the beginning. The
new tuning problem is going to be exact-
ly the nightmare you just described. 	

 Related articles
 on queue.acm.org

Real-World Concurrency
Bryan Cantrill, Jeff Bonwick
http://queue.acm.org/detail.cfm?id=1454462

A Conversation with John Hennessy
and David Patterson
http://queue.acm.org/detail.cfm?id=1189286

Software and the Concurrency Revolution
Herb Sutter, James Larus
http://queue.acm.org/detail.cfm?id=1095421

© 2010 ACM 0001-0782/10/1000 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1454462
http://queue.acm.org/detail.cfm?id=1189286
http://queue.acm.org/detail.cfm?id=1095421

october 2010 | vol. 53 | no. 10 | communications of the acm 39

In Part 1 of this article (Communications, Sept. 2010,
p. 55), I covered some of the fundamentals of perfor-
mance. Performance is a relation between a task and
the time it consumes. That relation is measurable
either as throughput or response time. Because users
feel variance in performance more than they feel

the mean, it’s good to express perfor-
mance goals in a percentile format, such
as “Task T must have response time
of R seconds or less in P proportion or
more of executions.” To diagnose a per-
formance problem, you need to state
your goals objectively, in terms of either
throughput or response time, or both.

A sequence diagram is a helpful
graphical tool for understanding how a
task’s execution consumes your time. A
profile is a table that shows details about
response time for a single task execu-
tion. With a profile, you can learn ex-
actly how much improvement to expect
for a proposed investment, but only if
you understand the pitfalls of making
incorrect assumptions about skew.

Minimizing Risk. As mentioned in
Part 1, the risk that repairing the per-

formance of one task can damage the
performance of another reminds me of
something that happened to me once in
Denmark. It’s a quick story:

Scene: The kitchen table in Måløv,
Denmark; the oak table, in fact, of Oak
Table Network fame, a network of Or-
acle practitioners who believe in using
scientific methods to improve the de-
velopment and administration of Ora-
cle-based systems.8 Roughly 10 people
sit around the table, working on their
laptops and conducting various conver-
sations.

Cary: Guys, I’m burning up. Would
you mind if I opened the window for a
little bit to let some cold air in?

Carel-Jan: Why don’t you just take off
your heavy sweater?

The End.

Thinking
Clearly About
Performance,
Part 2

doi:10.1145/1831407.1831422

 Article development led by
 queue.acm.org

More important principles to keep in mind
when designing high-performance software.

by Cary Millsap

http://queue.acm.org

40 communications of the acm | october 2010 | vol. 53 | no. 10

practice

There is a general principle at
work here that humans who optimize
know: when everyone is happy except
for you, make sure your local stuff is in
order before you go messing around
with the global stuff that affects every-
one else, too.

This principle is why I flinch when-
ever someone proposes to change a
system’s Oracle SQL*Net packet size
when the problem is really a couple
of poorly written Java programs that
make unnecessarily many database
calls (and, hence, unnecessarily many
network I/O calls as well). If everybody
is getting along fine except for the user
of one or two programs, then the saf-
est solution to the problem is a change
whose scope is localized to just those
one or two programs.

Efficiency. Even if everyone on the
entire system is suffering, you should
still focus first on the program that the
business needs fixed. The way to begin
is to ensure the program is working as
efficiently as it can. Efficiency is the in-
verse of how much of a task execution’s
total service time can be eliminated
without adding capacity and without
sacrificing required business function.

In other words, efficiency is an in-
verse measure of waste. Here are some
examples of waste that commonly oc-
cur in the database application world:

˲˲ A middle-tier program creates a
distinct SQL statement for every row it
inserts into the database. It executes
10,000 database prepare calls (and
thus 10,000 network I/O calls) when it
could have accomplished the job with
one prepare call (and thus 9,999 fewer
network I/O calls).

˲˲ A middle-tier program makes 100
database fetch calls (and thus 100 net-
work I/O calls) to fetch 994 rows. It could
have fetched 994 rows in 10 fetch calls
(and thus 90 fewer network I/O calls).

˲˲ A SQL statement (my choice of ar-
ticle adjective here is a dead giveaway
that I was introduced to SQL within the
Oracle community) touches the data-
base buffer cache 7,428,322 times to re-
turn a 698-row result set. An extra filter
predicate could have returned the seven
rows that the end user really wanted to
see, with only 52 touches upon the data-
base buffer cache.

Certainly, if a system has some glob-
al problem that creates inefficiency for
broad groups of tasks across the sys-

tem (for example, ill-conceived index,
badly set parameter, poorly configured
hardware), then you should fix it. Do
not tune a system to accommodate pro-
grams that are inefficient, however. (Ad-
mittedly, sometimes you need a tour-
niquet to keep from bleeding to death,
but do not use a stopgap measure as a
permanent solution. Address the ineffi-
ciency.) There is a great deal more lever-
age in curing the program inefficiencies
themselves. Even if the programs are
commercial off-the-shelf applications,
it will benefit you more in the long run
to work with your software vendor to
make your programs efficient than it
will to try to optimize your system to run
with an inherently inefficient workload.

Improvements that make your pro-
gram more efficient can produce tre-
mendous benefits for everyone on the
system. It is easy to see how top-line
reduction of waste helps the response
time of the task being repaired. What
many people do not understand as
well is that making one program more
efficient creates a side effect of per-
formance improvement for other pro-
grams on the system that have no ap-
parent relation to the program being
repaired. It happens because of the in-
fluence of load upon the system.

Load is competition for a resource
induced by concurrent task executions.
It is the reason the performance test-
ing done by software developers does
not catch all the performance problems
that show up later in production.

One measure of load is utilization,
which is resource usage divided by re-
source capacity for a specified time
interval. As utilization for a resource
goes up, so does the response time a

user will experience when requesting
service from that resource. Anyone who
has ridden in an automobile in a big city
during rush hour has experienced this
phenomenon. When the traffic is heav-
ily congested, you have to wait longer at
the tollbooth.

The software you use does not actual-
ly “go slower” as your car does when you
are going 30mph in heavy traffic instead
of 60mph on the open road. Computer
software always goes the same speed no
matter what (a constant number of in-
structions per clock cycle), but certainly
response time degrades as resources on
your system get busier.

There are two reasons that systems
get slower as load increases: queuing de-
lay and coherency delay.

Queuing delay. The mathematical re-
lationship between load and response
time is well known. One mathematical
model, called M/M/m, relates response
time to load in systems that meet one
particularly useful set of specific re-
quirements.7 One of the assumptions of
M/M/m is the system you are modeling
has “theoretically perfect scalability.”
This is akin to having a physical system
with “no friction,” an assumption that
so many problems in introductory phys-
ics courses invoke.

Regardless of some overreaching as-
sumptions such as the one about per-
fect scalability, M/M/m has a lot to teach
us about performance. Figure 1 shows
the relationship between response time
and load using M/M/m.

In the figure, you can see mathemati-
cally what you feel when you use a sys-
tem under different load conditions. At
low load, your response time is essen-
tially the same as your response time at

Figure 1. This curve relates response time as a function of utilization for an M/M/m system
with m = 8 service channels.

5

4

3

2

1

0

0.0 0.2 0.6 0.8 1.00.4

R
es

p
on

se
 T

im
e

(R
)

Utilization (ρ)

M/M/8 System

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 41

throughput is maximized with mini-
mal negative impact to response times.
(I am engaged in an ongoing debate
about whether it is appropriate to use
the term knee in this context. For the
time being, I shall continue to use it;
see the sidebar for details.) Mathemat-
ically, the knee is the utilization value
at which response time divided by uti-
lization is at its minimum. One nice
property of the knee is it occurs at the
utilization value where a line through
the origin is tangent to the response-
time curve. On a carefully produced
M/M/m graph, you can locate the knee
quite nicely with just a straight-edge,
as shown in Figure 2.

Another nice property of the M/M/m
knee is that you need to know the val-
ue of only one parameter to compute
it. That parameter is the number of
parallel, homogeneous, independent
service channels. A service channel is
a resource that shares a single queue
with other identical resources, such
as a booth in a toll plaza or a CPU in

no load. As load ramps up, you sense a
slight, gradual degradation in response
time. That gradual degradation does
not really do much harm, but as load
continues to ramp up, response time
begins to degrade in a manner that’s
neither slight nor gradual. Rather, the
degradation becomes quite unpleasant
and, in fact, hyperbolic.

Response time (R), in the perfect scal-
ability M/M/m model, consists of two
components: service time (S) and queu-
ing delay (Q), or R = S + Q. Service time
is the duration that a task spends con-
suming a given resource, measured in
time per task execution, as in seconds
per click. Queuing delay is the time
that a task spends enqueued at a given
resource, awaiting its opportunity to
consume that resource. Queuing delay
is also measured in time per task execu-
tion (for example, seconds per click).

In other words, when you order
lunch at Taco Tico, your response time
(R) for getting your order is the queuing
delay time (Q) that you spend in front
of the counter waiting for someone to
take your order, plus the service time
(S) you spend waiting for your order to
hit your hands once you begin talking
to the order clerk. Queuing delay is the
difference between your response time
for a given task and the response time
for that same task on an otherwise un-
loaded system (don’t forget our perfect
scalability assumption).

The Knee
When it comes to performance, you
want two things from a system:

˲˲ The best response time you can get:
you do not want to have to wait too long
for tasks to get done.

˲˲ The best throughput you can get:
you want to be able to cram as much
load as you possibly can onto the sys-
tem so that as many people as possible
can run their tasks at the same time.

Unfortunately, these two goals are
contradictory. Optimizing to the first
goal requires you to minimize the load
on your system; optimizing to the sec-
ond goal requires you to maximize it.
You can not do both simultaneously.
Somewhere in between—at some load
level (that is, at some utilization val-
ue)—is the optimal load for the system.

The utilization value at which
this optimal balance occurs is called
the knee. This is the point at which

an SMP (symmetric multiprocessing)
computer.

The italicized lowercase m in the term
M/M/m is the number of service chan-
nels in the system being modeled. The
M/M/m knee value for an arbitrary sys-
tem is difficult to calculate, but I have
done it in Table 1, which shows the knee
values for some common service chan-
nel counts. (By this point, you may be
wondering what the other two Ms stand
for in the M/M/m queuing model name.
They relate to assumptions about the
randomness of the timing of your incom-
ing requests and the randomness of your
service times. See http://en.wikipedia.
org/wiki/Kendall%27s_notation for
more information, or Optimizing Oracle
Performance7 for even more.)

Why is the knee value so important?
For systems with randomly timed ser-
vice requests, allowing sustained re-
source loads in excess of the knee value
results in response times and through-
puts that will fluctuate severely with mi-
croscopic changes in load. Hence, on
systems with random request arrivals,
it is vital to manage load so that it will
not exceed the knee value.

Relevance of the Knee
How important can this knee concept
be, really? After all, as I’ve told you, the
M/M/m model assumes this ridiculous-
ly utopian idea that the system you are
thinking about scales perfectly. I know
what you are thinking: it doesn’t.

What M/M/m does give us is the
knowledge that even if your system did
scale perfectly, you would still be strick-
en with massive performance problems
once your average load exceeded the
knee values in Table 1. Your system

Table 1. M/M/m knee values for common
values of m.

Service
channel count

Knee
utilization

1 50%

2 57%

4 66%

8 74%

16 81%

32 86%

64 89%

128 92%

Figure 2. The knee occurs at the utilization at which a line through the origin is tangent to
the response time curve.

10

8

6

4

2

0

0.0 0.2 0.6 0.8 1.00.4

R
es

p
on

se
 T

im
e

(R
)

Utilization (ρ)

M/M/4, ρ8 = 0.665006
M/M/16, ρ8 = 0.810695

http://en.wikipedia.org/wiki/Kendall%27s_notation
http://en.wikipedia.org/wiki/Kendall%27s_notation

42 communications of the acm | october 2010 | vol. 53 | no. 10

practice

In this article, I write about knees in
performance curves, their relevance,
and their application. Whether it is even
worthwhile to try to define the concept
of knee, however, has been the subject of
debate going back at least 20 years.

There is significant historical basis to
the idea that the thing I have described
as a knee in fact is not really meaningful.
In 1988, Stephen Samson argued that,
at least for M/M/1 queuing systems,
no “knee” appears in the performance
curve. “The choice of a guideline number
is not easy, but the rule-of-thumb makers
go right on. In most cases there is not a
knee, no matter how much we wish to
find one,” wrote Samson.3

The whole problem reminds me, as I
wrote in 1999,2 of the parable of the frog
and the boiling water. The story says that
if you drop a frog into a pan of boiling
water, he will escape. But if you put a frog
into a pan of cool water and slowly heat
it, then the frog will sit patiently in place
until he is boiled to death.

With utilization, just as with boiling
water, there is clearly a “death zone,” a
range of values in which you can’t afford
to run a system with random arrivals. But
where is the border of the death zone? If
you are trying to implement a procedural
approach to managing utilization, you
need to know.

My friend Neil Gunther (see http://
en.wikipedia.org/wiki/Neil_J._Gunther
for more information about Neil) has
debated with me privately that, first,
the term knee is completely the wrong
word to use here, in the absence of a
functional discontinuity. Second, he
asserts that the boundary value of .5 for
an M/M/1 system is wastefully low, that
you ought to be able to run such a system
successfully at a much higher utilization
value than that. Finally, he argues that
any such special utilization value should
be defined expressly as the utilization
value beyond which your average
response time exceeds your tolerance for
average response time (Figure A). Thus,
Gunther argues that any useful not-to-
exceed utilization value is derivable
only from inquiries about human
preferences, not from mathematics.
(See http://www.cmg.org/measureit/
issues/mit62/m_62_15.html for more
information about his argument.)

The problem I see with this argument
is illustrated in Figure B. Imagine that
your tolerance for average response
time is T, which creates a maximum
tolerated utilization value of ρT. Notice
that even a tiny fluctuation in average
utilization near ρT will result in a huge
fluctuation in average response time.
I believe that your customers feel the
variance, not the mean. Perhaps they say
they will accept average response times
up to T, but humans will not be tolerant

of performance on a system when a 1%
change in average utilization over a one-
minute period results in, say, a tenfold
increase in average response time over
that period.

I do understand the perspective
that the knee values I’ve listed in
this article are below the utilization
values that many people feel safe in
exceeding, especially for lower-order
systems such as M/M/1. It is important,
however, to avoid running resources at
average utilization values where small
fluctuations in utilization yield too-large
fluctuations in response time.

Having said that, I do not yet
have a good definition for a too-large
fluctuation. Perhaps, like response-
time tolerances, different people have
different tolerances for fluctuation. But
perhaps there is a fluctuation tolerance
factor that applies with reasonable
universality across all users. The Apdex

Application Performance Index standard,
for example, assumes the response time
F at which users become “frustrated”
is universally four times the response
time T at which their attitude shifts from
being “satisfied” to merely “tolerating.”1

The knee, regardless of how you
define it or what we end up calling it, is
an important parameter to the capacity-
planning procedure that I described
earlier in the main text of this article, and
I believe it is an important parameter
to the daily process of computer system
workload management.

I will keep studying.

References
1.	A pdex; http://www.apdex.org.
2.	 Millsap, C. Performance management: myths and

facts (1999); http://method-r.com.
3.	S amson, S. MVS performance legends. In

Proceedings of Computer Measurement Group
Conference (1988), 148–159.

Open Debate About Knees

Figure B. Near ρT value, small fluctuations in average utilization result in large
response-time fluctuations.

20

15

10

5

0

0.0 ρT = 0.987ρT = 0.744997

R
es

p
on

se
 T

im
e

(R
)

Utilization (ρ)

M/M/8 System, T = 10

Figure A. Gunther’s maximum allowable utilization value ρT is defined as the utilization
producing the average response time T.

20

15

10

5

0

0.0 0.5 ρT = 0.900

R
es

p
on

se
 T

im
e

(R
)

Utilization (ρ)

M/M/1 System, T = 10

http://en.wikipedia.org/wiki/neil_J._Gunther
http://www.cmg.org/measureit/issues/mit62/m_62_15.html
http://www.apdex.org
http://method-r.com
http://en.wikipedia.org/wiki/neil_J._Gunther
http://www.cmg.org/measureit/issues/mit62/m_62_15.html

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 43

The reason
the knee value
is so important
on a system with
random arrivals
is that these tend
to cluster and
cause temporary
spikes in utilization.

isn’t as good as the theoretical systems
that M/M/m models. Therefore, the uti-
lization values at which your system’s
knees occur will be more constraining
than the values in Table 1. (I use the plu-
ral of values and knees, because you can
model your CPUs with one model, your
disks with another, your I/O controllers
with another, and so on.)

To recap:
˲˲ Each of the resources in your sys-

tem has a knee.
˲˲ That knee for each of your resourc-

es is less than or equal to the knee value
you can look up in Table 1. The more
imperfectly your system scales, the
smaller (worse) your knee value will be.

˲˲ On a system with random request
arrivals, if you allow your sustained uti-
lization for any resource on your system
to exceed your knee value for that re-
source, then you will have performance
problems.

˲˲ Therefore, it is vital that you man-
age your load so that your resource utili-
zations will not exceed your knee values.

Capacity Planning
Understanding the knee can collapse
a lot of complexity out of your capacity
planning. It works like this:

˲˲ Your goal capacity for a given re-
source is the amount at which you can
comfortably run your tasks at peak
times without driving utilizations be-
yond your knees.

˲˲ If you keep your utilizations less
than your knees, your system behaves
roughly linearly—no big hyperbolic
surprises.

˲˲ If you are letting your system run
any of its resources beyond their knee
utilizations, however, then you have
performance problems (whether you
are aware of them or not).

˲˲ If you have performance prob-
lems, then you don’t need to be spend-
ing your time with mathematical mod-
els; you need to be spending your time
fixing those problems by rescheduling
load, eliminating load, or increasing
capacity.

That’s how capacity planning fits
into the performance management
process.

Random Arrivals
You might have noticed that I used the
term random arrivals several times.
Why is that important?

Some systems have something that
you probably do not have right now:
completely deterministic job schedul-
ing. Some systems—though rare these
days—are configured to allow service
requests to enter the system in absolute
robotic fashion, say, at a pace of one task
per second. And by this, I don’t mean at
an average rate of one task per second
(for example, two tasks in one second
and zero tasks in the next); I mean one
task per second, as a robot might feed
car parts into a bin on an assembly line.

If arrivals into your system behave
completely deterministically—mean-
ing that you know exactly when the next
service request is coming—then you
can run resource utilizations beyond
their knee utilizations without neces-
sarily creating a performance problem.
On a system with deterministic arrivals,
your goal is to run resource utilizations
up to 100% without cramming so much
workload into the system that requests
begin to queue.

The reason the knee value is so im-
portant on a system with random ar-
rivals is that these tend to cluster and
cause temporary spikes in utilization.
These spikes need enough spare ca-
pacity to consume so that users don’t
have to endure noticeable queuing de-
lays (which cause noticeable fluctua-
tions in response times) every time a
spike occurs.

Temporary spikes in utilization
beyond your knee value for a given
resource are OK as long as they don’t
exceed a few seconds in duration. But
how many seconds are too many? I be-
lieve (but have not yet tried to prove)
that you should at least ensure that your
spike durations do not exceed eight
seconds. (You will recognize this num-
ber if you’ve heard of the “eight-second
rule.”2) The answer is certainly that if
you’re unable to meet your percentile-
based response time promises or your
throughput promises to your users,
then your spikes are too long.

Coherency Delay
Your system does not have theoretical-
ly perfect scalability. Even if I have nev-
er studied your system specifically, it is
a pretty good bet that no matter what
computer application system you are
thinking of right now, it does not meet
the M/M/m “theoretically perfect scal-
ability” assumption. Coherency delay is

44 communications of the acm | october 2010 | vol. 53 | no. 10

practice

the factor that you can use to model the
imperfection.4 It is the duration that a
task spends communicating and coor-
dinating access to a shared resource.
Like response time, service time, and
queuing delay, coherency delay is mea-
sured in time per task execution, as in
seconds per click.

I will not describe a mathematical
model for predicting coherency delay,
but the good news is that if you profile
your software task executions, you’ll
see it when it occurs. In Oracle, timed
events such as the following are exam-
ples of coherency delay:

˲˲ enqueue
˲˲ buffer busy waits
˲˲ latch free

You can not model such coherency
delays with M/M/m. That is because
M/M/m assumes all m of your service
channels are parallel, homogeneous,
and independent. That means the
model assumes that after you wait po-
litely in a FIFO queue for long enough
that all the requests that enqueued
ahead of you have exited the queue for
service, it will be your turn to be ser-
viced. Coherency delays don’t work like
that, however.

Imagine an HTML data-entry form
in which one button labeled “Update”
executes a SQL update statement, and
another button labeled “Save” executes
a SQL commit statement. An applica-
tion built like this would almost guar-
antee abysmal performance. That is
because the design makes it possible—
quite likely, actually—for a user to click
Update, look at his calendar, realize
“uh-oh, I’m late for lunch,” and then go
to lunch for two hours before clicking
Save later that afternoon.

The impact to other tasks on this
system that wanted to update the same
row would be devastating. Each task
would necessarily wait for a lock on
the row (or, on some systems, worse: a
lock on the row’s page) until the lock-
ing user decided to go ahead and click
Save—or until a database administra-
tor killed the user’s session, which of
course would have unsavory side ef-
fects to the person who thought he had
updated a row.

In this case, the amount of time a
task would wait on the lock to be re-
leased has nothing to do with how busy
the system is. It would be dependent
upon random factors that exist outside

of the system’s various resource utili-
zations. That is why you can not model
this kind of thing in M/M/m, and it is
why you can never assume that a per-
formance test executed in a unit-test-
ing type of environment is sufficient
for a making a go/no-go decision about
insertion of new code into a produc-
tion system.

Performance Testing
All this talk of queuing delays and co-
herency delays leads to a very difficult
question: How can you possibly test a
new application enough to be confident
that you are not going to wreck your
production implementation with per-
formance problems?

You can model. And you can test.1

Nothing you do will be perfect, however.
It is extremely difficult to create models
and tests in which you’ll foresee all your
production problems in advance of ac-
tually encountering those problems in
production.

Some people allow the apparent fu-
tility of this observation to justify not
testing at all. Do not get trapped in that
mentality. The following points are
certain:

˲˲ You will catch a lot more problems
if you try to catch them prior to produc-
tion than if you do not even try.

˲˲ You will never catch all your prob-
lems in preproduction testing. That is
why you need a reliable and efficient
method for solving the problems that
leak through your preproduction test-
ing processes.

Somewhere in the middle between
“no testing” and “complete produc-
tion emulation” is the right amount
of testing. The right amount of testing
for aircraft manufacturers is probably
more than the right amount of testing
for companies that sell baseball caps.
But don’t skip performance testing al-
together. At the very least, your perfor-
mance-test plan will make you a more
competent diagnostician (and clearer
thinker) when the time comes to fix the
performance problems that will inevita-
bly occur during production operation.

Measuring. People feel throughput
and response time. Throughput is usual-
ly easy to measure, response time is much
more difficult. (Remember, throughput
and response time are not reciprocals.)
It may not be difficult to time an end-us-
er action with a stopwatch, but it might

All this talk
of queuing delays
and coherency
delays leads
to a very difficult
question:
How can you
possibly test
a new application
enough to be
confident that
you are not
going to wreck
your production
implementation
with performance
problems?

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 45

be very difficult to get what you really
need, which is the ability to drill down
into the details of why a given response
time is as large as it is.

Unfortunately, people tend to mea-
sure what is easy to measure, which
is not necessarily what they should be
measuring. It’s a bug. Measures that
aren’t what you need, but that are easy
enough to obtain and seem related to
what you need are called surrogate mea-
sures. Examples include subroutine call
counts and samples of subroutine call
execution durations.

I’m ashamed that I do not have
greater command over my native lan-
guage than to say it this way, but here is
a catchy, modern way to express what I
think about surrogate measures: surro-
gate measures suck.

Here, unfortunately, suck doesn’t
mean never work. It would actually
be better if surrogate measures never
worked. Then nobody would use them.
The problem is that surrogate measures
work sometimes. This inspires people’s
confidence that the measures they are
using should work all the time, and
then they don’t. Surrogate measures
have two big problems.

˲˲ They can tell you your system’s OK
when it is not. That’s what statisticians
call type I error, the false positive.

˲˲ They can tell you that something is
a problem when it is not. That’s a type
II error, the false negative. I have seen
each type of error waste years of peo-
ple’s time.

When the time comes to assess the
specifics of a real system, your success
is at the mercy of how good the mea-
surements are that your system allows
you to obtain. I have been fortunate to
work in the Oracle market segment,
where the software vendor at the center
of our universe participates actively in
making it possible to measure systems
the right way. Getting application soft-
ware developers to use the tools that Or-
acle offers is another story, but at least
the capabilities are there in the product.

Performance is a Feature
Performance is a software application
feature, just like recognizing that it’s
convenient for a string of the form “Case
1234” to automatically hyperlink over to
case 1234 in your bug-tracking system.
(FogBugz, which is software that I enjoy
using, does this.) Performance, like any

other feature, does not just happen; it
has to be designed and built. To do per-
formance well, you have to think about
it, study it, write extra code for it, test it,
and support it.

Like many other features, however,
you can not know exactly how perfor-
mance is going to work out while you’re
still writing, studying, designing, and
creating the application. For many ap-
plications (arguably, for the vast ma-
jority), performance is completely un-
known until the production phase of the
software development life cycle. What
this leaves you with is this: since you
can’t know how your application is go-
ing to perform in production, you need
to write your application so that it’s
easy to fix performance in production.

As David Garvin has taught us, it’s
much easier to manage something
that’s easy to measure.3 Writing an ap-
plication that is easy to fix in production
begins with an application that’s easy to
measure in production.

Usually, when I mention the concept
of production performance measure-
ment, people drift into a state of worry
about the measurement-intrusion ef-
fect of performance instrumentation.
They immediately enter a mode of data-
collection compromise, leaving only
surrogate measures on the table. Won’t
software with an extra code path to mea-
sure timings be slower than the same
software without that extra code path?

I like an answer that I once heard
Tom Kyte give in response to this ques-
tion.6 He estimated that the measure-
ment-intrusion effect of Oracle’s ex-
tensive performance instrumentation
is –10% or less (where or less means or
better, as in –20%, –30%, and so on). He
went on to explain to a now-vexed ques-
tioner that the product is at least 10%
faster now because of the knowledge
that Oracle Corporation has gained
from its performance instrumentation
code, more than making up for any
“overhead” the instrumentation might
have caused.

I think that vendors tend to spend
too much time worrying about how to
make their measurement code path ef-
ficient without figuring out first how to
make it effective. It lands squarely upon
the idea that Knuth wrote about in 1974
when he said that “premature optimiza-
tion is the root of all evil.”5 The software
designer who integrates performance

measurement into a product is much
more likely to create a fast application
and—more importantly—one that will
become faster over time.

Acknowledgments
Thank you, Baron Schwartz for the
email conversation in which you
thought I was helping you, but in actual
fact, you were helping me come to grips
with the need for introducing coher-
ency delay more prominently into my
thinking. Thank you, Jeff Holt, Ron Cris-
co, Ken Ferlita, and Harold Palacio for
the daily work that keeps the company
going and for the lunchtime conversa-
tions that keep my imagination going.
Thank you, Tom Kyte for your continued
inspiration and support. Thank you,
Mark Farnham for your helpful sugges-
tions. And thank you, Neil Gunther for
your patience and generosity in our on-
going discussions about knees.	

 Related articles
 on queue.acm.org

You’re Doing It Wrong
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=1814327

Performance Anti-Patterns
Bart Smaalders
http://queue.acm.org/detail.cfm?id=1117403

Hidden in Plain Sight
Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1117401

References
1.	C MG (Computer Measurement Group, a network of

professionals who study these problems very, very
seriously); http://www.cmg.org.

2.	E ight-second rule; http://en.wikipedia.org/wiki/
Network_performance#8-second_rule.

3.	G arvin, D. Building a learning organization. Harvard
Business Review (July 1993).

4.	G unther, N. Universal Law of Computational
Scalability (1993); http://en.wikipedia.org/wiki/
Neil_J._Gunther#Universal_Law_of_Computational_
Scalability.

5.	 Knuth, D. Structured programming with Go To
statements. ACM Computing Surveys 6, 4 (1974), 268.

6.	 Kyte, T. A couple of links and an advert…; http://tkyte.
blogspot.com/2009/02/couple-of-links-and-advert.html.

7.	 Millsap, C. and Holt, J. Optimizing Oracle Performance.
O’Reilly, Sebastopol, CA, 2003.

8.	O ak Table Network; http://www.oaktable.net.

Cary Millsap is the founder and president of Method R
Corporation (http://method-r.com), a company devoted to
software performance. He is the author (with Jeff Holt) of
Optimizing Oracle Performance (O’Reilly) and a co-author
of Oracle Insights: Tales of the Oak Table (Apress). He is
the former vice president of Oracle Corporation’s System
Performance Group and a co-founder of his former
company Hotsos. He is also an Oracle ACE Director and
a founding partner of the Oak Table Network, an informal
association of well-known “Oracle scientists.” Millsap
blogs at http://carymillsap.blogspot.com, and tweets at
http://twitter.com/CaryMillsap.

© 2010 ACM 0001-0782/10/1000 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1814327
http://queue.acm.org/detail.cfm?id=1117403
http://queue.acm.org/detail.cfm?id=1117401
http://www.cmg.org
http://en.wikipedia.org/wiki/Network_performance#8-second_rule
http://en.wikipedia.org/wiki/Neil_J._Gunther#Universal_Law_of_Computational_Scalability
http://tkyte.blogspot.com/2009/02/couple-of-links-and-advert.html
http://www.oaktable.net
http://method-r.com
http://carymillsap.blogspot.com
http://twitter.com/caryMillsap
http://en.wikipedia.org/wiki/Network_performance#8-second_rule
http://en.wikipedia.org/wiki/Neil_J._Gunther#Universal_Law_of_Computational_Scalability
http://en.wikipedia.org/wiki/Neil_J._Gunther#Universal_Law_of_Computational_Scalability
http://tkyte.blogspot.com/2009/02/couple-of-links-and-advert.html

46 communications of the acm | october 2010 | vol. 53 | no. 10

practice

The ever-increasing might of modern computers
has made it possible to solve problems once
considered too difficult to tackle. Far too often,
however, the systems for these functionally complex
problem spaces have overly complicated architectures.
Here, I use the term architecture to refer to the overall
macro design of a system rather than the details
of how the individual parts are implemented. The
system architecture is what is behind the scenes of
usable functionality, including internal and external
communication mechanisms, component boundaries
and coupling, and how the system will make use of
any underlying infrastructure (databases, networks,
among others). The architecture is the “right”
answer to the question: how does this system work?

The question is: What can be done
about the challenge to understand—
or better yet, prevent—the complexity
in systems? Many development meth-
odologies (for example, Booch1) con-
sider nonfunctional aspects, but too
often they stop at the diagram stage.
The mantra of “we can address [per-
formance, scalability, and so on] later”
can be crippling. Individual compo-
nents (applications) in a system can
typically be iterated, but it is often far
more difficult to iterate the architec-
ture because of all the interface and
infrastructure implications.

In this article, I describe an ap-
proach to architectural design when
embarking on creating a new system.
But what if the system already exists in
some form? Much of my architecture
work has been with existing systems—
many times as an “outsider” who is
invited (or sent) in to evaluate and im-
prove the state of the system. These
assignments can be quite challenging
when dealing with complex systems.

One advantage to modeling an ex-
isting system is that the general be-
havior is already in place so you are
not starting from a blank state. You
also probably do not have to contend
with the creation of the functional
parts of the system. This comes at a
price, however. There is a fair chance
the system’s architecture is complex
and not well understood. Addition-
ally, many solutions may not be prac-
tical because of the high cost of a sys-
tem overhaul.

With any type of system the goal is
to understand the architecture and
system behavior as much as possible.
When a large system has been around
for years this may seem like a monu-
mental effort. Many techniques are
available for discovering how a system
works and ways it can be improved.
You can ask members of the develop-
ment and maintenance teams. Di-
agnostic tools (for example, DTrace)
can help make quick work of finding
performance or scalability offenders
in a system. You can comb through
mountains of log files to see what the

doi:10.1145/1831407.1831424

 Article development led by
 queue.acm.org

Component models can help diagnose
architectural problems in both new and
existing systems.

by Kevin Montagne

Tackling
Architectural
Complexity
with Modeling

http://queue.acm.org

october 2010 | vol. 53 | no. 10 | communications of the acm 47

V
i

s
u

a
l

i
z

a
t

i
o

n
 b

y
 R

i
c

h
a

r
d

 Alm

o

n
d

developers thought worthy of note. In
this article I focus on how modeling
the various system components can be
used to gain a greater understanding
and provide a foundation for evaluat-
ing possible changes.

This type of modeling is not just a
whiteboard or paper exercise. It is the
creation of drivers and components
to emulate various aspects of the sys-
tem. The drivers are used to invoke the
various parts of the system to mimic
its normal behavior. The idea is to ex-
ercise the architecture without the
“burden” of ensuring functional cor-
rectness. At times these drivers may be
scripts written with established tools
(for example, WinRunner, JMeter), but
I have often found more value in devel-

oping programs specific to the compo-
nent to be driven. These have allowed
me to get the information I needed to
make quality decisions. It is important
to understand that the model compo-
nents and the associated drivers are
not just simple test programs but are
to be used as the basis for exploration
and discovery.

The process of modeling the sys-
tem should start by examining one or
two components at a time. The initial
targets should be components sus-
pected of negatively impacting the
whole system. You can then build in-
dependent drivers to interact with the
component(s). If a problem compo-
nent is confirmed, then experimenta-
tion with possible changes can begin.

These could span from code changes
to infrastructure changes to hardware
changes. With the right drivers and
component modeling it may become
practical to address redesigning some
of the components.

Sometimes the functionality con-
tained within a component is so in-
tertwined with the architecture that
it’s necessary to create a lightweight
replica. It is not unusual for some func-
tional aspects of the system to mask
the behavior of the underlying technol-
ogy or infrastructure in responding to
the requesting applications. In these
cases having a lightweight model can
allow the architectural interactions to
be explored and better understood. If
you discover architectural solutions,

48 communications of the acm | october 2010 | vol. 53 | no. 10

practice

then you can move on to the various
functional implementations.

Modeling an Early Windows System
My first experience with modeling
involved creating both drivers and
mock-up components to explore a new
technology. I was working for a large
financial institution in the late 1980s
when Microsoft Windows 2.1 was re-
leased. A group of developers had cre-
ated a fairly sophisticated suite of Win-
dows applications for telephone-based
customer service representatives. The
applications provided the ability to re-
trieve customer information, balances,
and so on from several mainframe-
based systems (using the now-ancient
concept of “screen scraping” the data
intended to be displayed on an IBM
3270 dumb terminal) and then present
the data in an aggregated view. It also
allowed the customer service represen-
tatives to place trades on behalf of the
customer.

The suite started as a proof of con-
cept, but the prototype demos went so
well it was rushed to production. When
I joined the team it was already de-
ployed to about 150 representatives. As
the programs began to be used all day,
problems began to occur frequently.
These were manifested in a variety of
forms: memory leaks, access viola-
tions, spurious error messages, and
machine lock-ups (aka freezes).

Our small team was busy adding
functionality to meet the rapidly grow-
ing wish list and at the same time ad-
dressing the stability issues. We navi-
gated through the source, attacking
memory leaks and access violations.
We struggled to track down the grow-
ing list of newly observed error mes-

sage. The most challenging task was
“freeze patrol,” where we expended a
great deal of time hunting down those
machine lock-ups. The problem was
that we did not have a really good un-
derstanding of how Windows worked
behind the scenes.

Those familiar with programming
with the early Windows SDKs will re-
member that documentation (not to
mention stability) was not well devel-
oped. The API functions were pretty
low level and it seemed like there were
a bazillion of them. (If it were not for
Charles Petzold’s Programming Win-
dows,2 I am not sure how many Win-
dows applications developed outside
of Microsoft would have been com-
pleted in the 1980s.) The code base
for the applications was already pret-
ty large—at least for applications in
those days—and each was implement-
ed slightly differently (they were pro-
totypes, after all). Microsoft offered
a few sample programs but nothing
close to the complexity of these ap-
plications. Therefore, we decided to
build components (applications) that
imitated the Windows behavior we
were trying to achieve.

These components were mostly void
of functionality but started off with the
basic structure and interface mecha-
nisms similar to the actual applica-
tions. The drivers sent fine-grained
Windows messages to the model com-
ponents to simulate key presses and
other externally originated actions.
They also sent DDE (Dynamic Data Ex-
change, a primitive way to communi-
cate data between Windows programs)
messages throughout the suite of ap-
plications. As we matured the model,
we began to merge in more of the API

calls (for example, user interface con-
trols) used in the actual programs.

Many of the freezes were tracked
down to undocumented idiosyncra-
sies of Windows Graphics Device In-
terface (GDI) calls. Examples included
sensitivity to the ordering of some API
calls, incompatibility between certain
calls being made in the same context,
and resource exhaustion possibilities.
In the early versions of Windows the
GDI libraries were tightly interwoven
with the kernel libraries. As Windows
matured, similar quandaries became
error messages, exceptions, or just the
offending application locking up.

The result of the modeling was that
we gained enough information about
this novel Windows technology to
morph the programs to where stability
was a reasonable expectation. Within
15 months the system was deployed to
more than 4,500 workstations and sur-
vived well into Windows NT’s life.

Modeling a “Slave” System
Not all of my modeling experiences re-
sulted in such a positive outcome. Sev-
eral exposed fundamental flaws in the
architectural design, and with a few the
only option was to abandon the system
and start over. These messages were
not typically well received by project
management.

One of the more notable examples
occurred in a system intended to be a
“slave” receiving updates from several
existing systems and applying them to
a new database. The database would
be used by other new systems to form
the basis to replace the older systems.
The systems would be built using a new
technology platform. The technologies
were so different and the functional
breadth so wide that the development
team had grown to more than 60 peo-
ple for the slave system alone.

I joined the project after the basic
architecture and much of the func-
tionality had already been designed
and developed, but it was still months
away from production. My team’s as-
signment was to help get the most
out of the infrastructure and optimize
how the applications interacted with
each other. After just a few weeks we
suspected that some bad initial as-
sumptions had impacted the archi-
tectural design. (I do not mean to dis-
parage any teams in my examples, but

Figure 1. Publisher model component with drivers and sinks.

Data Feed
Driver(s)

Publisher

Client Sink(s)

Data Flood

• �R eceives mocked-up
data feed.

• � Simulates data
enrichment and pumps
data to Client sinks.

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 49

What can be
done about
the challenge to
understand—
or better yet,
prevent—the
complexity in
systems?

merely to point out the potential prob-
lem with too much focus on function-
ality at the expense of a solid architec-
tural foundation.) Because it looked
like performance and scalability were
going to be major concerns, the archi-
tecture team began working on some
model components and drivers to in-
vestigate the design.

We did some research around the
incoming rate of messages and the
mix in the types of transactions. We
also sampled timings from the func-
tional “processors” that had already
been built. Then using the same mes-
saging infrastructure as the existing
dispatcher, we built a component that
would simulate the incoming message
dispatcher. Some of the messaging
technology was new to the company.
At one end of the dispatcher we had
drivers to simulate inbound messages.
On the other end we simulated the per-
formance of the functional processors
(FPs) using pseudo-random numbers
clustered around the sampled tim-
ings. By design, there was nothing in
the modeled components or drivers
related to the functional processing in
the system.

Once the model was fully function-
al, we were able to play with various
parameters related to the incoming
message rates and simulated FP tim-
ings. We then began to weight the FP
times according to processing cost
variations in the mix of incoming
message types. Prior to this modeling
effort, the design had (wrongly) as-
sumed that the most important per-
formance aspect was the latency of the
individual transactions. Several sec-
onds of latency was acceptable to all
concerned. After all, it would be quite
some time before this slave would be-
come the system of record and drive
transactions the other way.

The modeling results were not en-
couraging. The latency was going to be
a challenge, but the overall throughput
requirements were going to bury the
system. We started exploring ways to
address the performance problems.
The system was already targeted for the
fastest hardware available for the cho-
sen platform, so that option was out.
We delayed looking into improving the
performance of the individual func-
tional processors; that was deemed
to be more costly because of the num-

ber that had already been written. We
thought our chances of quick success
could increase with a focus on the com-
mon infrastructure pieces.

We worked on new dispatching
algorithms but that did not result in
enough improvement. We looked at
optimizing the messaging infrastruc-
ture but still fell short. We then began
to benchmark some other message
formats and infrastructures, and the
results were mildly encouraging. We
examined the existing programs to see
how easy it was going to be to alter the
messaging formats and technology.
The programs were too dependent on
the message structure for it to be al-
tered within a reasonable timeframe.

Given the still-poor results, we
needed to examine the functional al-
gorithms and the database access.
We took a few of the midrange and
lengthier running processors and in-
serted some logging to obtain split
times of the various steps. Many of the
functional algorithms were relatively
expensive because of the required
complexity for the mapping and re-
structuring of the data. The database
operations seemed to take longer than
we logically thought they should. (Over
time an architect should develop a
sense for a performance budget based
on an abstract view of similar func-
tionality where he or she had previous-
ly maximized performance.)

We then examined the logical data-
base model. The design was not a pat-
tern that would be performant for the
types of programs in the system. The
SQL from a few of the algorithms was
extracted and placed in stand-alone
model components. The idea was to
see which types of performance in-
creases were possible. Some increases
came from changing some of the SQL
statements, which were taking exces-
sive time because the chosen partition-
ing scheme meant that reading core
tables typically involved scanning all
partitions. As our simulated database
size grew, this became punitive to scal-
ability. The primary problem, however,
was not the extended length of time for
individual statements but the sheer
number of calls. This was a result of
taking normalization too far. There
were numerous tables with indexes
on columns that changed frequently.
Additionally, multicolumn keys were

50 communications of the acm | october 2010 | vol. 53 | no. 10

practice

being used instead of artificial keys,
sometimes referred to as surrogate
keys. The system generates them (typi-
cally as integers) to represent the “real”
keys. This can improve performance
and maintenance when dealing with
complex key structures and/or when
the actual key values can change.

We determined that material im-
provements were possible if we re-
structured the database design and
changed the associated SQL state-
ments. The programs were written in
such a way that would have made the
changes very expensive, however. Our
conclusion was that the system would
need a major overhaul if it were to be
successful. Since the project had al-
ready spent well over $10 million, this
recommendation was a hard sell.

After an additional $5 million, the
project was canceled, and my team’s
focus was redirected to other efforts.
The modeling process had taken only
about six weeks. The point to be made
here is that it would be possible to
use modeling to vet the major archi-
tectural decisions before committing
large expenditures. It is vastly less ex-
pensive to discover that a design will
not perform or scale before a system
is built rather than after it has been
placed in production.

Modeling New Systems
It should be standard practice to re-
search the architectural options for new
systems—or when making substan-
tial overhauls to existing ones. The ex-
periments should be with lightweight
models rather than a full system, but
it is vital that these models accurately
capture the evolving behavior of the
system. Otherwise the value of the
modeling process is diminished and
may lead to erroneous conclusions.

I typically start by trying to under-
stand the functional problem space
in an abstract fashion. Is the primary
functionality a user-requested action
followed by a system reply (such as,
request/reply)? Is it a request followed
by a stream of notifications (for ex-
ample, ticking quotes) or bits (for ex-
ample, music or video)? Is it to process
some input data and send the result
to another process or system (such as,
flow-through)? Is it to crunch through
a massive dataset in search of informa-
tion (decision support system)? Is it a

combination of these, or something al-
together different?

Some may ask: how do I know which
portions of the system to model and
how much time and effort should be
spent in the process? It is a simple case
of risk management. The modeling
should focus on the areas that would
be the most expensive to get wrong.
The process should continue until the
high-risk decisions can be justified.
Make an effort to retest the decisions
as often as practical.

One of the most challenging aspects
in modeling is in finding the right bal-
ance between capturing enough of the
system behavior and keeping the mod-
el from becoming too complex (and
expensive) to implement. This is easier
with an existing system. As you prog-
ress through the modeling iterations,
if the observations begin to mimic as-
pects of the system, then you are prob-
ably pretty close. You can begin to alter
the modeling drivers and components
to explore more of the behavior. For a
new system I typically look to model
components that can be used as shells
for the real component. The goal is
to provide the responsible developer
with a starting point that allows the
focus to be on the functionality rather
than having to explore the critical nu-
ances of the underlying technology
and infrastructure.

There are numerous technical mo-
dalities to consider when designing or
evaluating architecture: performance,
availability, scalability, security, test-
ability, maintainability, ease of devel-
opment, and operability. The prior-
ity ordering of these modalities may
differ across systems, but each must
be considered. How these modalities
are addressed and their correspond-
ing technical considerations may vary
by system component. For example,
with request/reply and streaming up-
dates, latency is a critical performance
factor, whereas throughput may be
a better performance factor for flow-
through message processing or bulk-
request functionality. A perhaps subtle
but nonetheless important message
is to avoid mixing different modal-
ity implementations within the same
component. Failure to adhere to this
lesson puts the architecture on a sure
path to complexity.

It is far too common to hear the ex-

It should be
standard practice
to research the
architectural
options for new
systems—or when
making substantial
overhauls to
existing ones.

practice

october 2010 | vol. 53 | no. 10 | communications of the acm 51

cuse: “The system is [going to be] too
large to take the time to model its be-
havior. We just need to start building
it.” If the chore of modeling is consid-
ered too onerous, then it will probably
be very challenging to achieve predict-
able performance, scalability, and
other desirable technical attributes.
Some development projects have a
strong focus on unit tests, but in my
experience it is rare to find a corre-
sponding focus on testing the system
architecture as a whole.

Modeling a Sample Component
Describing the modeling of a sample
component may provide additional in-
sight into the approach I am advocat-
ing. Suppose a new system calls for re-
ceiving some stream of data items (for
example, stock quotes), enriching the
data and publishing it to end users.
An architect may suggest that some
type of publisher component be built
to perform this core requirement.
How can this component be modeled
before investing money in building
a system around it? Data throughput
and latency are probably primary con-
cerns. Ideally, we have some target re-
quirements for these. Scalability and
availability are also issues that can be
addressed with later iterations of the
model but before proceeding with the
functional development.

Based on this simple example, the
model should contain at least two
building blocks distinct from the
publisher component. The incom-
ing data feed needs to be simulated.
A driver should be built to pump data
into the publisher. Additionally, some
type of client sink is necessary to vali-
date the flow of messages and enable
the measuring of throughput and
latency. Figure 1 shows a simplified
drawing with drivers and sinks for the
proposed publisher.

The publisher model component
should be built using the proposed tar-
get language. It should use any frame-
works, libraries, among others, that
may affect the model outcome, though
it may not be obvious which of these
could have an effect. In that case you
should take a risk management ap-
proach to include those that are core
to the operation of the component. Any
new technology where the behavior is
not already fully understood should be

included as well. Any nonsuspect infra-
structure can be added in later itera-
tions. It is important not to get mired
in trying to build the functionality too
early. As much as possible should be
stubbed out.

In some systems a component such
as the publisher may present the largest
scalability hurdle. In that case we need
to know what type of message flow can
be handled, what type of latency can be
expected, how many clients can be sup-
ported, and what type of flow the client
applications can handle.

The data-feed driver should accept
parameters that allow the message
rate to be dialed to arbitrary levels. Any
driver should be capable of pushing
its target well past any expected high-
water mark. The messages do not have
to match the intended format, but they
should be relatively close in size. Since
the driver is tightly coupled with the
publisher, it should be written for and
run on the same type of platform (lan-
guage, operating system, among oth-
ers). This enables the same developer
to build both the component and the
driver. (I strongly suggest that each de-
veloper responsible for a system-level
component also create a distinct driv-
er and a possible sink as a standard
practice.) The same holds true for the
client sink so all three can be packaged
together. This provides a cohesiveness
that will allow the model to be reused
for other purposes in the future.

As the modeling progresses, an-
other model receiver should be built
for the target client platform using its
expected frameworks and communi-
cation mechanism. The reason for the
two different platform receiver/sinks is
to allow the publisher model compo-
nent to be tested without involving an-
other platform (for example, scalability
testing). The client-platform model re-
ceiver can be used to determine if the
publisher is interacting with the client
platform properly. During future trou-
bleshooting sessions these separate
receivers would provide a means to iso-
late the problem area. All of the driv-
ers and sinks should be maintained as
part of the development and mainte-
nance of the publisher.

The next step is to evaluate the pub-
lisher model in action with the drivers
and sinks. To characterize the perfor-
mance, some type of instrumentation

needs to be added to the client sink
to calculate throughput. Care must
be taken with any type of instrumen-
tation so it does not influence the re-
sults of the test. For example, logging
every single message received with
a timestamp is likely to be punitive
to performance. Instead, summary
statistics can be kept in memory and
written out at periodic intervals or
when the test ends.

The data-feed driver should out-
put data at a configurable rate while
the client sinks count messages and
compute the rate of data received.
Another instrumentation method
could be used to sample the latency.
At specified message count intervals,
the data-feed driver could log the
message number and the originat-
ing timestamp. The client sinks could
then log the receive timestamp at the
same interval. If logged at an appropri-
ate frequency, the samples could give
a good representation of the latency
without affecting the overall perfor-
mance. High-resolution timers may
be necessary. Testing across multiple
machines with a latency requirement
lower than the clock synchronization
drift would require more sophisticated
timing methods.

This model should be exercised at
various message rates, including rates
that completely overwhelm the pub-
lisher and its available resources. In
addition to observing throughput and
latency, the system resource utiliza-
tion (CPU, memory, network, and so
on) should be profiled. This informa-
tion could be used later to determine if
there are possible benefits in exploring
infrastructure tuning.

As mentioned earlier, the pub-
lisher is required to do some type of
data enrichment as the messages pass
through. Throughput, latency, and
memory consumption are likely to be
impacted by this enrichment. This
influence should be estimated and in-
corporated into the model publisher.
If realistic estimates are not available,
then purposely estimate high (or fol-
lowing the philosophy of this article,
build another model and characterize
it). If the cost of enrichment varies by
message type, then a pseudorandom
delay and memory allocation clustered
around the expected averages could be
inserted into the model publisher.

52 communications of the acm | october 2010 | vol. 53 | no. 10

practice

Other Uses for Modeling
Modeling is an iterative process. It
should not be thought of as just some
type of performance test. Here is a list
of items that could be added to further
the evaluation process.

˲˲ Use the model to evaluate various
infrastructure choices. These could
include messaging middleware, oper-
ating system and database-tuning pa-
rameters, network topology, and stor-
age system options.

˲˲ Use the model to create a perfor-
mance profile for a set of hardware,
and use that profile to extrapolate
performance on other hardware plat-
forms. Any extrapolation will be more
accurate if the model is profiled on
more than one hardware platform.

˲˲ Use the performance profiles to
determine if multiple instances of the
publisher (horizontal scaling) are likely
to be required as the system grows. If
so, this capability should be built into
the design and modeled appropriately.
Converting components designed to
be singletons could be very expensive.

˲˲ Use the model to explore the set of
possible failure scenarios. Availabil-
ity is one of the primary attributes of
a quality system. Waiting to address it
after a system is built can cost an order
of magnitude more.

The examples used in this article
can be seen in abstractions of many
systems. Similar modeling approach-
es should be undertaken for any ma-
terial component. When interrelated
models have been built and tested
they can then be combined for more
comprehensive system modeling. The
approach of building one model at
a time allows the system behavioral
knowledge to be gained in steps rather
than attempting to understand—not
to mention build—one all-encompass-
ing model.

One key element present in almost
all systems is some type of data store.
Evaluating a database design can be
complex. There are a number of steps
that are similar to the system model-
ing already discussed, however. Once a
draft of the database model (columns,
tables, and so on) is available, it can
be populated with enough generated
data to enable some performance test-
ing. The effort required to write a data
generator for this purpose will give an
idea of how easy it will be to work with

the database during the development
process. If this generator seems too
difficult to tackle, it may be a sign the
database model is already too complex.

After the tables have been populat-
ed, the next step is to create driver(s)
that will exercise the queries expected
to be most expensive and/or most fre-
quent. These drivers can be used to
refine the underlying relational mod-
el, storage organization, and tuning
parameters. Performing this type of
modeling can be priceless. Discover-
ing flaws in the application-level data
model after all the queries have been
written and the system is running in
production is painful. I have worked
to improve database performance on
dozens of systems. Optimizing que-
ries, storage subsystems, and other
database-related items post develop-
ment can be really challenging. If the
system has been in production for
some time, then the task is even more
difficult. Many times the low-level in-
frastructure changes could have been
determined by early modeling. With
the proper design more standard con-
figurations may have sufficed.

Instrumentation and Maintenance
Regardless of the type of driver/com-
ponent combination, instrumenta-
tion is vital to both modeling and the
long-lasting health of a system. It is not
just a luxury. Flying blind about per-
formance is not advised. Visual flight
rules (that is, without instrumenta-
tion) can be used only when the skies
are clear. How often is that true for
modern systems? The functional and
technical complexity typically clouds
the ability to see clearly what is hap-
pening. System performance can be
like floating down the river in a raft.
If you do not observe the speed of the
water periodically, then you might not
notice an upcoming waterfall until the
raft is hopelessly plunging over the
edge. As mentioned previously, when
the volume of instrumentation data is
too high, consider using “tracers” and/
or statistical sampling.

There are numerous advantages to
keeping the drivers and model compo-
nents up to date as a system evolves:

˲˲ They can be used for general re-
gression testing for performance,
availability, or scalability, when chang-
es are proposed.

˲˲ They can be used for capacity plan-
ning by extrapolating performance
from a smaller set of resources. The
only practical way to do this is by fully
understanding the resource usage
characteristics.

˲˲ They can model infrastructure or
other large-scale changes that may
need to be made to an existing system.

˲˲ At times there are factors outside
the control of the maintenance/devel-
opment team (for example, infrastruc-
ture changes). The drivers could be
used to test an isolated portion of the
system. If any degradation was caused
by the outside factors, then the results
could provide “defensive” data to have
the changes altered or rolled back.

˲˲ When some type of performance,
availability, scalability, or other infra-
structure problem arises, it would be
much quicker to pull out the model
and drivers than to take on the possibly
overwhelming task of updating them
while under pressure to troubleshoot a
production problem.

Modeling is an extremely powerful
method to understand and improve
the overall quality of a system. For
systems expected to last for years this
improvement translates into real mon-
etary savings. Development organiza-
tions can then spend their budgetary
money on providing functionality. If
the models and associated drivers are
sustained, then this functional focus
can be widely celebrated. 	

 Related articles
 on queue.acm.org

Hidden in Plain Sight
Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1117401

Visualizing System Latency
Brendan Gregg
http://queue.acm.org/detail.cfm?id=1809426

Performance Anti-Patterns
Bart Smaalders
http://queue.acm.org/detail.cfm?id=1117403

References
1.	B ooch, G. Object-oriented Analysis and Design with

Applications (2nd edition). Benjamin Cummings,
Redwood City, CA, 1993.

2.	 Petzold, C. Programming Windows. Microsoft Press,
1988.

Kevin Montagne has over 25 years of experience in
the IT field working with large-scale systems where
performance and availability were critical. He spent 20 of
those years in the financial industry, including more than a
decade as an architect of front-office trading systems.

© 2010 ACM 0001-0782/10/1000 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1117401
http://queue.acm.org/detail.cfm?id=1809426
http://queue.acm.org/detail.cfm?id=1117403

Online Books
& Courses Programs!ACM’s

Helping Members Meet Today’s Career Challenges

NEW! 3,200 Online Courses in Multiple Languages Plus
1,000 Virtual Labs from Element K!

The ACM Online Books Collection includes full
access to 600 online books from Safari® Books
Online, featuring leading publishers including
O’Reilly. Safari puts a complete IT and business
e-reference library right on your desktop. Available
to ACM Professional Members, Safari will help you
zero in on exactly the information you need, right
when you need it.

All Professional and Student Members also
have full access to 500 online books from
Books24x7®, in ACM’s rotating collection of
complete unabridged books on the hottest
computing topics. This virtual library puts
information at your fingertips. Search, book-
mark, or read cover-to-cover. Your bookshelf
allows for quick retrieval and bookmarks let
you easily return to specific places in a book.

pd.acm.org
www.acm.org/join

ACM’s new Online Course Collection includes over 3,200 online
courses in multiple languages, 1,000 virtual labs, e-reference
tools, and offline capability. Program highlights:

The ACM E-Learning Catalog - round-the-clock access to 3,200 online courses on a wide range of
computing and business topics, in multiple languages.

Exclusive vLab® Virtual Labs - 1,000 unique vLab® exercises place users on systems using real
hardware and software allowing them to gain important job-related experience.

Reference Tools - an e-Reference Library extends technical knowledge outside of the classroom, plus
online Executive Summaries and quick reference cards to answer on-the-job questions instantly.

Offline Player - members can access assessments and self-study courses offline, anywhere and anytime,
without a live Internet connection.

A downloadable Quick Reference Guide and a 15-minute site orientation course for new users are also
available to help members get started.

The ACM Online Course Program is open to ACM Professional and Student Members.

600 Online Books from Safari

ACM members are eligible for a special
40% savings offer to upgrade to a Premium

or Full Library subscription.
For more details visit:

http://pd.acm.org/books/about_sel.cfm

500 Online Books
from Books24x7

CACM_ACM_Books_and_Courses_4C_full-page_LMNTK:Layout 1 6/29/10 3:48 PM Page 1

http://pd.acm.org/books/about_sel.cfm
http://pd.acm.org
http://www.acm.org/join

54 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

If p hysics was the science of the first half of the
20th century, biology was certainly the science of the
second half. Neuroscience is now often cited as one
of the key scientific focuses of the 21st century and
has indeed grown rapidly in recent years, spanning a
range of approaches, from molecular neurobiology to
neuro-informatics and computational neuroscience.
Computer science gave biology powerful new data-
analysis tools that yielded bioinformatics and
genomics, making possible the sequencing of
the human genome. Similarly, computer science
techniques are at the heart of brain imaging and other
branches of neuroscience.

Computers are critical for the neurosciences,
though at a much deeper level, representing the best

metaphor for the central mystery of
how the brain produces intelligent be-
havior and intelligence itself. They also
provide experimental tools for infor-
mation processing, effectively testing
theories of the brain, particularly those
involving aspects of intelligence (such
as sensory perception). The contribu-
tion of computer science to neurosci-
ence happens at multiple levels and
is well recognized. Perhaps less obvi-
ous is that neuroscience is beginning
to contribute powerful new ideas and
approaches to artificial intelligence
and computer science as well. Modern
computational neuroscience models
are no longer toy models but quantita-
tively detailed while beginning to com-
pete with state-of-the-art computer-
vision systems. Here, we explore how
computational neuroscience could be-
come a major source of new ideas and
approaches in artificial intelligence.

Understanding the processing of in-
formation in our cortex is a significant
part of understanding how the brain
works and understanding intelligence
itself. For example, vision is one of our
most developed senses. Primates easily
categorize images or parts of images,
as in, say, an office scene or a face with-
in a scene, identifying specific objects.
Our visual capabilities are exceptional,
and, despite decades of engineering,
no computer algorithm is yet able to
match the performance of the primate
visual system.

Our visual cortex may serve as a
proxy for the rest of the cortex and thus

doi:10.1145/1831407.1831425

Neuroscience is beginning to inspire
a new generation of seeing machines.

by Thomas Serre and Tomaso Poggio

A
Neuromorphic
Approach
to Computer
Vision

 key insights
 � �The past century of neuroscience

research has begun to answer
fundamental questions ranging from
the intricate inner workings of
individual neurons to understanding
the collective behavior of networks
of millions of neurons.

 � �A key challenge for the visual cortex is
how to deal with the poverty-of-stimulus
problem.

 � �A major goal of the visual system is how
to adapt to the statistics of its natural
environment through visual experience
and even evolution.

october 2010 | vol. 53 | no. 10 | communications of the acm 55

Ill

u

s
t

r
a

t
i

o
n

 b
y

 K
a

i
 S

c
h

r
e

i
b

e
r

for intelligence itself. There is little
doubt that even a partial solution to the
question of which computations are
performed by the visual cortex would
be a major breakthrough in computa-
tional neuroscience and more broadly
in neuroscience. It would begin to ex-
plain one of the most amazing abili-
ties of the brain and open doors to
other aspects of intelligence (such as
language and planning). It would also
bridge the gap between neurobiology
and the various information sciences,
making it possible to develop com-
puter algorithms that follow the in-
formation-processing principles used
by biological organisms and honed by
natural evolution.

The past 60 years of experimental
work in visual neuroscience has gen-
erated a large and rapidly increasing

amount of data. Today’s quantitative
models bridge several levels of under-
standing, from biophysics to physiol-
ogy to behavior. Some of these models
compete with state-of-the-art comput-
er-vision systems and are close to hu-
man-level performance for specific vi-
sual tasks.

Here, we describe recent work to-
ward a theory of cortical visual process-
ing. Unlike other models that address
the computations in a given brain area
(such as primary visual cortex) or at-
tempt to explain a particular phenom-
enon (such as contrast adaptation and
specific visual illusion), we describe
a large-scale model that attempts to
mimic the main information-process-
ing steps across multiple brain areas
and millions of neuron-like units. A
first step toward understanding corti-

cal functions may take the form of a
detailed, neurobiologically plausible
model, accounting for the connectiv-
ity, biophysics, and physiology of the
cortex.

Models provide a much-needed
framework for summarizing and in-
tegrating existing data and planning,
coordinating, and interpreting new ex-
periments. They can be powerful tools
in basic research, integrating knowl-
edge across multiple levels of analysis,
from molecular to synaptic, cellular,
systems, and complex visual behavior.
However, models, as we discuss later,
are limited in explanatory power but
should, ideally, lead to a deeper and
more general theory. Here, we discuss
the role of the visual cortex and review
key computational principles underly-
ing the processing of information dur-

56 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

ing visual recognition, then explore a
computational neuroscience model
(representative of a class of older mod-
els) that implements these principles,
including some of the evidence in its
favor. When tested with natural imag-
es, the model performs robust object
recognition on par with computer-vi-
sion systems and human performance
for a specific class of quick visual-rec-
ognition tasks. The initial success of
this research represents a case in point
for arguing that over the next decade
progress in computer vision and arti-
ficial intelligence promises to benefit
directly from progress in neuroscience.

Goal of the Visual System
A key computational issue in object
recognitiona is the specificity-invari-
ance trade-off: Recognition must be
able to finely discriminate between dif-
ferent objects or object classes (such as
the faces in Figure 1) while being tol-
erant of object transformations (such
as scaling, translation, illumination,
changes in viewpoint, and clutter),
as well as non-rigid transformations
(such as variations in shape within a
class), as in the change of facial expres-
sion in recognizing faces.

A key challenge posed by the visual
cortex is how well it deals with the pov-
erty-of-stimulus problem, or simple
lack of visual information. Primates
are able to learn to recognize an object
in quite different images from far few-
er labeled examples than are predicted
by our present learning theory and
algorithms. For instance, discrimina-
tive algorithms (such as support vector
machines, or SVMs) can learn a com-
plex object-recognition task from a few
hundred labeled images. This number
is small compared to the apparent di-
mensionality of the problem (millions
of pixels), but a child, even a monkey, is
apparently able to learn the same task
from a handful of examples. As an ex-
ample of the prototypical problem in
visual recognition, imagine a (naïve)
machine is shown an image of a given
person and an image of another per-
son. The system’s task is to discrimi-

a	 Within recognition, one distinguishes be-
tween identification and categorization. From
a computational point of view, both involve
classification and represent two points on a
spectrum of generalization levels.

nate future images of these two people
without seeing other images of them,
though it has seen many images of oth-
er people and objects and their trans-
formations and may have learned from
them in an unsupervised way. Can the
system learn to perform the classifica-
tion task correctly with just two (or a
few) labeled examples?

Imagine trying to build such a clas-
sifier from the output of two cortical
cells, as in Figure 1. Here, the response
of the two cells defines a 2D feature
space to represent visual stimuli. In a
more realistic setting, objects would
be represented by the response pat-
terns of thousands of such neurons. In
the figure, we denote visual examples
from the two people with + and – signs;
panels (A) and (B) illustrate what the
recognition problem would look like
when these two neurons are sensitive
vs. invariant to the precise position of
the object within their receptive fields.b
In each case, a separation (the red lines
indicate one such possible separation)

b	 The receptive field of a neuron is the part
of the visual field that (properly stimulated)
could elicit a response from the neuron.

can be found between the two classes.
It has been shown that certain learning
algorithms (such as SVMs with Gauss-
ian kernels) can solve any discrimina-
tion task with arbitrary difficulty (in the
limit of an infinite number of training
examples). That is, with certain classes
of learning algorithms we are guaran-
teed to be able to find a separation for
the problem at hand irrespective of the
difficulty of the recognition task. How-
ever, learning to solve the problem may
require a prohibitively large number of
training examples.

In separating two classes, the two
representations in panels (A) and (B)
are not equal; the one in (B) is far su-
perior to the one in (A). With no prior
assumption on the class of functions
to be learned, the “simplest” classi-
fier that can separate the data in (B) is
much simpler than the “simplest” clas-
sifier that separates the data in (A). The
number of wiggles of the separation
line (related to the number of parame-
ters to be learned) gives a hand-wavy es-
timate of the complexity of a classifier.
The sample complexity of the problem
derived from the invariant representa-
tion in (B) is much lower than that of

Figure 1. Sample complexity.

BA

++
+

+
+
++

+

–
–

––––
–

+
+

+
++

+
+

+
–

––

–

–
– –

A hypothetical 2D (face) classification problem (red) line. One class is represented with + and
the other with – symbols. Insets are 2D transformations (translation and scales) applied to
examples from the two categories. Panels (A) and (B) are two different representations of the
same set of images. (B), which is tolerant with respect to the exact position and scale of the
object within the image, leads to a simpler decision function (such as a linear classifier) and
requires fewer training examples to achieve similar performance, thus lowering the sample
complexity of the classification problem. In the limit, learning in (B) could be done with only two
training examples (blue).

contributed articles

october 2010 | vol. 53 | no. 10 | communications of the acm 57

the problem in (A). Learning to catego-
rize the data-points in (B) requires far
fewer training examples than in (A) and
may be done with as few as two exam-
ples. The key problem in vision is thus
what can be learned effectively with
only a small number of examples.c

The main point is not that a low-level
representation provided from the reti-
na would not support robust object rec-
ognition. Indeed, relatively good com-
puter-vision systems developed in the
1990s were based on simple retina-like
representations and rather complex
decision functions (such as radial basis
function networks). The main problem
of these systems is they required a pro-
hibitively large number of training ex-
amples compared to humans.

More recent work in computer vi-
sion suggests a hierarchical architec-
ture may provide a better solution to
the problem; see also Bengio and Le
Cun1 for a related argument. For in-
stance, Heisele et al.10 designed a hi-
erarchical system for the detection
and recognition of faces, an approach
based on a hierarchy of “component
experts” performing a local search for
one facial component (such as an eye
or a nose) over a range of positions and
scales. Experimental evidence from
Heisele et al.10 suggests such hierarchi-
cal systems based exclusively on linear
(SVM) classifiers significantly outper-
form a shallow architecture that tries
to classify a face as a whole, albeit by
relying on more complex kernels.

The visual system may be using a
similar strategy to recognize objects,
with the goal of reducing the sample
complexity of the classification prob-
lem. In this view, the visual cortex
transforms the raw image into a posi-
tion- and scale-tolerant representa-
tion through a hierarchy of processing
stages, whereby each layer gradually
increases the tolerance to position
and scale of the image representation.
After several layers of such processing
stages, the resulting image representa-
tion can be used much more efficiently
for task-dependent learning and classi-

c	 The idea of sample complexity is related to
the point made by DiCarlo and Cox4 about the
main goal of processing information from the
retina to higher visual areas to be “untangling
object representations,” so a simple linear
classifier can discriminate between any two
classes of objects.

fication by higher brain areas.
These stages can be learned during

development from temporal streams
of natural images by exploiting the sta-
tistics of natural environments in two
ways: correlations over images that
provide information-rich features at
various levels of complexity and sizes;
and correlations over time used to
learn equivalence classes of these fea-
tures under transformations (such as
shifts in position and changes in scale).
The combination of these two learning
processes allows efficient sharing of vi-
sual features between object categories
and makes learning new objects and
categories easier, since they inherit the
invariance properties of the represen-
tation learned from previous experi-
ence in the form of basic features com-
mon to other objects. In the following
sections, we review evidence for this
hierarchical architecture and the two
correlation mechanisms described
earlier.

Hierarchical Architecture
and Invariant Recognition
Several lines of evidence (from both
human psychophysics and monkey
electrophysiology studies) suggest the
primate visual system exhibits at least
some invariance to position and scale.
While the precise amount of invari-
ance is still under debate, there is gen-
eral agreement as to the fact that there
is at least some generalization to posi-
tion and scale.

The neural mechanisms underlying
such invariant visual recognition have
been the subject of much computa-
tional and experimental work since the
early 1990s. One general class of com-
putational models postulates that the
hierarchical organization of the visual
cortex is key to this process; see also
Hegdé and Felleman9 for an alterna-
tive view. The processing of shape in-
formation in the visual cortex follows a
series of stages, starting with the retina
and proceeding through the lateral ge-
niculate nucleus (LGN) of the thala-
mus to primary visual cortex (V1) and
extrastriate visual areas, V2, V4, and
the inferotemporal (IT) cortex. In turn,
IT provides a major source of input to
the prefrontal cortex (PFC) involved in
linking perception to memory and ac-
tion; see Serre et al.29 for references.

As one progresses along the ventral

The role of
the anatomical
back-projections
present
(in abundance)
among almost all
areas in
visual cortex is
a matter of debate.

58 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

stream of the visual cortex, neurons
become selective for stimuli that are
increasingly complex—from simple
oriented bars and edges in early visual
area V1 to moderately complex fea-
tures in intermediate areas (such as a
combination of orientations) to com-
plex objects and faces in higher visual
areas (such as IT). Along with this in-
crease in complexity of the preferred
stimulus, the invariance properties of
neurons seem to also increase. Neu-
rons become more and more tolerant
with respect to the exact position and
scale of the stimulus within their re-
ceptive fields. As a result, the receptive
field size of neurons increases from
about one degree or less in V1 to sev-
eral degrees in IT.

Compelling evidence suggests that
IT, which has been critically linked
with a monkey’s ability to recognize
objects, provides a representation of
the image that facilitates recognition
tolerant of image transformations. For
instance, Logothetis et al.16 showed
that monkeys can be trained to recog-
nize paperclip-like wireframe objects
at a specific location and scale. After
training, recordings in their IT cor-
tex revealed significant selectivity for
the trained objects. Because monkeys
were unlikely to have been in contact
with the specific paperclip prior to
training, this experiment provides in-
direct evidence of learning. More im-
portant, Logothetis et al.16 found se-
lective neurons also exhibited a range
of invariance with respect to the exact
position (two to four degrees) and
scale (around two octaves) of the stim-
ulus, which was never presented be-
fore testing at these new positions and
scales. In 2005, Hung et al.12 showed it
was possible to train a (linear) classi-
fier to robustly read out from a popula-
tion of IT neurons the category infor-
mation of a briefly flashed stimulus.
Hung et al. also showed the classifier
was able to generalize to a range of
positions and scales (similar to Logo-
thetis et al.’s data) not presented dur-
ing the training of the classifier. This
generalization suggests the observed
tolerance to 2D transformation is a
property of the population of neurons
learned from visual experience but
available for a novel object without
object-specific learning, depending
on task difficulty.

showed the patterns of neural activity
elicited by certain ecologically impor-
tant classes of objects (such as faces
and places in monozygotic twins) are
significantly more similar than in di-
zygotic twins. These results suggest
that genes may play a significant role
in the way the visual cortex is wired to
process certain object classes. Mean-
while, several electrophysiological
studies have demonstrated learning
and plasticity in the adult monkey;
see, for instance, Li and DiCarlo.15
Learning is likely to be both faster and
easier to elicit in higher visually re-
sponsive areas (such as PFC and IT15)
than in lower areas.

This learning result makes intui-
tive sense. For the visual system to re-
main stable, the time scale for learning
should increase ascending the ventral
stream.d In the Figure 2 model, we as-
sumed unsupervised learning from V1
to IT happens during development in
a sequence starting with the lower ar-
eas. In reality, learning might continue
throughout adulthood, certainly at the
level of IT and perhaps in intermediate
and lower areas as well.

Unsupervised learning in the ventral
stream of the visual cortex. With the ex-
ception of the task-specific units at the
top of the hierarchy (“visual routines”),
learning in the model in Figure 2 is un-
supervised, thus closely mimicking a
developmental learning stage.

As emphasized by several authors,
statistical regularities in natural visual
scenes may provide critical cues to the
visual system for learning with very
limited or no supervision. A key goal of
the visual system may be to adapt to the
statistics of its natural environment
through visual experience and perhaps
evolution, too. In the Figure 2 model,
the selectivity of simple and complex
units can be learned from natural vid-
eo sequences (see supplementary ma-

d	 In the hierarchical model in Figure 1, learning
proceeds layer by layer, starting at the bottom,
a process similar to recent work by Hinton11
but that is quite different from the original
neural networks that used back-propagation
and simultaneously learned all layers at the
same time. Our implementation includes the
unsupervised learning of features from natu-
ral images but assumes the learning of posi-
tion and scale tolerance, thus hardwired in the
model; see Masquelier et al.18 for an initial at-
tempt at learning position and scale tolerance
in the model.

Computational Models of
Object Recognition in Cortex
We developed26,29 (in close coopera-
tion with experimental labs) an initial
quantitative model of feedforward hi-
erarchical processing in the ventral
stream of the visual cortex (see Figure
2). The resulting model effectively inte-
grates the large body of neuroscience
data (summarized earlier) character-
izing the properties of neurons along
the object-recognition processing hier-
archy. The model also mimics human
performance in difficult visual-recog-
nition tasks28 while performing at least
as well as most current computer-vi-
sion systems.27

Feedforward hierarchical mod-
els have a long history, beginning in
the 1970s with Marko and Giebel’s
homogeneous multilayered archi-
tecture17 and later Fukushima’s Neo-
cognitron.6 One of their key compu-
tational mechanisms originates from
the pioneering physiological stud-
ies and models of Hubel and Wiesel
(http://serre-lab.clps.brown.edu/re-
sources/ACM2010). The basic idea is
to build an increasingly complex and
invariant object representation in a
hierarchy of stages by progressively
integrating, or pooling, convergent
inputs from lower levels. Building on
existing models (see supplementary
notes http://serre-lab.clps.brown.
edu/resources/ACM2010), we have
been developing24,29 a similar compu-
tational theory that attempts to quan-
titatively account for a host of recent
anatomical and physiological data;
see also Mutch and Lowe19 and Mas-
quelier et al.18

The feedforward hierarchical mod-
el in Figure 2 assumes two classes of
functional units: simple and complex.
Simple act as local template-matching
operators, increasing the complexity of
the image representation by pooling
over local afferent units with selectiv-
ity for different image features (such as
edges at different orientations). Com-
plex increase the tolerance of the rep-
resentation with respect to 2D transfor-
mations by pooling over afferent units
with similar selectivity but slightly dif-
ferent positions and scales.

Learning and plasticity. How the
organization of the visual cortex is in-
fluenced by development vs. genetics
is a matter of debate. An fMRI study21

http://serre-lab.clps.brown.edu/resources/ACM2010
http://serre-lab.clps.brown.edu/resources/ACM2010
http://serre-lab.clps.brown.edu/resources/ACM2010
http://serre-lab.clps.brown.edu/resources/ACM2010

contributed articles

october 2010 | vol. 53 | no. 10 | communications of the acm 59

terial http://serre-lab.clps.brown.edu/
resources/ACM2010 for details).

Supervised learning in higher ar-
eas. After this initial developmental
stage, learning a new object category
requires training only of task-specif-
ic circuits at the top of the ventral-
stream hierarchy, thus providing a
position and scale-invariant represen-
tation to task-specific circuits beyond
IT to learn to generalize over trans-
formations other than image-plane
transformations (such as 3D rotation)
that must be learned anew for each
object or category. For instance, pose-
invariant face categorization circuits
may be built, possibly in PFC, by com-
bining several units tuned to different
face examples, including different
people, views, and lighting conditions
(possibly in IT).

A default routine may be running in
a default state (no specific visual task),
perhaps the routine What is there?
As an example of a simple routine con-
sider a classifier that receives the activ-
ity of a few hundred IT-like units, tuned
to examples of the target object and
distractors. While learning in the mod-
el from the layers below is stimulus-
driven, the PFC-like classification units
are trained in a supervised way follow-
ing a perceptron-like learning rule.

Immediate Recognition
The role of the anatomical back-projec-
tions present (in abundance) among
almost all areas in the visual cortex is
a matter of debate. A commonly ac-
cepted hypothesis is that the basic pro-
cessing of information is feedforward,30
supported most directly by the short
times required for a selective response
to appear in cells at all stages of the hi-
erarchy. Neural recordings from IT in
a monkey12 show the activity of small
neuronal populations over very short
time intervals (as short as 12.5ms and
about 100ms after stimulus onset) con-
tains surprisingly accurate and robust
information supporting a variety of
recognition tasks. While this data does
not rule out local feedback loops within
an area, it does suggest that a core hi-
erarchical feedforward architecture
(like the one described here) may be a
reasonable starting point for a theory of
the visual cortex, aiming to explain im-
mediate recognition, the initial phase
of recognition before eye movement

and high-level processes take place.
Agreement with experimental data.

Since its original development in the
late 1990s,24,29 the model in Figure 2
has been able to explain a number of
new experimental results, including
data not used to derive or fit model pa-
rameters. The model seems to be qual-
itatively and quantitatively consistent
with (and in some cases predicts29)
several properties of subpopulations
of cells in V1, V4, IT, and PFC, as well
as fMRI and psychophysical data (see
the sidebar “Quantitative Data Com-
patible with the Model” for a complete
list of findings).

We compared the performance of
the model against the performance
of human observers in a rapid animal
vs. non-animal recognition task28 for
which recognition is quick and cortical
back-projections may be less relevant.
Results indicate the model predicts
human performance quite well during
such a task, suggesting the model may

indeed provide a satisfactory descrip-
tion of the feedforward path. In par-
ticular, for this experiment, we broke
down the performance of the model
and human observers into four image
categories with varying amounts of
clutter. Interestingly, the performance
of both the model and the human ob-
servers was most accurate (~90% cor-
rect for both human participants and
the model) on images for which the
amount of information is maximal and
clutter minimal and decreases monoti-
cally as the clutter in the image increas-
es. This decrease in performance with
increasing clutter likely reflects a key
limitation of this type of feedforward
architecture. This result is in agree-
ment with the reduced selectivity of
neurons in V4 and IT when presented
with multiple stimuli within their re-
ceptive fields for which the model pro-
vides a good quantitative fit29 with neu-
rophysiology data (see the sidebar).

Application to computer vision.

Figure 2. Hierarchical feedforward models of the visual cortex.

Complex units

Simple units

V1

V2–V4

PIT

AIT

visual
routines

Is there
an animal?

How big is
this object?Where is

the boundary
of the object?

http://serre-lab.clps.brown.edu/resources/ACM2010
http://serre-lab.clps.brown.edu/resources/ACM2010

60 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

es,13 finding that the model of the dor-
sal stream competed with a state-of-
the-art action-recognition system (that
outperformed many other systems) on
all three data sets.13 A direct extension
of this approach led to a computer sys-
tem for the automated monitoring and
analysis of rodent behavior for behav-
ioral phenotyping applications that
perform on par with human manual
scoring. We also found the learning in

this model produced a large dictionary
of optic-flow patterns that seems con-
sistent with the response properties of
cells in the medial temporal (MT) area
in response to both isolated gratings
and plaids, or two gratings superim-
posed on one another.

Conclusion
Demonstrating that a model designed
to mimic known anatomy and physiol-

How does the model29 perform real-
world recognition tasks? And how
does it compare to state-of-the-art
artificial-intelligence systems? Given
the specific biological constraints the
theory must satisfy (such as using only
biophysically plausible operations,
receptive field sizes, and a range of in-
variances), it was not clear how well the
model implementation would perform
compared to systems heuristically en-
gineered for these complex tasks.

Several years ago, we were surprised
to find the model capable of recogniz-
ing complex images,27 performing at a
level comparable to some of the best
existing systems on the CalTech-101
image database of 101 object catego-
ries with a recognition rate of about
55% (chance level < 1%); see Serre et
al.27 and Mutch and Lowe.19 A related
system with fewer layers, less invari-
ance, and more units had an even bet-
ter recognition rate on the CalTech
data set.20

We also developed an automated
system for parsing street-scene im-
ages27 based in part on the class of
models described earlier. The system
recognizes seven different object cat-
egories—cars, pedestrians, bikes,
skies, roads, buildings, trees—from
natural images of street scenes de-
spite very large variations in shape
(such as trees in summer and winter
and SUVs and compact cars from any
point of view).

Content-based recognition and
search in videos is an emerging ap-
plication of computer vision, whereby
neuroscience may again suggest an
avenue for approaching the problem.
In 2007, we developed an initial mod-
el for recognizing biological motion
and actions from video sequences
based on the organization of the dor-
sal stream of the visual cortex,13 which
is critically linked to the processing
of motion information, from V1 and
MT to higher motion-selective areas
MST/FST and STS. The system relies
on computational principles similar
to those in the model of the ventral
stream described earlier but that start
with spatio-temporal filters modeled
after motion-sensitive cells in the pri-
mary visual cortex.

We evaluated system performance
for recognizing actions (human and
animal) in real-world video sequenc-

Black corresponds to data used to derive the parameters of the model, red to data
consistent with the model (not used to fit model parameters), and blue to actual
correct predictions by the model. Notations: PFC (prefrontal cortex), V1 (visual
area I or primary visual cortex), V4 (visual area IV), and IT (inferotemporal cortex).
Data from these areas corresponds to monkey electrophysiology studies. LOC (Lateral
Occipital Complex) involves fMRI with humans. The psychological studies are
psychophysics on human subjects.

Quantitative Data
Compatible with
the Model

Area Type of data Ref. biol. data Ref. model data

Psych. Rapid animal categorization (1) (1)

Face inversion effect (2) (2)

LOC Face processing (fMRI) (3) (3)

PFC Differential role of IT and PFC in categorization (4) (5)

IT Tuning and invariance properties (6) (5)

Read out for object category (7) (8,9)

Average effect in IT (10) (10)

V4 MAX operation (11) (5)

Tuning for two-bar stimuli (12) (8,9)

Two-spot interaction (13) (8)

Tuning for boundary conformation (14) (8,15)

Tuning for Cartesian and non-Cartesian gratings (16) (8)

V1 Simple and complex cells tuning properties (17–19) (8)

MAX operation in subset of complex cells (20) (5)

1.	S erre, T., Oliva, A., and Poggio, T. Proc. Natl. Acad. Sci.104, 6424 (Apr. 2007).
2.	R iesenhuber, M. et al. Proc. Biol. Sci. 271, S448 (2004).
3.	 Jiang, X. et al. Neuron 50, 159 (2006).
4.	 Freedman, D.J., Riesenhuber, M., Poggio, T., and Miller, E.K. Journ. Neurosci. 23, 5235 (2003).
5.	R iesenhuber, M. and Poggio, T. Nature Neuroscience 2, 1019 (1999).
6.	 Logothetis, N.K., Pauls, J., and Poggio, T. Curr. Biol. 5, 552 (May 1995).
7.	H ung, C.P., Kreiman, G., Poggio, T., and DiCarlo, J.J. Science 310, 863 (Nov. 2005).
8.	S erre, T. et al. MIT AI Memo 2005-036 / CBCL Memo 259 (2005).
9.	S erre, T. et al. Prog. Brain Res. 165, 33 (2007).
10.	 Zoccolan, D., Kouh, M., Poggio, T., and DiCarlo, J.J. Journ. Neurosci. 27, 12292 (2007).
11.	G awne, T.J. and Martin, J.M. Journ. Neurophysiol. 88, 1128 (2002).
12.	R eynolds, J.H., Chelazzi, L., and Desimone, R. Journ. Neurosci.19, 1736 (Mar. 1999).
13.	T aylor, K., Mandon, S., Freiwald, W.A., and Kreiter, A.K. Cereb. Cortex 15, 1424 (2005).
14.	 Pasupathy, A. and Connor, C. Journ. Neurophysiol. 82, 2490 (1999).
15.	C adieu, C. et al. Journ. Neurophysiol. 98, 1733 (2007).
16.	G allant, J.L. et al. Journ. Neurophysiol. 76, 2718 (1996).
17.	S chiller, P.H., Finlay, B.L., and Volman, S.F. Journ. Neurophysiol. 39, 1288 (1976).
18.	H ubel, D.H. and Wiesel, T.N. Journ. Physiol. 160, 106 (1962).
19.	D e Valois, R.L., Albrecht, D.G., and Thorell, L.G. Vision Res. 22, 545 (1982).
20.	 Lampl, I., Ferster, D., Poggio, T., and Riesenhuber, M. Journ. Neurophysiol. 92, 2704 (2004).

contributed articles

october 2010 | vol. 53 | no. 10 | communications of the acm 61

ogy of the primate visual system leads
to good performance with respect to
computer-vision benchmarks may
suggest neuroscience is on the verge
of providing novel and useful para-
digms to computer vision and per-
haps to other areas of computer sci-
ence as well. The feedforward model
described here can be modified and
improved by taking into account new
experimental data (such as more de-
tailed properties of specific visual
areas like V125), implementing some
of its implicit assumptions (such as
learning invariances from sequences
of natural images), taking into ac-
count additional sources of visual in-
formation (such as binocular disparity
and color), and extention to describe
the detailed dynamics of neural re-
sponses. Meanwhile, the recognition
performance of models of this general
type can be improved by exploring pa-
rameters (such as receptive field sizes
and connectivity) by, say, using com-
puter-intensive iterations of a muta-
tion-and-test cycle.

 However, it is important to realize
the intrinsic limitations of the specific
computational framework we have
described and why it is at best a first
step toward understanding the visual
cortex. First, from the anatomical and
physiological point of view the class of
feedforward models we’ve described
here is incomplete, as it does not ac-
count for the massive back-projections
found in the cortex. To date, the role
of cortical feedback remains poorly
understood. It is likely that feedback
underlies top-down signals related to
attention, task-dependent biases, and
memory. Back-projections must also
be taken into account in order to de-
scribe visual perception beyond the
first 100msec–200msec.

Given enough time, humans use
eye movement to scan images, and
performance in many object-recog-
nition tasks improves significantly
over that obtained during quick pre-
sentations. Extensions of the model
to incorporate feedback are possible
and under way.2 Feedforward models
may well turn out to be approximate
descriptions of the first 100msec–
200msec of the processing required by
more complex theories of vision based
on back-projections.3,5,7,8,14,22,31 How-
ever, the computations involved in

temporal cortex. Science 310, 5749 (Nov. 4, 2005),
863–866.

13.	 Jhuang, H., Serre, T., Wolf, L., and Poggio, T. A
biologically inspired system for action recognition.
In Proceedings of the 11th IEEE International
Conference on Computer Vision (Rio de Janeiro,
Brazil, Oct. 14–20). IEEE Press, 2007.

14.	 Lee, T.S. and Mumford, D. Hierarchical Bayesian
inference in the visual cortex. Journal of the Optical
Society of America 20, 7 (July 2003), 1434–1448.

15.	 Li, N. and DiCarlo, J.J. Unsupervised natural
experience rapidly alters invariant object
representation in visual cortex. Science 321, 5895
(Sept. 12, 2008), 1502–1507.

16.	 Logothetis, N.K., Pauls, J., and Poggio, T. Shape
representation in the inferior temporal cortex
of monkeys. Current Biology 5, 5 (May 1, 1995),
552–563.

17.	 Marko, H. and Giebel, H. Recognition of handwritten
characters with a system of homogeneous layers.
Nachrichtentechnische Zeitschrift 23 (1970),
455–459.

18.	 Masquelier, T., Serre, T., Thorpe, S., and Poggio, T.
Learning Complex Cell Invariance from Natural
Videos: A Plausibility Proof. MIT Center for Biological
& Computational Learning Paper #269/MIT-CSAIL-
TR #2007-060, Cambridge, MA, 2007.

19.	 Mutch, J. and Lowe, D. Multiclass object recognition
using sparse, localized features. In Proceedings of the
Computer Vision and Pattern Recognition (New York,
June 17–22, 2006).

20.	 Pinto, N., Cox, D.D., and DiCarlo, J.J. Why is real-world
visual object recognition hard? PLoS Computational
Biology 4, 1 (Jan. 1, 2008), e27.

21.	 Polk, T.A., Park, J.E., Smith, M.R., and Park, D.C.
Nature versus nurture in ventral visual cortex:
A functional magnetic resonance imaging study
of twins. Journal of Neuroscience 27, 51 (2007),
13921–13925.

22.	R ao, R.P. and Ballard, D.H. Predictive coding in the
visual cortex: A functional interpretation of some
extra-classical receptive-field effects. Nature
Neuroscience 2, 1 (1999), 79–87.

23.	R eynolds, J.H., Chelazzi, L., and Desimone, R.
Competitive mechanisms subserve attention in
macaque areas V2 and V4. Journal of Neuroscience
19, 5 (Mar. 1, 1999), 1736–2753.

24.	R iesenhuber, M. and Poggio, T. Hierarchical models of
object recognition in cortex. Nature Neuroscience 2,
11 (1999), 1019–1025.

25.	R olls, E.T. and Deco, G. Computational Neuroscience
of Vision. Oxford University Press, Oxford, U.K., 2002.

26.	S erre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich,
U., and Poggio, T. A quantitative theory of immediate
visual recognition. Progress in Brain Research 165
(2007), 33–56.

27.	S erre, T., Wolf, L., Bileschi, S., Riesenhuber, M.,
and Poggio, T. Object recognition with cortex-like
mechanisms. IEEE Transactions on Pattern Analysis
and Machine Intelligence 29, 3 (2007), 411–426.

28.	S erre, T., Oliva, A., and Poggio, T. A feedforward
architecture accounts for rapid categorization.
Proceedings of the National Academy of Sciences 104,
15 (Apr. 10, 2007), 6424–6429.

29.	S erre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman,
G., and Poggio, T. A Theory of Object Recognition:
Computations and Circuits in the Feedforward Path of
the Ventral Stream in Primate Visual Cortex. MIT AI
Memo 2005-036 / CBCL Memo 259, AI Memo 2005-
036 / CBCL Memo 259 2005. Cambridge, MA, 2005.

30.	Thorpe, S., Fize, D., and Marlot, C. Speed of processing
in the human visual system. Nature 381, 6582 (1996),
520–522.

31.	Y uille, A. and Kersten, D. Vision as Bayesian inference:
Analysis by synthesis? Trends in Cognitive Science 10,
7 (July 2006), 301–308.

Thomas Serre (thomas_serre@brown.edu) is an
assistant professor in the Department of Cognitive,
Linguistic & Psychological Sciences at Brown University,
Providence, RI.

Tomaso Poggio (tp@ai.mit.edu) is the Eugene
McDermott Professor in the Department of Brain and
Cognitive Sciences in the McGovern Institute for Brain
Research at the Massachusetts Institute of Technology,
Cambridge, MA.

© 2010 ACM 0001-0782/10/1000 $10.00

the initial phase are nontrivial but es-
sential for any scheme involving feed-
back. A related point is that normal
visual perception is much more than
classification, as it involves interpret-
ing and parsing visual scenes. In this
sense, the class of models we describe
is limited, since it deals only with clas-
sification tasks. More complex archi-
tectures are needed; see Serre et al.26
for a discussion.

Finally, we described a class of
models, not a theory. Computational
models are not sufficient on their
own. Our model, despite describing
(quantitatively) aspects of monkey
physiology and human recognition,
does not yield a good understanding
of the computational principles of
the cortex and their power. What is yet
needed is a mathematical theory to ex-
plain the hierarchical organization of
the cortex.

Acknowledgments
We thank Jake Bouvrie for his useful
feedback on the manuscript, as well
as the referees for their valuable com-
ments. 	

References
1.	B engio, J. and Le Cun, Y. Scaling learning algorithms

towards AI. In Large-Scale Kernel Machines, L.
Bottou, O. Chapelle, D. DeCoste, and J. Weston, J.,
Eds. MIT Press, Cambridge, MA, 2007, 321–360.

2.	C hikkerur, S., Serre, T., Tan, C., and Poggio, T. What
and Where: A Bayesian Inference Theory of Attention
(in press). Vision Research, 2010.

3.	D ean, T. A computational model of the cerebral
cortex. In Proceedings of the 20th National
Conference on Artificial Intelligence (Pittsburgh, PA,
July 9–13, 2005), 938–943.

4.	D iCarlo, J.J. and Cox, D.D. Untangling invariant object
recognition. Trends in Cognitive Science 11, 8 (Aug.
2007), 333–341.

5.	E pshtein, B., Lifshitz, I., and Ullman, S. Image
interpretation by a single bottom-up top-down cycle.
Proceedings of the National Academy of Sciences 105,
38 (Sept. 2008), 14298–14303.

6.	 Fukushima, K. Neocognitron: A self-organizing
neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological
Cybernetics 36, 4 (Apr. 1980), 193–202.

7.	G eorge, D. and Hawkins, J. A hierarchical Bayesian
model of invariant pattern recognition in the visual
cortex. In Proceedings of the International Joint
Conference on Neural Networks 3, (Montréal, July
31–Aug. 4). IEEE Press, 2005, 1812–1817.

8.	G rossberg, S. Towards a unified theory of neocortex:
Laminar cortical circuits for vision and cognition.
Progress in Brain Research 165 (2007), 79–104.

9.	H egdé, H. and Felleman, D.J. Reappraising the
functional implications of the primate visual
anatomical hierarchy. The Neuroscientist 13, 5 (2007),
416–421.

10.	H eisele, B., Serre, T., and Poggio, T. A component-
based framework for face detection and identification.
International Journal of Computer Vision 74, 2 (Jan.
1, 2007), 167–181.

11.	H inton, G.E. Learning multiple layers of
representation. Trends in Cognitive Sciences 11, 10
(Oct. 2007), 428–434.

12.	H ung, C.P., Kreiman, G., Poggio, T., and DiCarlo, J.J.
Fast read-out of object identity from macaque inferior

mailto:thomas_serre@brown.edu
mailto:tp@ai.mit.edu

62 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

Ill

u

s
t

r
a

t
i

o
n

 b
y

 P
e

t
e

r
 g

r
u

n
d

Y

Though the outsourcing of IT services has long
been a topic of academic interest,22 the potential for
the global sourcing of IT services to have a long-term
effect on the domestic IT work force continues to
attract significant interest from the media, public,
and academic community.1,3,6,15,19,24 Here, we use
survey data collected in 2007 to characterize the effect
offshoring has had on the U.S. IT work force (see the
sidebar “Key Survey Questions”) and estimate how it
will affect the demand for skills among U.S. IT workers
in the future.

Understanding the effect of offshoring on domestic
employment is potentially important for anticipating
the training needs of existing and future IT workers
and for enabling policymakers to frame initiatives
that ease the transition to a global IT work force.
However, our current understanding is limited by

a paucity of data on firms’ offshoring
activities. Most discussion of offshor-
ing relies on anecdotes, press reports,
and theoretical arguments. Indeed,
the U.S. government acknowledges
development of better offshoring data
is a pressing policy concern.9

The primary contribution of this
study is the collection and analysis of
data describing how offshoring affects
the U.S. work force. That data comes
from two complementary, unusually
large surveys carried out in late 2007,
one involving 3,014 human resources
managers and the other more than
6,000 U.S. workers employed in a vari-
ety of occupations. The data allows us
to provide general statistics about the
overall rate of U.S. IT offshoring and
address two main questions: Do the
rates of IT worker offshoring differ
significantly from the offshoring rates
for workers in other occupations? And
is the pattern of IT offshoring con-
sistent with the theory that jobs are
less readily offshored if they require
face-to-face contact with U.S.-based
consumers or co-workers or require
employees to perform hands-on work
with U.S.-based assets?

Our interest in the second question
was motivated by work suggesting
that job characteristics (such as the
need for customer contact or physical
presence or information intensity) are
closely related to the potential rate of
offshoring.2,4,11,18 In the study, we com-
bined data on offshoring-related dis-
placement by occupation with Blind-
er’s classification4 of “offshorability”
of various occupations to understand

doi:10.1145/1831407.1831426

IT jobs requiring interpersonal interaction
or physical presence in fixed locations are less
likely to be sent out of the country.

by Prasanna B. Tambe and Lorin M. Hitt

How
Offshoring
Affects
IT Workers

 key insights
 � �Offshoring is most common in high-tech

firms and IT functions.

 � �IT workers reported offshoring-related
displacement at a rate of 8%, more
than double that of workers in other
occupations.

 � �Technical occupations reliant on skills
that can be delivered with relatively
little face-to-face contact are more
easily offshored, suggesting a coming
shift in the skill base of the domestic
IT work force.

c
r

e
d

i
t

 t
k

october 2010 | vol. 53 | no. 10 | communications of the acm 63

64 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

how job characteristics correlate with
offshoring rates.

About 15% of all firms and 40% of
technology firms we surveyed engaged
in some offshoring activity, with about
30% offshoring IT workers. About 8%
of IT workers reported having been
displaced due to offshoring, more
than twice the percentage of any other
type of employee in the survey. How-
ever, this rate implies an annual dis-
placement rate of about 1% per year,
a relatively small fraction of the an-
nual worker turnover rate in the U.S.
economy. In addition, the offshoring
of some IT occupations (such as pro-
grammers and software developers)
was especially likely to be associated
with domestic job displacement.
Other occupations requiring more
interpersonal interaction (such as sys-
tems analysts) were less likely to be
offshored, and overseas employment

in other occupations (such as sales
and management) may have been di-
rected at serving offshore customers
and therefore were also less likely to
be associated with job displacement
in the U.S.

We make three separate contribu-
tions toward understanding how off-
shoring affects domestic IT workers:
quantify the extent to which offshor-
ing has affected IT workers; show a
relationship between occupational
attributes and offshoring-related dis-
placement, providing empirical sup-
port for emerging theories of how
offshoring drives the global disaggre-
gation of skills2,4; and contribute to the
literature demonstrating the growing
importance of managerial and inter-
personal skills for IT workers.13,18,21

Data and Methods
Our primary data comes from two

separate questionnaires, both ad-
ministered in the winter of 2007 by
a third-party survey firm on behalf of
one of the largest online recruitment
and career-advancement companies
in the U.S. The first focused on the
offshoring practices of 3,016 individ-
ual firms, including whether and why
they offshore and what types of work
and to what countries they offshore. It
was conducted within the U.S. among
hiring managers and human-resource
professionals employed full-time with
significant involvement in hiring de-
cisions. Respondents were also asked
about firm characteristics (such as
size and industry). The second was ad-
ministered to individual workers and
included questions relating to wheth-
er or not they had been displaced due
to offshoring. It was also conducted
within the U.S. (online) among 6,704
employees employed full-time and in-
cluded both firm characteristics (such
as size and industry) and employee
characteristics (such as age, salary,
and job level).

To test the hypothesis that job
characteristics affect the likelihood of
a job being offshored, we used probit
models in which the dependent vari-
able was 1 if an employee reported be-
ing displaced due to offshoring or an
employer reported offshoring a par-
ticular type of work; we also included
a measure of the importance of face-
to-face contact or physical presence as
an independent variable. Rather than
restrict our sample to IT workers, we
included all occupations in the analy-
sis to increase the variation in the skill
content of jobs, employing Huber-
White robust (clustered) standard er-
rors to account for possible random
firm effects.

We captured the importance of
face-to-face contact and physical
presence in our regression models
by including index values computed
in a study of the offshorability of vari-
ous occupations.4 Blinder’s index is
derived by placing jobs into catego-
ries depending on whether they re-
quire face-to-face interaction (such as
child-care workers) and whether they
require workers (such as in the con-
struction trades) to be in a particular
location. To maintain consistency
with Blinder’s classification, we ad-
opted the term “personally delivered”

Questions for employers

Did your company outsource work
to third-party vendors outside
the country in 2007?
  Yes     No     I don’t know

Did your company offshore job
functions to its foreign affiliates in 2007?
  Yes     No     I don’t know

What positions are your company
most likely to offshore?
  Sales Managers	
  HR Managers
  Sales Agents	
  Systems Administrators
  Financial Specialists
  Marketing Managers
  General Managers
  Hardware Engineers
  Software Engineers
  Computer-Support Specialists
  Computer-Systems Analysts
  Data-Entry Keyers
  Computer Programmers
  Network Analysts
  Database Administrators
  Software Developers
  Graphic Designers
  Financial Service Providers
  Customer Service Providers

Where do you offshore?
Check all that apply.
[drop-down list of countries]•

•

Questions for workers

Have you ever been displaced
from your job because your position
was offshored?
  Yes     No

In which state is your company
headquartered?
[drop-down list of U.S. states]•

•

In what industry do you currently work?
[drop-down list of industries]•

•

What is your current profession?
[drop-down list of professions]•

•

What is your job level?
 � Professional/Technical Staff Member
 � Entry level/Administrative/Clerical
 � Director/Manager/

Supervisor/Team Leader
  Vice President
  Senior Management

What is your current salary?
[drop-down list of income ranges] •

•

You indicated you were
displaced because your position
was offshored. What happened as
a result of your last displacement?
 � I was placed somewhere else

in the company
 � I was let go
 � Other

Key Survey Questions

contributed articles

october 2010 | vol. 53 | no. 10 | communications of the acm 65

or “personal” services to describe
tasks requiring customer contact or
physical presence and “impersonal”
services to describe tasks requir-
ing neither of these characteristics.
Higher values on this scale indicate
workers in these jobs provide fewer
personally delivered services, or “im-
personal” jobs, and are therefore
more likely to be offshored, all else
being equal.

We also included additional vari-
ables in our regressions to control
for other factors that might affect
an employee’s chances of being dis-
placed due to offshoring. Since the
relative benefit of offshoring a par-
ticular worker depends on the cost of
the worker to the firm, we included a
measure of employee salary (coded
in discrete levels). Employees are less
likely to be displaced if they have more
firm-specific knowledge or experience
with the firm. Though we did not have
access to organizational tenure vari-
ables, we included the individual’s
job level, coded in discrete levels. We
included demographic variables for
employees, as there is evidence that
such factors as race, age, and gender
influence displacement; see Kletzer12
for a review of the job-displacement
literature. We also included the num-
ber of employees at the firm to control
for firm size, as well as a dummy vari-
able indicating the industry in which
the firm competes. Finally, in some re-
gressions, we also included the state
within the U.S. in which the firm op-
erated in 2007, to control for regional
differences.

Results
Here, we present some statistics and
results from the regression analyses
aiming to identify the factors that
most affect offshoring:

Employer statistics. Table 1 reports
the overall incidence of offshoring
by industry in 2007. The proportion
of firms that reported offshoring any
type of work across all industries was
15.2%. However, within technology-
services and telecommunications in-
dustries, over 40% of firms in the sam-
ple reported offshoring some type of
work. The hypothesis that offshoring
is more common in high-tech indus-
tries than in other industries is signif-
icant at the p<.01 level (X2(1)=100.5).

The figure here shows that offshoring
rates vary significantly by job type.
Over 30% of respondents reported off-
shoring computer programmers and
software developers, but only about
half of them, or 15.5%, reported off-
shoring systems analysts. About 24%
of employers offshore customer ser-
vice, and a smaller percentage (less
than 10%) offshore management,
sales, and marketing functions. A
test of the hypothesis that employers
offshore IT workers more than other
types of workers is significant at the
.01 level (X2(1)=86.6). Among IT work-
ers, the hypothesis that computer
programmers and software develop-
ers are offshored in greater numbers

than systems analysts is significant at
the p<.01 level (X2(1)=30.9).

Employers also reported offshor-
ing different types of work for very
different reasons. A test of the hypoth-
esis that occupation and reason for
offshoring are independent is reject-
ed at the p<.01 level (X2(36)=165.2).
Table 2 lists correlations between type
of work and reasons for offshoring it.
Jobs involving close interaction with
the markets they serve (such as man-
agement and sales) are offshored for
quality reasons in firms that are ex-
panding geographically, while firms
appear to offshore computer and tech-
nical work and customer service jobs
primarily for cost savings and for ac-

Table 1. Percent of surveyed firms by industry reporting offshoring work.

Industry N
Offshore to
Third Party

Offshore to
Foreign Affiliate

Total
Offshore

Technology services 126 35.7 29.4 42.1

Telecommunications 43 37.2 16.3 41.9

Insurance 93 32.3 11.8 32.3

Manufacturing 248 24.6 19 31.1

Engineering services 82 22 17.1 28.1

Banking and finance 135 22.2 11.1 24.4

Oil 18 16.7 11.1 22.2

Travel 33 21.2 9.1 21.2

Utilities 29 17.2 6.9 20.7

Communications 34 20.6 8.8 20.6

Advertising/Marketing 41 14.6 9.8 17.1

Research services 35 17.1 0 17.1

Transportation and warehousing 74 13.5 5.4 16.2

Administrative-support services 56 14.3 8.9 16.1

Automotive services 45 8.9 8.9 15.6

Wholesale trade 66 13.6 6.1 15.2

Arts, entertainment, recreation 61 11.5 1.6 13.1

Agricultural/Forestry/Fishing/Hunting 25 12 0 12.0

Printing trade 26 11.5 3.9 11.5

Other 383 9.7 4.4 11.2

Retail trade 269 10 3 11.2

Construction 86 7 4.7 9.3

Other services 110 7.3 6.4 9.1

Waste Management
and Remediation Services 12 8.3 0 8.3

Legal services 52 5.8 0 5.8

Accommodation and Food services 125 4 2.4 5.6

Health Care and Social Assistance 381 5.2 0.8 5.5

Real estate 49 4.1 0 4.1

Religious/nonprofit 139 2.9 2.2 3.6

Education 123 3.3 0.8 3.3

Gas 13 0 0 0.0

Mining 4 0 0 0.0

Total 3,016 13.1 7.0 15.2

66 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

cess to skills. These correlations sug-
gest that offshoring may have more
direct implications for U.S.-based IT
workers than the offshoring of other
types of workers.

Table 3 further supports these
ideas, showing firms’ offshoring des-
tinations, as well as correlations be-
tween destination and type of work
being offshored. A test of the hypoth-
esis that occupation and offshoring
destination are independent is reject-
ed at the p<.01 level (X2(171)=298.2),

indicating that particular types of
work are best suited for offshoring
only to certain countries. IT work and
customer-service work appear to be
much more concentrated than sales,
management, and marketing, which
are spread over a larger number of
countries, consistent with the idea
that jobs involving personally deliv-
ered services are often co-located with
overseas customers. In 2007, India
was the most popular destination for
offshoring any type of work, especially

for IT work, and, of all the countries
in our sample, offshoring to India was
most associated with cost savings.

Employee statistics. The findings
from the employer data are supported
by statistics from the employee sur-
veys. Table 4 includes the percent-
age of workers, by occupation, who
reported having been displaced due
to offshoring. Across all occupations,
slightly over 4% of workers reported
having been displaced due to off-
shoring. Of occupations with at least
100 observations in the sample, en-
gineers, machine operators, and IT
workers reported the highest rates of
offshoring-related job displacement.
Of the five occupations with the high-
est displacement rates, all but ma-
chine operators were technology-re-
lated. Furthermore, unlike computer
jobs, which in 2007 were increasing
as a proportion of employment world-
wide, machine-operator employment
numbers have declined, suffering
from unusually high displacement
rates.10,16 These results support the
common perception that U.S. IT work-
ers have experienced higher rates of
offshoring-related displacement than
other U.S. workers.

Table 5 compares the displacement
frequency of IT workers with that of
all other types of worker. At about 8%,
IT workers were (in 2007) displaced
at twice the rate of other workers. A
test of the hypothesis that displace-
ment rates differ between IT workers
and non-IT workers is significant at
the .01 level (X2=27.5, p<.01). How-
ever, because these numbers reflect
the percentage of workers who have
ever been offshored, an 8% displace-
ment rate implies an annual average
offshoring-related displacement rate
of about 1% for IT workers, assuming
that many U.S. firms began offshoring
in 2000.a Surveys conducted 1995–
2005 suggest average IT staff turnover
rates vary from 10% to 15%.7,8

Among occupations with at least

a	 We computed this average estimate by divid-
ing the total displacement rate by the number
of years since 2000, because many companies
viewed the potential Y2K problem as a trigger.
The annual displacement rate is slightly less
if firms engaged in substantial offshoring be-
fore 2000. Due to data limitations, we can say
little about how the actual displacement rate
changed from year to year 2000–2007.

Percent of firms reporting offshoring by worker type.

35

30

25

20

15

10

5

0
Computer

Programmers
Software
Engineers

Customer
Service

Systems
Analysts

Sales
Managers

General
Managers

Marketing

Computer
Programmer

Software
Engineers

Customer
Service

Systems
Analysts

Sales
Managers

General
Managers Marketing

Types of
Worker Being
Offshored 31.4% 31.4% 24.9% 15.5% 7.6% 6.1% 5.5%

N=458

Table 2. Correlations between occupation and reasons for offshoring.

Reason for Offshoring

Occupation Cost Savings Skills Service Quality Expansion Other Total

Computer
programmer .24** .14** –.07 .03 –.09 144

Software developer .22** .14** –.01 .03 –.13** 144

Systems analyst .15** .13** .14** .03 –.11* 71

Customer service .14** .05 .11* .00 –.16** 114

Graphic designer .04 .08 .13** .08 –.11* 35

General manager .01 .15** .12** .26** –.09 28

Sales manager –.06 .10* .15** .29** –.08 35

Marketing personnel –.08 .17** .22** .27** –.11* 25

HR personnel .07 .03 .10* .15** –.12** 31

Total (Percentage) 63.7 26.9 13.9 19.1 18.7

Reported correlations are partial correlations between whether or not a firm offshores a position and
the reasons it gives for firms report for offshoring, controlling for firm size and industry, * significant at
the 5% level or greater, ** significant at the 1% level or greater. For all correlations, N=458.

contributed articles

october 2010 | vol. 53 | no. 10 | communications of the acm 67

100 observations, we observed the
lowest displacement rates among
sales representatives and nurses.
Moreover, a number of occupations
with fewer observations (such as real
estate agents, veterinarians, profes-
sors, and religious professionals) re-
ported no offshoring displacement.
In addition to providing a basis for
comparison with the IT worker popu-
lation, data from these other occupa-
tions provides preliminary support
for the hypothesis that employees
providing more personally delivered
services are generally less vulnerable
to offshoring than occupations that
need not be in a fixed location (such as
computer programmers and machine
operators).

Occupational Attributes
We provide a more rigorous test of the
hypothesis that “impersonal” jobs are
more vulnerable to offshoring. Table
6 reports the results of some regres-
sions using the survey data. The unit
of observation in the regression is
the employer-occupation offshoring
combination, taking a value of 1 if the
employer reported offshoring a par-
ticular occupation and 0 otherwise.
Column (1) lists the results from a re-
gression that includes all firms in our
sample. Employers were less likely to
offshore jobs in which employees pro-
vide personal services (t=9.0). The size
of the employer (t=2.0) and the local
cost of doing business (t=3.5) for the
employer both significantly increase
the probability that it will offshore a
particular job. Column (2) lists results
from a regression that includes only
the firms that reported offshoring
work in 2007. The extent to which an
employee provided personal services
is still significantly and negatively as-
sociated with whether a job was off-
shored (t=14.0).

Column (3) adds a covariate in-
dicating whether the employer was
exapanding geographically, along
with an interaction term between
geographic expansion and personal
interaction. Our estimates indicate
that firms expanding geographically
are more likely to hire offshore work-
ers (t=6.71). Furthermore, geographic
expansion moderates the type of work
being offshored, consistent with the
hypothesis that provision of personal

services must be co-located with the
markets being served. If a firm’s cus-
tomers are all located in the U.S., it
will offshore jobs that do not require

personal interaction with the U.S.
market. However, if a firm does busi-
ness in overseas markets, employers
will also hire offshore workers who

Table 3. Correlations between offshoring destinations and type of work.

Type of Position Offshored Reason

Country Total IT
Customer

Service Marketing Management Sales Wages

India 236 .43** .20** –.14** –.08 –.16** .40**

China 128 –.08 –.03 .03 .05 .05 .11**

U.S. Territories 74 –.06 .02 .18** .16** .15** –.30**

Mexico 63 –.08 .04 .10 .05 .05 .09*

Canada 47 .01 .11 .22** .26** .04 –.01

Other 43 –.06 –.04 –.07 .03 –.05 –.17**

Germany 41 .04 .05 .20** .26** .15** –.09*

Philippines 37 .08 .20** .01 .03 –.02 .09*

United Kingdom 37 –.06 .09 .22** .20** .24** –.15**

France 33 –.01 .03 .23** .17** .10 –.13**

Brazil 31 –.00 .03 .27** .17** .18 –.09*

Argentina 23 .00 .06 .13** .07 .09 –.01

Italy 23 .02 .08 .29** .22** .19** –.07

Japan 23 .01 .07 .15** .18** .20** –.07

Australia 22 .02 .07 .26** .29** .20** –.06

Other Europe 21 –.03 .02 .00 .14** .07 –.07

Poland 20 .02 .11 .01 .05 .03 .05

Russia 20 .09 .07 .11** .05 –.01 –.04

Taiwan 20 .05 .00 .11** .10* .08 .06

** p<.01 *p<.05, N=458.
For “Type of Position,” we report correlations between whether a firm reports offshoring to a country
and whether it reports offshoring a particular worker type. For “Reason,” we report correlations between
whether a firm reports offshoring to a country and whether wages are a principal reason it did so.

Table 4. Worker displacement levels by occupation.

Occupation N Displaced

Engineer 180 10.00%

Machine Operator/Assembly 359 8.36%

IT Manager/Network Administrator 123 8.13%

Other Computer or Internet Specialty 248 7.26%

Engineering Technician 222 6.76%

Other Health Care Professional 265 5.28%

Maintenance/Mechanic/Repair Worker 141 4.96%

Sales Representative, Retail 270 4.07%

Food Preparation/Service Worker 150 4.00%

Other Profession 1,431 3.91%

Administrative Assistant/Secretary 725 3.45%

Other Financial Professional 281 2.85%

Transportation/Equipment Operator 213 2.82%

Sales Representative, Other 334 2.40%

Nurse, Nurse Practitioner, or Physician’s Assistant 305 0.98%

Total 5,247 5.0%

aTable includes only occupations with at least 100 samples in the survey.

68 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

can provide personal services directly
to overseas customers.

Table 7 reports the results of the
primary regressions from the survey
data relating the personal services
provided in one’s occupation to the
likelihood of offshoring-related dis-
placement. The results in column
(1) support the hypothesis that em-
ployment in a job providing personal
services significantly decreases the
likelihood of being displaced due to
offshoring (t=3.5). Somewhat sur-
prisingly, the coefficient estimate on
salary level is negative and signifi-
cant, suggesting workers with higher
salaries are less likely to be offshored
(t=2.09). However, in the absence of
human-capital data, the salary term in
the regressions also reflects human-
capital variables (such as education
and experience). We therefore inter-
pret the negative coefficient as indi-
cating that, conditional on job level,
workers with more human capital are
less likely to be offshored, an effect
that dominates any direct gains from
offshoring more expensive workers.
The results also suggest that older
workers (t=4.9), males (t=2.21), and
workers in simpler jobs (t=2.15) re-
quiring less firm-specific capital are
likely to be offshored.

After including industry dummies
in column (2), the coefficient esti-
mate on gender is no longer signifi-
cant, indicating our earlier estimate
on gender may have reflected high off-
shoring intensity in such industries
as IT with a higher fraction of men
and low offshoring intensity in such
industries as health care with a high-
er fraction of women. However, the
estimates on the other coefficients
remain significant. Dummy variables
for state and race in column (3) do not

significantly alter the coefficient esti-
mates on any other variable.

Column (4) shows the marginal ef-
fects of the estimates from our baseline
regression in column (1) where all vari-
ables are standardized so effect sizes
are comparable. A one standard devia-
tion increase in our personal-services
index measure decreases the probabil-
ity of offshoring-related displacement
by about 1%, a 25% increase over the
U.S. national base rate of 4% in 2007.
The effect of a one standard deviation
decrease in our personal-services in-
dex appears to be similar in magnitude
to a one standard deviation increase in
age, also increasing the likelihood of
offshoring-related displacement by
slightly over 1%. Older workers who do
not provide personal services are thus
particularly vulnerable to offshoring-
related displacement.

The sample in column (5) is re-
stricted to IT workers. The measure
on personal interaction is insignifi-
cant because there is little variation in
this index within the IT workers in our
surveyed population. Of the remain-

ing variables, only age is significant,
suggesting that among IT workers,
older workers are at the greatest risk
of offshoring-related displacement
(t=3.10).

Table 8 explores how the level of
personal interaction in a prior job af-
fects outcomes for workers after being
displaced due to offshoring. Employ-
ees in occupations providing fewer
personal services are more likely to be
separated from their employers, while
those providing more personal ser-
vices are more likely to be retained for
other positions (t=2.0). This suggests
that firms might retain and move
workers with interpersonal or man-
agement skills not as easy to source
globally. Column (2) shows how much
change in the personal-delivery mea-
sure affects retention. A one standard
deviation increase in the personal-
skills index increases the chance of
being retained by a firm by about 6%.

Discussion
Although about 15% of firms in the
U.S. offshored in 2007, firms in high-

Table 5. Offshoring-related displacement
rates for IT and non-IT workers.

Non-IT Workers Displaced

Not Displaced 5,704 712

Displaced 227 61

3.8% 7.9%

A chi-squared test of the hypothesis of equality
between displacement averages is rejected at
the p<.01 level X2(1)=27.5, p<.01.

Table 6. Probit analysis, employer offshoring.

All Employers
Only Employers
That Offshore

Only Employers
That Offshore

Probit
Estimates

Probit
Estimates

Probit
Estimates

Employer offshores job type (1) (2) (3)

Impersonala .009 .014 .019

(.001)** (.001)** (.002)**

Number of Employees .002 .006 .006

(.001)** (.002)** (.002)**

Local Cost of Doing Business .007 –.001 –.001

(.002)** (.002) (.002)

Geographic Expansion 1.55

(.231)**

Geographic Expansion * Impersonal –.015

(.003)**

Controls Industry Industry Industry

Pseudo-R2 .11 .07 .09

N 26,568 4,041 4,041

Huber-White standard errors are clustered on firm and shown in parentheses. ** p<.01

a � Composite skill index taken from Blinder.4 Higher values indicate that less face-to-face contact or
physical presence are needed for job.

Column (1) is a probit regression of employer and job characteristics against the likelihood the employer
offshores a particular type of job.
Column (2) is a probit regression of employer and job characteristics against the likelihood the employer
offshores a particular type of job, only for employers are offshoring.
Column (3) is similar to Column (2) but includes variables related to employer expansion plans.

contributed articles

october 2010 | vol. 53 | no. 10 | communications of the acm 69

tech industries offshored at rates
higher than 40%, and IT work was
the most commonly offshored type
of work. IT workers in the U.S. have
experienced offshoring-related dis-
placement at a rate of 8%, more than
double the percentage in other occu-
pations. Firms offshore for a number
of reasons, but IT workers appear to
be offshored primarily for cost or ac-
cess to skills. Therefore, compared
to sales workers offshored to provide
customer contact to overseas mar-
kets, the offshoring of IT workers
should lead to greater displacement
of U.S.-based IT workers. Our results
also provide empirical support for the
hypothesis proposed in earlier work4

that employees in jobs requiring face-
to-face contact or physical presence in
a fixed location are less likely to be off-
shored. This suggests that IT workers
are especially vulnerable to offshoring
because IT jobs generally require less
customer contact or interaction with
fixed physical assets.

Our estimates imply an average dis-
placement rate of about 1% per year

for U.S.-based IT workers. However, as
offshoring grows more popular, our
findings, which suggest that workers
who do not provide personal services
are being displaced at a higher rate,
are consistent with emerging work
providing evidence for a potentially
significant long-term shift in the rela-
tive demand for skills within the IT
labor market.23 These results suggest
that technical occupations reliant on
skills that can be delivered with rela-
tively little face-to-face contact are
more easily offshored. Other schol-
ars have noted that interpersonal or
managerial skills are increasingly
valuable for IT workers,13,17 so our
findings suggest that offshoring will
continue to drive a secular increase in
the direction of this trend. IT workers
concerned about offshoring-related
displacement may find more robust
career paths in IT professions that re-
quire personal delivery.

These results also have policy im-
plications. First, the relatively low
level of offshoring suggests any pol-
icy prescription for addressing the

adverse consequences of offshoring
should be concerned with the po-
tential growth of offshoring rather
than the existing level of offshoring-
related displacement. Annual rates
of offshoring-related displacement
in the survey were on the order of
10% of aggregate IT-worker turnover.
While unclear at what level offshoring
shifts from a trend affecting mostly
individual workers to a concern for all
workers in an occupation, the trends
should be measured and monitored.

Proposed policy interventions at-
tempting to reduce the adverse ef-
fects of worker displacement (such
as worker retraining and government
compensation to offset wage losses
associated with moving to new in-
dustries) could focus on specific oc-
cupations. Furthermore, training
programs could focus on the move-
ment of displaced workers toward
work that combines existing skills
with those that involve elements of
personal delivery. Private or public
educational institutions can poten-
tially adjust their curricula to address

Table 7. Probit analysis, worker displacement.

All
Workers

All
Workers

All
Workers

All
Workers

IT Workers
Only

Probit
Estimates

Probit
Estimates

Probit
Estimates

Marginal
Effects

Probit
Estimates

Probit Displacement
from Offshoring (1) (2) (3) (4) (5)

Impersonala .007 .004 .004 .011 .000

 (.002)** (.002)* (.002)** (.002)** (.004)

Job Level –.103 –.095 –.092 –.006 –.231

 (.048)* (.049)* (.050)* (.003)** (.172)

Salary –.048 –.059 –.056 –.130 –.021

 (.023)* (.024)** (.025)* (.059)** (.058)

Male? .137 .066 .070 .006 –.138

 (.062)* (.065) (.067) (.003)** (.183)

Age .197 .194 .195 .014 .319

 (.040)** (.041)** (.043)** (.003)** (.103)**

Number of Employees –.001 –.001 –.000 –.002 .003

 (.001) (.001) (.001) (.003) (.003)

Controls Industry Industry
State Race

Pseudo-R2 .03 .05 .06 .06 .04

N 5,790 5,790 5,790 5,471 672

Standard errors are in parentheses, **p<.01 *p<.05

a � Composite skill index from Blinder.4 Higher values indicate less face-to-face contact or physical
presence needed for job.

Table 8. Probit analysis of outcomes for
all displaced workers.

Separated
from Firm

Probit
Estimates

Marginal
Effects

(1) (2)

Impersonala .012 .060

 (.006)** (.029)**

Job Level -.180 -.038

(.180) (.038)

Salary .097 .863

(.087) (.772)

Male -.357 -.050

(.217) (.030)

Age -.193 -.044

(.145) (.032)

Controls Industry Industry

Pseudo-R2 .09 .09

N 222 222

Standard errors in parentheses. ** p<.01

a � Composite skill index taken from Blinder.4
Higher values indicate less face-to-face
contact or physical presence needed for job.

N=222.57 employees retained by their
employers after job displacement.

70 communications of the acm | october 2010 | vol. 53 | no. 10

contributed articles

this emerging need. Our findings are
consistent with broader calls from
education scholars who have advo-
cated (in response to recent waves of
technological change) emphasizing
“softer” skills (such as complex com-
munication)14 in the U.S. educational
system; for example, educators could
interweave existing material in the
IT curriculum with projects that pro-
mote teamwork, negotiation, and pre-
sentation skills.

In the future, this area of research
would benefit from improved offshor-
ing data, including more fine-grain
measures of the task content of in-
dividual jobs. Data at the task level
would allow researchers to test more
nuanced models of which attributes
make a job vulnerable to offshoring
(such as those considering the modu-
larity, codifiability, or information in-
tensity of a worker’s task set). These
tests would also provide insight into
how jobs and educational programs
can be designed so U.S.-based work-
ers maximize the value they provide
to the global economy. Furthermore,
although our survey data was unique
because it allowed us to capture fine-
grain outcomes, a limitation of the
data was its reliance on self-reported
responses from employees and hir-
ing managers that might be subject to
bias. Evidence from other data sourc-
es could therefore be useful in validat-
ing these results.

Finally, although our study focused
on job displacement, offshoring may
also affect workers through reduced
wages. A more comprehensive under-
standing of the full effects of offshor-
ing on IT workers and the demand for
particular skills could therefore be
provided through analyses of job dis-
placement and wage effects.

Acknowledgments
We thank Peter Cappelli, Eric Clem-
ons, Lori Rosenkopf, and three anony-
mous reviewers for their guidance and
comments. 	

References
1.	A miti, M. and Wei, S. Fear of service outsourcing: Is it

justified? Economic Policy 20, (Apr. 2005), 308–348.
2.	A pte, U. and Mason, R. Global disaggregation of

information-intensive services. Management Science
41, 7 (July 1995), 1250–1262.

3.	A spray, W., Mayadas, F., and Vardi, M. Globalization
and Offshoring of Software: A Report of the ACM Job
Migration Task Force. ACM Press, New York, 2006.

4.	B linder, A. How Many U.S. Jobs Might Be

Offshorable? CEPS Working Paper No. 142, (Mar.
2007).

5.	B linder, A. Offshoring: The next industrial revolution.
Foreign Affairs 85, 2 (Mar./Apr. 2006), 113–128.

6.	C armel, E. and Tjia, P. Offshoring Information
Technology: Sourcing and Outsourcing to a Global
Workforce. Cambridge University Press, Cambridge,
England, 2005.

7.	 Ferrat, T., Agarwal, R., Brown, C., and Moore, J.E. IT
human resource management configurations and
IT turnover: Theoretical synthesis and empirical
analysis. Information Systems Research 16, 3 (Sept.
2005), 237–255.

8.	G eorge, T. Report: IT turnover high despite
concerns over job stability. InformationWeek
(May 6, 2002); http://www.informationweek.com/
news/global-cio/compensation/showArticle.
jhtml?articleID=6502404

9.	G overnment Accountability Office. Current
Government Data Provide Limited Insight into
Offshoring of Services. GAO-04-932. Washington
D.C., 2004.

10.	H erz, D. Worker displacement still common in the
late 1980s. Monthly Labor Review 114 (May 1991),
3–9.

11.	 Jensen, J. and Kletzer, L. Measuring Tradable
Services and the Task Content of Offshorable
Services Jobs. Working Paper, 2007.

12.	 Kletzer, L. Job displacement. Journal of Economic
Perspectives 12, 1 (Winter 1998), 115–136.

13.	 Lee, D.M.S., Trauth, E., and Farwell, D. Critical skills
and knowledge requirements of IS professionals: A
joint academic/industry investigation. MIS Quarterly
19, 3 (Sept. 1995), 313–340.

14.	 Levy, F. and Murnane, R. Teaching the New Basic
Skills: Principles for Educating Children to Thrive in a
Changing Economy. Free Press, New York, 1996.

15.	 Mann, C. What global sourcing means for U.S. IT
workers and for the U.S. economy. Commun. ACM 47,
7 (July 2004), 33–35.

16.	 Mark, J. Technological change and employment:
Some results from BLS research. Monthly Labor
Review 110 (1987), 26–29.

17.	 Mithas, S. and Krishnan, M.S. Human capital
and institutional effects in the compensation of
information technology professionals in the United
States. Management Science 54, 3 (Mar. 2008),
415–428.

18.	 Mithas, S. and Whitaker, J. Is the world flat or
spiky? Information intensity, skills, and global
disaggregation. Information Systems Research 18, 3
(Sept. 2007), 237–259.

19.	 Panko, R. IT employment prospects: Beyond the
dotcom bubble. European Journal of Information
Systems 17 (2008), 182–197.

20.	Phillips, D. and Clancy, K. Some effects of ‘social
desirability’ in survey studies. The American Journal
of Sociology 77, 5 (Mar. 1972), 921–940.

21.	R amasubbu, N., Mithas, S., and Krishnan, M.S. High
tech, high touch: The effect of employee skills and
customer heterogeneity on customer satisfaction
with enterprise system support services. Decision
Support Systems 44, 2 (Jan. 2008), 509–523.

22.	S laughter, S. and Ang, S. Employment outsourcing
in information systems. Commun. ACM 39, 7 (July
1996), 47–54.

23.	T ambe, P. and Hitt, L. Now I.T.’s ‘Personal’: Offshoring
and the Shifting Skill Composition of the U.S.
Information Technology Workforce. Working Paper,
2010.

24.	Zwieg, P., Kaiser, K., Beath, C. et al. The information
technology workforce: Trends and implications
2005–2008. MIS Quarterly Executive (2006); http://
misqe.org/ojs2/index.php/misqe/article/view/104

Prasanna B. Tambe (ptambe@stern.nyu.edu) is an
assistant professor of information, operations, and
management sciences in the Stern School of Business,
New York University, New York.

Lorin M. Hitt (lhitt@wharton.upenn.edu) is the Class
of 1942 Professor of Operations and Information
Management in The Wharton School, University of
Pennsylvania, Philadelphia, PA.

© 2010 ACM 0001-0782/10/1000 $10.00

Over 30% of
respondents
reported offshoring
computer
programmers
and software
developers, but
only about half of
them, or 15.5%,
reported offshoring
systems analysts.

http://www.informationweek.com/news/global-cio/compensation/showArticle.jhtml?articleID =6502404/
http://misqe.org/ojs2/index.php/misqe/article/view/104
mailto:ptambe@stern.nyu.edu
mailto:lhitt@wharton.upenn.edu
http://www.informationweek.com/news/global-cio/compensation/showArticle.jhtml?articleID =6502404/
http://www.informationweek.com/news/global-cio/compensation/showArticle.jhtml?articleID =6502404/
http://misqe.org/ojs2/index.php/misqe/article/view/104

49771 (2010) ©Seabury & Smith, Inc. 2010

Administered by:
d/b/a in CA Seabury & Smith Insurance Program Management

CA Ins. Lic. #0633005
AR Ins. Lic. #245544

Group Term Life Insurance

10- or 20-Year Group Term
Life Insurance

Group Disability Income Insurance

Group Accidental Death &
Dismemberment Insurance

Group Catastrophic Major
Medical Insurance

Group Dental Plan

Long-Term Care Plan

Major Medical Insurance

Short-Term Medical Plan

Who has time to think
about insurance?

Today, it’s likely you’re busier than ever. So, the last thing you probably have on your mind is

whether or not you are properly insured.

But in about the same time it takes to enjoy a cup of coffee, you can learn more about your

ACM-sponsored group insurance program — a special member benefit that can help provide

you financial security at economical group rates.

Take just a few minutes today to make sure you’re properly insured.

Call Marsh U.S. Consumer, a service of Seabury & Smith, Inc., at 1-800-503-9230 or visit
www.personal-plans.com/promo/acm/49771.

49771 ACM AD (2010)
Full Size: 8.125" x 10.875" Bleed: 8.375" x 11.125" Live: 7" x 9.5"
Folds to: NA Perf: N/A
Colors: 4C
Stock: NA
Postage: N/A
Misc: N/AM

A
R
S
H

49771 ACM All Plans ad.indd 1 3/8/10 9:25 AM

http://www.personal-plans.com/promo/acm/49771

72 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

Peer-to-peer (P2P) computing has attracted
significant interest in recent years, originally sparked
by the release of three influential systems in 1999:
the Napster music-sharing system, the Freenet
anonymous data store, and the SETI@home volunteer-
based scientific computing projects. Napster, for
instance, allowed its users to download music
directly from each other’s computers via the Internet.
Because the bandwidth-intensive music downloads
occurred directly between users’ computers, Napster
avoided significant operating costs and was able to
offer its service to millions of users for free. Though
unresolved legal issues ultimately sealed Napster’s
fate, the idea of cooperative resource sharing among
peers found its way into many other applications.

More than a decade later, P2P technology has gone
far beyond music sharing, anonymous data storage,
or scientific computing; it now enjoys significant
research attention and increasingly widespread use
in open software communities and industry alike.
Scientists, companies, and open-software

organizations use BitTorrent to distrib-
ute bulk data such as software updates,
data sets, and media files to many
nodes;5 commercial P2P software al-
lows enterprises to distribute news
and events to their employees and cus-
tomers;29 millions of people use Skype
to make video and phone calls;1 and
hundreds of TV channels are available
using live streaming applications such
as PPLive,17 CoolStreaming,38 and the
BBC’s iPlayer.4

The term P2P has been defined in
different ways, so we should clarify
what exactly we mean by a P2P system.
For the purposes of this article, a P2P
system is a distributed system with the
following properties:

High degree of decentralization.
The peers implement both client and
server functionality and most of the
system’s state and tasks are dynami-
cally allocated among the peers. There
are few if any dedicated nodes with
centralized state. As a result, the bulk
of the computation, bandwidth, and
storage needed to operate the system
are contributed by participating nodes.

Self-organization. Once a node is
introduced into the system (typically
by providing it with the IP address of a
participating node and any necessary

Peer-to-Peer
Systems

doi:10.1145/1831407.1831427

Within a decade, P2P has proven to be
a technology that enables innovative new
services and is used by millions of people
every day.

by Rodrigo Rodrigues and Peter Druschel

 key insights
 � �P2P leverages the computing resources

of cooperating users to achieve
scalability and organic growth, thus
lowering the deployment barrier for
innovative new services.

 � �Originally invented for music/data
sharing and volunteer computing,
P2P systems now enjoy widespread
commercial and non-commercial use
in content distribution, IPTV, and IP
telephony.

 � �The strength of P2P—its independence
of dedicated infrastructure and
centralized control—is also its
weakness, as it presents new technical,
commercial, and legal challenges.

 � �P2P technology may turn out to be most
valuable as a low-cost deployment
vector for experimental, innovative
services; those services that prove
to be commercially viable can be
subsequently combined with centralized,
infrastructure-based components. Ill

u
s

t
r

a
t

i
o

n
 b

y
 m

a
r

i
u

s
 w

a
t

z

c
r

e
d

i
t

 t
k

october 2010 | vol. 53 | no. 10 | communications of the acm 73

74 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

key material), little or no manual con-
figuration is needed to maintain the
system.

Multiple administrative domains.
The participating nodes are not owned
and controlled by a single organiza-
tion. In general, each node is owned
and operated by an independent indi-
vidual who voluntarily joins the system.

P2P systems have several distinctive
characteristics that make them inter-
esting:

Low barrier to deployment. Be-
cause P2P systems require little or no
dedicated infrastructure, the upfront
investment needed to deploy a P2P ser-
vice tends to be low when compared to
client-server systems.

Organic growth. Because the re-
sources are contributed by partici-
pating nodes, a P2P system can grow
almost arbitrarily without requiring
a “fork-lift upgrade” of existing infra-
structure, for example, the replace-
ment of a server with more powerful
hardware.

Resilience to faults and attacks. P2P
systems tend to be resilient to faults
because there are few if any nodes that
are critical to the system’s operation.
To attack or shut down a P2P system,
an attacker must target a large propor-
tion of the nodes simultaneously.

Abundance and diversity of re-
sources. Popular P2P systems have
an abundance of resources that few
organizations would be able to afford
individually. The resources tend to be
diverse in terms of their hardware and
software architecture, network attach-
ment, power supply, geographic loca-
tion and jurisdiction. This diversity re-
duces their vulnerability to correlated
failure, attack, and even censorship.

As with other technologies (for ex-
ample, cryptography), the properties of
P2P systems lend themselves to desir-
able and undesirable use. For instance,
P2P systems’ resilience may help citi-
zens avoid censorship by a totalitar-
ian regime; at the same time, it can be
abused to try and hide criminal activity
from law enforcement agencies. The
scalability of a P2P system can be used
to disseminate a critical software up-
date efficiently at a planetary scale, but
can also be used to facilitate the illegal
distribution of copyrighted content.

Despite having acquired a negative
reputation for some of its initial pur-

poses, P2P technologies are increas-
ingly being used for legal applications
with enormous business potential, and
there is consensus about their ability to
lower the barrier for the introduction of
innovative technologies. Nevertheless,
P2P technology faces many challenges.
The decentralized nature of P2P sys-
tems raises concerns about manage-
ability, security, and law enforcement.
Moreover, P2P applications are affect-
ing the traffic experienced by Internet
service providers (ISPs) and threaten to
disrupt the current Internet econom-
ics. In this article, we briefly sketch im-
portant highlights of the technology,
its applications, and the challenges it
faces.

Applications
Here, we discuss some of the most suc-
cessful P2P systems and also mention
promising P2P systems that have not
yet received as much attention.

Sharing and distributing files. Pres-
ently, the most popular P2P applica-
tions are file sharing (for example,
eDonkey) and bulk data distribution
(for example, BitTorrent).

Both types of systems can be viewed
as successors of Napster. In Napster,
users shared a subset of their disk
files with other participants, who were
able to search for keywords in the file
names. Users would then download
any of the files in the query results di-
rectly from the peer that shared it.

Much of the content shared by Nap-
ster users was music, which led to copy-
right infringement lawsuits. Napster
was found guilty and had to shut down
its services. Simultaneously, a series of
similar P2P systems appeared, most
notably Gnutella and FastTrack (better
known by one of its client applications,
Kazaa). Gnutella, unlike Napster, has
no centralized components and is not
operated by any single entity (perhaps
in part to make it harder to prosecute).

The desire to reduce the download
time for very large files lead to the de-
sign of BitTorrent,10 which enables a
large set of users to download bulk data
quickly and efficiently. The system uses
spare upload bandwidth of concurrent
downloaders and peers who already
have the complete file (either because
they are data sources or have finished
the download) to assist other down-
loaders in the system. Unlike file-shar-

ing applications, BitTorrent and other
P2P content distribution networks do
not include a search component, and
users downloading different content
are unaware of each other, since they
form separate networks. The protocol
is widely used for disseminating data,
software, or media content.

Streaming media. An increasingly
popular P2P application is streaming
media distribution and IPTV (deliver-
ing digital television service over the
Internet). As in file sharing, the idea is
to leverage the bandwidth of partici-
pating clients to avoid the bandwidth
costs of server-based solutions.

Streaming media distribution has
stricter timing requirements than
downloading bulk data because data
must be delivered before the playout
deadline to be useful.

Example systems include academic
efforts with widespread adoption such
as PPLive17 and CoolStreaming,38 and
commercial products such as BBC’s
iPlayer4 and Skinkers LiveStation.29

Telephony. Another major use of
P2P technology on the Internet is for
making audio and video calls, popular-
ized by the Skype application. Skype
exploits the resources of participating
nodes to provide seamless audiovisual
connectivity to its users, regardless
of their current location or type of In-
ternet connection. Peers assist those
without publicly routable IP addresses
to establish connections, thus working
around connectivity problems due to
firewalls and network address transla-
tion, without requiring a centralized
infrastructure that handles and for-
wards calls. Skype reported 520 million
registered users at the end of 2009.

Volunteer computing. A fourth im-
portant P2P application is volunteer
computing. In these systems, users do-
nate their spare CPU cycles to scientific
computations, usually in fields such as
astrophysics, biology, or climatology.
The first system of this type was SETI@
home. Volunteers install a screen saver
that runs the P2P application when
the user is not active. This application
downloads blocks containing obser-
vational data collected at the Arecibo
radio telescope from the SETI@home
server. Then the application analyzes
this data, searching for possible radio
transmissions, and sends the results
back to the server.

review articles

october 2010 | vol. 53 | no. 10 | communications of the acm 75

The success of SETI@home and
similar projects led to the develop-
ment of the BOINC platform,3 which
has been used to develop many cycle-
sharing P2P systems in use today. At
the time of this writing, BOINC has
more than half a million active peers
computing on average 5.42 petaFLOPS
(floating-point operations per sec-
ond). For comparison, a modern PC
performs on the order of a few tens of
GFLOPS (about five orders of magni-
tude fewer), and the world’s fastest su-
percomputer as of August 2010 has a
performance of about 1.76 petaFLOPS.

Other applications. Other types of
P2P applications have seen significant
use, at least temporarily, but have not
reached the same levels of adoption as
the systems we describe here. Among
them are applications that leverage
peer-contributed disk space to pro-
vide distributed storage. Freenet9 aims
to combine distributed storage with
content distribution, censorship resis-
tance, and anonymity. It is still active,
but the properties of the system make
it difficult to estimate its actual use.
MojoNation36 was a subsequent project
for building a reliable P2P storage sys-
tem, but it was shut down after proving
unable to ensure the availability of data
due to unstable membership and other
problems.

P2P Web content distribution net-
works (CDNs) such as CoralCDN16 and
CoDeeN35 were deployed as research
prototypes but gained widespread use.
In these systems, a set of cooperating
users form a network of Web caches
and name servers that replicates Web
content as users access it, thereby re-
ducing the load on servers hosting pop-
ular content. During its peak usage,
CoralCDN received up to 25 million
hits per day from one million unique
IP addresses.

Many more P2P systems have been
designed and prototyped, but either
were not deployed publicly or had
small deployments. Examples include
systems for distributed data monitor-
ing, management and mining,26,37 mas-
sively distributed query processing,19
cooperative backup,11 bibliographic
databases,33 serverless email,24 and ar-
chival storage.23

Technology developed for P2P ap-
plications has also been incorporated
into other types of systems. For in-

stance, Dynamo,13 a storage substrate
that Amazon uses internally for many
of its services and applications, uses
distributed hash tables (DHTs), which
we will explain later. Akamai’s NetSes-
siona client uses P2P downloads to
increase performance and reduce the
cost of delivering streaming content.
Even though these systems are con-
trolled by a single organization and
thus do not strictly satisfy our defini-
tion of a P2P system, they are based on
P2P technology.

While P2P systems are a recent in-
vention, technical predecessors of P2P
systems have existed for a long time.
Early examples include the NNTP and
SMTP news and mail distribution sys-
tems, and the Internet routing system.
Like P2P systems, these are mostly
decentralized systems that rely on re-
source contributions from their par-
ticipants. However, the peers in these
systems are organizations and the pro-
tocols are not self-organizing.

While the earliest and most visible
P2P systems were mainly file-sharing
applications, current uses of P2P tech-
nology are much more diverse and
include the distribution of data, soft-
ware, media content, as well as Inter-
net telephony and scientific comput-
ing. Moreover, an increasing number
of commercial services and products
rely on P2P technology.

How Do P2P Systems Work?
Here, we sketch some of the most im-
portant techniques that make P2P sys-
tems work. We discuss fundamental
architectural choices like the degree of
centralization and the structure of the
overlay network. As you will see, one of
the key challenges is to build an over-
lay with a routing capability that works
well in the presence of a high mem-
bership turnover (usually referred to
as churn), which is typical of deployed
P2P system.28 We then present solu-
tions to specific problems addressed in
the context of P2P systems: application
state maintenance, application-level
node coordination, and content distri-
bution.

Note that our intention in this pre-
sentation is to provide representative

a	 See Akamai NetSession Interface Overview at
http://www.akamai.com/html/misc/akamai_
client/netsession_interface.html/.

While the earliest
and most visible
P2P systems were
mainly file-sharing
applications,
current uses of
P2P technology are
much more diverse
and include the
distribution of data,
software, media
content, as well as
Internet telephony
and scientific
computing.

http://www.akamai.com/html/misc/akamai_client/netsession_interface.html/
http://www.akamai.com/html/misc/akamai_client/netsession_interface.html/

76 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

examples of the most interesting tech-
niques rather than try to be exhaustive
or precise about a particular system or
protocol.

Degree of centralization. We can
broadly categorize the architecture of
P2P systems according to the presence
or absence of centralized components
in the system design.

Partly centralized P2P systems have
a dedicated controller node that main-
tains the set of participating nodes and
controls the system. For instance, Nap-
ster had a Web site that maintained the
membership and a content index; early
versions of BitTorrent have a “tracker,”
which is a node that keeps track of the
set of nodes uploading and download-
ing the same content, and periodically
provides nodes with a set of peers they
can connect to;10 the BOINC platform

for volunteer computing has a site that
maintains the membership and as-
signs compute tasks;3 and Skype has
a central site that provides log-in, ac-
count management, and payment.

Resource-intensive operations like
transmitting content or computing ap-
plication functions do not involve the
controller. Like general P2P systems,
partly centralized P2P systems can
provide organic growth and abundant
resources. However, they do not neces-
sarily offer the same scalability and re-
silience because the controller forms a
potential bottleneck and a single point
of failure and attack. Partly centralized
P2P systems are relatively simple and
can be managed by a single organiza-
tion via the controller.

Decentralized P2P system. In a de-
centralized P2P system, there are no

dedicated nodes that are critical for the
operation of the system. Decentralized
P2P systems have no inherent bottle-
necks and can potentially scale very
well. Moreover, the lack of dedicated
nodes makes them potentially resilient
to failure, attack, and legal challenge.

In some decentralized P2P systems,
nodes with plenty of resources, high
availability and a publicly routable IP
address act as supernodes. These su-
pernodes have additional responsi-
bilities, such as acting as a rendez-vous
point for nodes behind firewalls, stor-
ing state or keeping an index of avail-
able content. Supernodes can increase
the efficiency of a P2P system, but may
also increase its vulnerability to node
failure.

Overlay maintenance. P2P systems
maintain an overlay network, which
can be thought of as a directed graph G
= (N,E), where N is the set of participat-
ing computers and E is a set of overlay
links. A pair of nodes connected by a
link in E is aware of each other’s IP ad-
dress and communicates directly via
the Internet. Here, we discuss how dif-
ferent types of P2P systems maintain
their overlay.

In partly centralized P2P systems,
new nodes join the overlay by connect-
ing to the controller located at a well-
known domain name or IP address
(which can be, for instance, hardcoded
in the application). Thus, the overlay
initially has a star-shaped topology
with the controller at the center. Ad-
ditional overlay links may be formed
dynamically among participants that
have been introduced by the controller.

In decentralized overlays, newly
joining nodes are expected to obtain,
through an outside channel, the net-
work address (for example, IP address
and port number) of some node that
already participates in the system. The
address of such a bootstrap node can
be obtained, for instance, from a Web
site. To join, the new node contacts the
bootstrap node.

We distinguish between systems
that maintain an unstructured or a
structured overlay network.

Unstructured overlays. In an unstruc-
tured P2P system, there are no con-
straints on the links between different
nodes, and therefore the overlay graph
does not have any particular structure.
In a typical unstructured P2P system,

Figure 1. An example KBR implementation.

O | 2160 –1

Node 65a1fc invokes
KBR with the key
d46a1c, producing
a route to the
responsible node
d462ba via a sequence
of nodes whose ids
share increasingly
longer prefixes with
the key.

d462ba

d4213f

d13da3

65a1fc

Figure 2. Locating objects in unstructured overlays.

?S

R

I

 I nsertion path
  Flood

I = Inserting node
S = Querying node
R = Rendezvous node

Node I adds and
advertises the
green object by
inserting pointers
to the green object
on all nodes along
a random walk
through the overlay.
When node S tries
to locate the green
object, it floods a
query through the
overlay. When the
query reaches node
R, R returns the
address of I.

review articles

october 2010 | vol. 53 | no. 10 | communications of the acm 77

a newly joining node forms its initial
links by repeatedly performing a ran-
dom walk through the overlay starting
at the bootstrap node and requesting a
link to the node where the walk termi-
nates. Nodes acquire additional links
(for example, by performing more ran-
dom walks) whenever their degree falls
below the desired minimum; they re-
fuse link requests when their current
degree is at its maximum.

The minimum node degree is typi-
cally chosen to maintain connectiv-
ity in the overlay despite node failures
and membership churn. A maximum
degree is maintained to bound the
overhead associated with maintaining
overlay links.

Structured overlays. In a structured
overlay, each node has a unique identi-
fier in a large numeric key space, for ex-
ample, the set of 160-bit integers. Iden-
tifiers are chosen in a way that makes
them uniformly distributed in that
space. The overlay graph has a specific
structure; a node’s identifier deter-
mines its position within that structure
and constrains its set of overlay links.

Keys are also used when assign-
ing responsibilities to nodes. The
key space is divided among the par-
ticipating nodes, such that each key is
mapped to exactly one of the current
overlay nodes via a simple function.
For instance, a key may be mapped to
the node whose identifier is the key’s
closest counterclockwise successor in
the key space. In this technique the key
space is considered to be circular (that
is, the id zero succeeds the highest id
value) to account for the fact that there
may exist keys greater than all node
identifiers.

The overlay graph structure is cho-
sen to enable efficient key-based rout-
ing. Key-based routing implements
the primitive KBR(n0, k). Given a start-
ing node n0 and a key k, KBR produces
a path, that is, a sequence of overlay
nodes that ends in the node respon-
sible for k. As will become clear in sub-
sequent sections, KBR is a powerful
primitive.

Many implementations of key-
based routing exist.18,27,32 In general,
they strike a balance between the
amount of routing state required at
each node and the number of forward-
ing hops required to deliver a message.
Typical implementations require an

amount of per-node state and a num-
ber of forwarding hops that are both
logarithmic in the size of the network.

Figure 1 illustrates an example of
a key-based routing scheme. Node
65a1fc invokes KBR with the key
d46a1c, producing a route via a se-
quence of nodes whose ids share in-
creasingly longer prefixes with the key.
Eventually the message reaches the
node with id d462ba, which has suffi-
cient knowledge about its neighboring
nodes to determine that it is respon-
sible for the target key. Though not
depicted, the reply can be forwarded
directly to the invoking node.

Summary. We have seen how the
overlay network is formed and main-
tained in different types of P2P sys-
tems. In partly centralized P2P sys-
tems, the controller facilitates the
overlay formation.

In other P2P systems, overlay main-
tenance is fully decentralized. Com-
pared to an unstructured overlay net-
work, a structured overlay network
invests additional resources to main-
tain a specific graph structure. In re-
turn, structured overlays are able to
perform key-based routing efficiently.

The choice between an unstructured
and a structured overlay depends on
how useful key-based routing is for the
application, and also on the frequency
of overlay membership events. As we
will discuss, key-based routing can re-
liably and efficiently locate uniquely
identified data items and maintain
spanning trees among member nodes.
However, maintaining a structured
overlay in a high-churn environment
has an associated cost, which may not
be worth paying if the application does
not require the functionality provided
by key-based routing.

Some P2P systems use both struc-
tured and unstructured overlays. A
recent (“trackerless”) version of Bit-
Torrent, for instance, uses key-based
routing to choose tracker nodes, but
builds an unstructured overlay to dis-
seminate the content.

Distributed state. Most P2P systems
maintain some application-specific
distributed state. Without loss of gen-
erality, we consider that state as a col-
lection of objects with unique keys.
Maintaining this collection of state
objects in a distributed manner, that
is, providing mechanisms for object

placement and locating objects, are
key tasks in such systems.

Partly centralized systems. In partly
centralized P2P systems, an object is
typically stored at the node that insert-
ed the object, as well as any nodes that
have subsequently downloaded the ob-
ject. The controller node maintains in-
formation about which objects exist in
the system, their keys, names and oth-
er attributes, and which nodes are cur-
rently storing those objects. Queries
for a given key, or a set of keywords that
match an object’s name or attributes,
are directed to the controller, which re-
sponds with a set of nodes from which
the corresponding object(s) can be
downloaded.

Unstructured systems. As in partly
centralized systems, content is typi-
cally stored at the node that introduced
the content to the system, and repli-
cated at other downloaders. To make
it easier to find content, some systems
place copies of (or pointers to) an in-
serted object on additional nodes, for
instance, along a random walk path
through the overlay.

To locate an object, a querying
node typically floods a request mes-
sage through the overlay. The query
can specify the desired object by its
key, metadata, or keywords. A node
that receives a query and has a match-
ing object (or a pointer to a matching
object), responds to the querying node.
Figure 2 illustrates this process. In this
case, node I inserts an object into the
system and holds its only copy, but in-
serts pointers to the object on all nodes
along a random walk that ends in node
R. When node S tries to locate the ob-
ject, it floods a query, first, to all nodes
that are at a distance of one hop, then
to all nodes two hops away. In the last
step the query reaches node R, which
returns the address of I.

Often, the scope of the flood (that is,
the maximal number of hops from the
querying nodes that a flood message
is forwarded) is limited to trade recall
(the probability that an object that ex-
ists in the system is found) for overhead
(the number of messages required by
the flood). An alternative to flooding is
for the querying node to send a request
message along a random walk through
the overlay.

Gnutella was the first example of a
decentralized, unstructured network

78 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

that used flooding to locate content in
a file sharing system.

Structured overlays. In structured
overlays, distributed state is main-
tained using a distributed hash table
(DHT) abstraction. The DHT has the
same put/get interface as a convention-
al hash table. Inserted key/value pairs
are distributed among the participat-
ing nodes in the structured overlay us-
ing a simple placement function. For
instance, that function can position
replicas of the key/value pair on the set
of r nodes whose identifiers succeed
the key in the circular key space. Note
that in our terminology, the values
correspond to the state objects main-

tained by the system.
Given this replica placement policy,

the DHT’s put and get operations can
be implemented using the KBR primi-
tive in a straightforward manner. To
insert (put) a key/value pair, we use
the KBR primitive to determine the re-
sponsible node for the key k and store
the pair on that node, which then prop-
agates it to the set of replicas for k. To
look up (get) a value, we use the KBR
primitive to fetch the value associated
with a given key. The responsible node
can respond to the fetch request or for-
ward it to one of the nodes in the rep-
lica set. Figure 3 shows an example put
operation, where the value is initially

pushed to the node responsible for key
k, which is discovered using KBR, and
this node pushes the value to its three
immediate successors.

When a DHT experiences churn,
pairs have to be moved between nodes
as the mapping of keys to nodes chang-
es. To minimize the required network
communication, large data values are
typically not inserted directly into a
DHT; instead, an indirection pointer is
inserted under the value’s key, which
points to the node that actually stores
the value.

DHTs are used, for instance, in file
sharing networks such as eDonkey,
and also in some versions of BitTor-
rent.

Summary. Unstructured overlays
tend to be very efficient at locating
widely replicated objects, while KBR-
based techniques can reliably and ef-
ficiently locate any object that exists
in the system, no matter how rare it
may be. Put another way, unstructured
overlays are good at finding “hay” while
structured overlays are good at find-
ing “needles.” On the other hand, un-
structured networks support arbitrary
keyword-based queries, while KBR-
based systems directly support only
key-based queries.

Distributed coordination. Frequent-
ly, a group of nodes in a P2P application
must coordinate their actions without
centralized control. For instance, the
set of nodes that replicate a particu-
lar object must inform each other of
updates to the object. In another ex-
ample, a node that is interested in re-
ceiving a particular streaming content
channel may wish to find, among the
nodes that currently receive that chan-
nel, one that is nearby and has available
upstream network bandwidth. We will
look at two distinct approaches to this
problem: epidemic techniques where
information spreads virally through
the system, and tree-based techniques
where distribution trees are formed to
spread the information.

We focus only on decentralized
overlays, since coordination can be ac-
complished by the controller node in
partly centralized systems.

Unstructured overlays. In unstruc-
tured overlays, coordination typically
relies on epidemic techniques. In
these protocols, information is spread
through the overlay in a manner simi-

Figure 4. An example KBR tree.

groupId

G

C

B

A

The KBR routes from group
member nodes A, B, and C
to G (the node responsible
for the group key) form a
spanning tree rooted at G.

Figure 3. Inserting a value into a DHT.

put (key, value)

The key/value pair is
replicated on the node
responsible for the key
(reached via KBR) and
its three successors.

review articles

october 2010 | vol. 53 | no. 10 | communications of the acm 79

lar to the way an infection spreads in
a population: the node that produced
the information sends it to (some of)
its overlay neighbors, who send it to
(some of) their neighbors, and so on.
This method of dissemination is very
simple and robust. As in all epidemic
techniques, there is a trade-off be-
tween the speed of information dis-
semination and overhead. Moreover, if
a given piece of information is of inter-
est only to a subset of nodes and these
nodes are widely dispersed within the
overlay, then the information ends up
being needlessly delivered to all nodes.

A more efficient way to coordinate
the actions among a group of nodes
is to form a spanning tree among the
nodes. The spanning tree is embedded
in the overlay graph, using a decentral-
ized algorithm for spanning tree for-
mation. This tree can then be used to
multicast messages to all members, or
to compute summaries (for example,
sums, averages, minima, or maxima) of
state variables within the group. How-
ever, this added coordination efficien-
cy must be balanced against the over-
head of maintaining the spanning tree
in the unstructured overlay network.

Structured overlays. In structured
overlays, spanning trees among any
group of overlay nodes can be formed
and maintained very efficiently us-
ing the KBR primitive, making trees
the preferred method of coordination
in these overlays. To join a spanning
tree, a node uses KBR to route to a
unique key associated with the group.
The resulting union of the paths from
all group members form a spanning
tree rooted at the node responsible for
the group’s key. This KBR tree is then
used to aggregate and disseminate
state associated with the group, and to
implement multicast and anycast. Fig-
ure 4 illustrates an example KBR tree
formed by the union of the KBR routes
from nodes A, B, and C to the key cor-
responding to the group id. This tree is
rooted at node G, which is the respon-
sible node for that key.

Because a join message terminates
as soon as it intercepts the tree, group
membership maintenance is decen-
tralized, that is, the arrival or departure
of a node is noted only by the node’s
parent and children in the tree. As a
result, the technique scales to large
numbers of groups, as well as large and

highly dynamic groups.
Summary. The epidemic techniques

typically used for coordination in un-
structured overlays are simple and ro-
bust to overlay churn, but they may not
scale to large overlays or large numbers
of groups, and information tends to
propagate slowly. Spanning trees can
increase the efficiency of coordination,
but maintaining a spanning tree in an
unstructured overlay adds costs.

The additional overhead for main-
taining a structured overlay is propor-
tional to the churn in the total overlay
membership. Once that overhead is
paid, KBR trees enable efficient and
fast coordination among potentially
numerous, large and dynamic sub-
groups within the overlay.

Content Distribution
Another common task in P2P sys-
tems is the distribution of bulk data
or streaming content to a set of inter-
ested nodes. P2P techniques for con-
tent distribution can be categorized
as tree-based (where fixed distribution
trees are formed either with the aid of
a structured overlay or embedded in
an unstructured overlay), or swarming
protocols (which have no notion of a
fixed tree for routing content and usu-
ally form an unstructured overlay). Due
to space constraints, we focus on the
swarming protocols popularized by the
BitTorrent protocol.10

In swarming protocols, the content
is divided into a sequence of blocks,
and each block is individually multi-
cast to all overlay nodes such that dif-
ferent blocks are disseminated along
different paths.

The basic operation of a swarming
protocol is simple: once every swarm-
ing interval (say, one second), overlay
neighbors exchange information indi-
cating which content blocks they have
available. (In streaming content dis-
tribution, only the most recently pub-
lished blocks are normally of interest.)
Each node intersects the availability in-
formation received from its neighbors,
and then requests a block it does not
already have from one of the neighbors
who has it.

It is important that blocks are well
distributed among the peers, to ensure
neighboring peers tend to have blocks
they can swap and that blocks remain
available when some peers leave the

Unstructured
overlays are good at
finding “hay,” while
structured overlays
are good at finding
“needles.”

80 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

system. To achieve such a distribu-
tion, the system can randomize both
the choice of block to download and
the choice of a neighbor from whom
to request the block. In one possible
strategy, a node chooses to download
the rarest block among all blocks held
by its overlay neighbors.10

The best known and original
swarming protocol for bulk content
distribution is BitTorrent.10 Examples
of swarming protocols used for stream-
ing content include PPLive17 and the
original version of CoolStreaming.38

Challenges
Much of the promise of P2P systems
stems from their independence of ded-
icated infrastructure and centralized
control. However, these very proper-
ties also expose P2P systems to some
unique challenges not faced by other
types of distributed systems. Moreover,
given the popularity of P2P systems,
they become natural targets for misuse
or attack. Here, we give an overview of
challenges and attacks that P2P sys-
tems may face, and corresponding de-
fense techniques. As you will see, some
of the issues have been addressed to
varying degrees, and others remain
open questions.

Controlling membership. Most P2P
systems have open or loosely controlled
membership. This lack of strong user
identities allows an attacker to popu-
late a P2P system with nodes under
his control, by creating many distinct
identities (such action was termed a
Sybil attack15). Once he controls a large
number of “virtual” peers, an attacker
can defeat many kinds of defenses
against node failure or misbehavior,
for example, those that rely on replica-
tion or voting. For instance, an attacker
who wishes to suppress the value asso-
ciated with some key k from a DHT can
add virtual nodes to the system until
he controls all of the nodes that store
replicas of the value. These nodes can
then deny the existence of that key/
value pair when a get operation for key
k is issued.

Initial proposals to address Sybil
attacks required proof of work (for ex-
ample, solving a cryptographic puzzle
or downloading a large file) before a
new node could join the overlay.15,34

While these approaches limit the rate
at which an attacker can obtain iden-

tities, they also make it more difficult
for legitimate users to join. Moreover,
an attacker with enough resources or
access to a botnet can still mount Sybil
attacks.

Another solution requires certified
identities,7 where a trusted author-
ity vouches for the correspondence
between a peer identity and the corre-
sponding real-world entity. The disad-
vantage of certified identities is that
a trusted authority and the necessary
registration process may be impracti-
cal or inappropriate in some applica-
tions.

Protecting data. Another aspect of
P2P system robustness is the availabil-
ity, durability, integrity, and authentic-
ity of the data stored in the system or
downloaded by a peer. Different types
of P2P systems have devised different
mechanisms to address these prob-
lems.

Integrity and authenticity. In the case
of DHTs, data integrity is commonly
verified using self-certifying named ob-
jects. DHTs take advantage of the fact
that they have flexibility in the choice
of the keys for values stored in the
DHT. By setting key=hash(value) during
the put operation, the downloader can
verify the retrieved data is correct by
applying the cryptographic hash func-
tion to the result of the get operation
and comparing it to the original key.
Systems that store mutable data and
systems that allow users to choose ar-
bitrary names for inserted content can
instead use cryptographic signatures
to protect the integrity and authentic-
ity of the data. However, such systems
require an infrastructure to manage
the cryptographic keys.

Studies show that systems that do
not protect the integrity of inserted
data (including many file sharing sys-
tems) tend to be rife with mislabeled
or corrupted content.8,22 One possible
approach to counter the problem of
content pollution is for peers to vote on
the authenticity of data. For example, a
voting system called Credence was de-
veloped by researchers and used by sev-
eral thousands of peers in the Gnutella
file sharing network.34 However, the
problem remains challenging given
the possibility of Sybil attacks to defeat
the voting.

Availability and durability. The next
challenge is how to ensure the avail-

Much of the promise
of P2P systems
stems from their
independence
of dedicated
infrastructure and
centralized control.
However, these
very properties
also expose P2P
systems to some
unique challenges
not faced by other
types of distributed
systems.

review articles

october 2010 | vol. 53 | no. 10 | communications of the acm 81

ability and durability of data stored in
a P2P system. Even in the absence of
attacks, ensuring availability can prove
difficult due to churn. For a data object
to be available, at least one node that
stores a replica must be online at all
times. To make sure an object remains
available under churn, a system must
constantly move replicas to live nodes,
which can require significant network
bandwidth. For this reason, a practical
P2P storage system cannot simultane-
ously achieve all three goals of scalable
storage, high availability, and resil-
ience to churn.6

Another challenge is that the long-
term membership of a P2P storage
system (that is, the set of nodes that
periodically come online) must be non-
decreasing to ensure the durability
of stored data. Otherwise, the system
may lose data permanently, since the
storage space available among the re-
maining members may fall below that
required to store all the data.

Incentives. Participants in a P2P
system are expected to contribute re-
sources for the common good of all
peers. However, users don’t necessarily
have an incentive to contribute if they
can access the service for free. Such us-
ers, called free riders, may wish to save
their own disk space, bandwidth, and
compute cycles, or they may prefer not
to contribute any content in a file-shar-
ing system.

Free riding is reportedly widespread
in many P2P systems. For instance, in
2000 and 2001, studies of the Gnutella
system found a large fraction of free
riders.2,28 More recently, a study of a
DHT used in the eMule file-sharing
system found large clusters of peers
(with more than 10,000 nodes) that
had modified their client software to
produce the same node identifier for
all nodes, which means these nodes
are not responsible for any keys.31

The presence of many free riders re-
duces the resources available to a P2P
system, and can deteriorate the quality
of the service the system is able to pro-
vide to its users. To address this issue,
incentive schemes have been incorpo-
rated in the design of P2P systems.

BitTorrent uses a tit-for-tat strat-
egy, where to be able to download a file
from a peer, a peer must upload anoth-
er part of the same file in return, or risk
being disconnected from that peer.10

This provides a strong incentive for us-
ers to share their upload bandwidth,
since a peer that does not upload data
will have poor download performance.
A number of other incentive mecha-
nisms have been proposed, which all
try to tie the quality of the service a peer
receives to how much that peer con-
tributes.12,25

Managing P2P systems. Whether
P2P systems are easier to manage than
other distributed systems is an open
question.

On the one hand, P2P systems adapt
to a wide range of conditions with re-
spect to workload and resource avail-
ability, they automatically recover
from most node failures, and partici-
pating users look after their hardware
independently. As a result, the burden
associated with the day-to-day opera-
tion of P2P systems appears to be low
compared to server-based solutions,
as evidenced by the fact that graduate
students have been able to deploy and
manage P2P systems that attract mil-
lions of users.16

On the other hand, there is evi-
dence that P2P systems can experience
widespread disruptions that are diffi-
cult to manage. For instance, on Aug.
16, 2007, the Skype overlay network
collapsed and remained unavailable
for several days. The problem was re-
portedly triggered by a Microsoft Win-
dows Update patch that caused many
of the peers to reboot around the same
time, causing a lack of resources that,
combined with a software bug, pre-
vented the overlay from recovering.30
This type of problem may indicate
the lack of centralized control over
available resources and participating
nodes makes it difficult to manage
systemwide disruptions when they
occur. However, more research and
long-term practical experience with
deployed systems is needed to settle
this question.

Some of the challenges P2P systems
face (for example, data integrity and
authenticity) are largely solved, while
others (for example, membership con-
trol and incentives) have partial solu-
tions that are sufficient for important
applications. However, some problems
remain wide open (for example, data
durability and management issues).
Progress on these problems may be
necessary to further expand the range

of applications of P2P technology.

Peer-to-Peer and ISPs
Internet service providers have wit-
nessed the success of P2P applications
with mixed feelings. On one hand, P2P
is fueling demand for network band-
width. Indeed, P2P accounts for the
majority of bytes transferred on the
Internet.29 On the other hand, P2P traf-
fic patterns are challenging certain as-
sumptions that ISPs have made when
engineering their networks and when
pricing their services.

To understand this tension, we
must consider the Internet’s structure
and pricing. The Internet is a roughly
hierarchical conglomeration of in-
dependent network providers. Local
ISPs typically connect to regional ISPs,
who in turn connect to (inter-)national
backbone providers. ISPs at the same
level of the hierarchy (so-called peer
ISPs) may also exchange traffic directly.
In particular, the backbone providers
are fully interconnected.

Typically, peer ISPs do not charge
each other for traffic they exchange di-
rectly, but customers pay for the bits
they send to their providers. An excep-
tion is residential Internet connections
that are usually offered at a flat rate by
ISPs.

This pricing model originated at a
time when client-server applications
dominated the traffic in the Internet.
Commercial server operators pay their
ISPs for the bandwidth used, who in
turn pay their respective providers.
Since residential customers rarely op-
erate servers (in fact, their terms of
use do not allow them to operate com-
mercial servers), it was reasonable to
assume they generate little upstream
traffic, keeping costs low for local ISPs
and enabling them to offer flat-rate
pricing.

With P2P content distribution ap-
plications, however, residential P2P
nodes upload content to each other.
Unless the P2P nodes happen to con-
nect to the same ISP or to two ISPs that
peer directly with each other, the up-
loading node’s ISP must forward the
data to its own provider. This incurs
costs that the ISP cannot pass on to
its flat-rate customers.20 As a result of
this tension, some ISPs have started to
traffic shape and even block BitTorrent
traffic.14 Whether network operators

82 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

should be required to disclose such
practices, and if they should be allowed
at all to discriminate among different
traffic types is the subject of an ongo-
ing debate.

Independent of the outcome of this
debate, the tension will have to be re-
solved in a way that allows P2P applica-
tions to thrive while ensuring the prof-
itability of ISPs. A promising technical
approach is to bias the peer selection
in P2P applications toward nodes con-
nected to the same ISP or to ISPs that
peer with each other.20 Another solu-
tion is for ISPs to change their pricing
model.

A more fundamental tension is
that some ISPs view many of the cur-
rently deployed P2P applications as
competing with their own value-added
services. For instance, ISPs that offer
conventional telephone service may
view P2P VoIP applications as competi-
tion, and cable ISP may view P2P IPTV
applications as competing with their
own IPTV services. In either case, such
ISP’s market share in the more profit-
able value-added services is potentially
diminished in favor of carrying more
plain bits.

In the long term, however, ISPs will
likely benefit, directly and indirectly,
from the innovation and emergence of
new services that P2P systems enable.
Moreover, ISPs may find new revenue
sources by offering infrastructure sup-
port for successful services that initial-
ly developed as P2P applications.

Conclusion
In this article, we have sketched the
promise, technology, and challenges
of P2P systems. As a disruptive technol-
ogy, P2P creates significant opportuni-
ties and challenges for the Internet, in-
dustry, and society. Arguably the most
significant promise of P2P technology
lies in its ability to significantly lower
the barrier for innovation. But the great
strength of P2P, its independence of
dedicated infrastructure and central-
ized control, may also be its weakness,
as it creates new challenges that must
be dealt with through technical, com-
mercial, and legal means.

One possible outcome is that P2P
will turn out to be especially valuable
as a proving ground for new ideas and
services, in addition to keeping its role
as a platform for grassroots services

that enable free speech and the unreg-
ulated exchange of information. Ser-
vices that turn out to be popular, legal,
and commercially viable may then be
transformed into more infrastructure-
based, commercial services. Here,
ideas from P2P systems may be com-
bined with traditional, centralized ap-
proaches to build highly scalable and
dependable systems.	

References
1.	A bout Skype: 100 Billion Skype-to-Skype Minutes

Served; http://about.skype.com/2008/02/100_
billion_skypetoskype_minut.html.

2.	A dar, E. and Huberman, B.A. Free riding on Gnutella.
First Monday 5, 10 (Oct. 2000).

3.	A nderson, D.P. BOINC: A system for public-resource
computing and storage. In Proceedings of the
5th IEEE/ACM International Workshop on Grid
Computing (2004), 4–10.

4.	BBC News. One million viewers use iPlayer. http: //
news.bbc.co.uk/2/hi/technology/7187967.stm.

5.	B ittorrent (protocol). Wikipedia; http://en.wikipedia.
org/wiki/BitTorrent_(protocol)#Adoption.

6.	B lake, C. and Rodrigues, R. High availability, scalable
storage, dynamic peer networks: Pick two. In
Proceedings of the 9th Workshop on Hot Topics in
Operating Systems (May 2003).

7.	C astro, M., Druschel, P., Ganesh, A., Rowstron, A.
and Wallach, D.S. Security for structured peer-
to-peer overlay networks. In Proceedings of the
5th Symposium on Operating Systems Design and
Implementation (Dec. 2002).

8.	C hristin, N., Weigend, A.S. and Chuang, J. Content
availability, pollution and poisoning in file sharing
peer-to-peer networks. In Proceedings of the 6th ACM
Conference on Electronic Commerce (June 2005).

9.	C larke, I., Sandberg, O., Wiley, B. and Hong, T.W.
Freenet: A distributed anonymous information
storage and retrieval system. In Proceedings of
the Designing Privacy Enhancing Technologies—
International Workshop on Design Issues in
Anonymity and Unobservability (July 2000).

10.	C ohen, B. Incentives build robustness in BitTorrent.
In Proceedings of the 1st International Workshop on
Economics of P2P Systems (June 2003).

11.	C ox, L.P. Murray, C.D. and Noble, B.D. Pastiche:
Making backup cheap and easy. In Proceedings of
the 5th Symposium on Operating Systems Design
and Implementation (Dec. 2002).

12.	C ox, L.P. and Noble, B.D. Samsara: honor among
thieves in peer-to-peer storage. In Proceedings of
the 19th ACM Symposium on Operating Systems
Principles (Oct. 2003).

13.	D eCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P. and Vogels, W. Dynamo: Amazon’s highly
available key-value store. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles
(Oct. 2007).

14.	D ischinger, M., Mislove, A. Haeberlen, A. and
Gummadi, K.P. Detecting BitTorrent blocking. In
Proceedings of the 8th Internet Measurement
Conference (Oct. 2008).

15.	D ouceur, J. The Sybil attack. In Proceedings of
the First International Workshop on Peer-to-Peer
Systems (Mar. 2002).

16.	 Freedman, M.J., Freudenthal, E. and Mazières, D.
Democratizing content publication with Coral. In
Proceedings of the 1st USENIX Symposium on
Networked Systems Design and Implementation
(Mar. 2004).

17.	H ei, X., Liang, C., Liang, J., Liu, Y. and Ross, K.W.
Insights into PPLive: A measurement study of a
large-scale P2P IPTV system. In Proceedings of
the 15th International World Wide Web Conference,
IPTV Workshop (May 2006).

18.	H ildrum, K., Kubiatowicz, J.D., Rao, S. and Zhao, B.Y.
Distributed object location in a dynamic network. In
Proceedings of the 14th Annual ACM Symposium on
Parallel Algorithms and Architectures (2002), 41–52.

19.	H uebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T,
Shenker, S. and Stoica, I. Querying the Internet
with PIER. In Proceedings of the 29th International

Conference on Very Large Data Bases (Sept. 2003).
20.	Karagiannis, T., Rodriguez, P., and Papagiannaki, K.

Should Internet service providers fear peer-assisted
content distribution? In Proceedings of the Internet
Measurement Conference (Oct. 2005).

21.	 Li, B., Xie, S., Qu, Y., Keung, G., Lin, C., Liu, J. and
Zhang, X. Inside the new coolstreaming: Principles,
measurements and performance implications. In
Proceedings of INFOCOM (2008).

22.	 Liang, J., Kumar, R., Xi, Y. and Ross, K.W. Pollution
in P2P file sharing systems. In Proceedings of
INFOCOM (Mar. 2005).

23.	 Maniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal,
D.S.H. and Baker, M. The LOCKSS peer-to-peer
digital preservation system. ACM Transactions on
Computer Systems 23, 1 (2005), 2–50.

24.	Mislove, A. Post, A. Haeberlen, A. and Druschel,
P. Experiences in building and operating ePOST, a
reliable peer-to-peer application. In Proceedings of
the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems (Apr. 2006).

25.	N andi, A., Ngan, T-W.J, Singh, A., Druschel, P.
and Wallach, D.S. Scrivener: Providing incentives
in cooperative content distribution systems.
In Proceedings of the ACM/IFIP/USENIX 6th
International Middleware Conference (Nov. 2005).

26.	R enesse, R.V, Birman, K.P. and Vogels, W. Astrolabe:
A robust and scalable technology for distributed
system monitoring, management, and data mining.
ACM Transactions on Computer Systems 21, 2
(2003), 164–206.

27.	R owstron, A. and Druschel, P. Pastry: Scalable,
distributed object location and routing for large-
scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed
Systems Platforms (Nov. 2001).

28.	S aroiu, S., Gummadi, P.K., and Gribble, S.D.
A measurement study of peer-to-peer file
sharing systems. In Proceedings of the SPIE/
ACM Conference on Multimedia Computing and
Networking (Jan. 2002).

29.	S kinkers: Enterprise communication management;
http://www.skinkers.com/About_us/About_Skinkers.

30.	Skype: What happened on August 16; http://
heartbeat.skype.com/2007/08/what_happened_on_
august_16.html.

31.	S teiner, M., Biersack, E.W. and Ennajjary, T. Actively
monitoring peers in KAD. In Proceedings of the 6th
International Workshop on Peer-to-Peer Systems
(Feb. 2007).

32.	S toica, I., Morris, R., Karger, D., Kaashoek, M.F.
and Balakrishnan, H. Chord: A scalable peer-to-
peer lookup service for Internet applications. In
Proceedings of SIGCOMM ’01, (Aug. 2001).

33.	S tribling, J. Li, J., Councill, I.G., Kaashoek, M.F.
and Morris, R. Overcite: A distributed, cooperative
citeseer. In Proceedings of the 3rd Symposium on
Networked Systems Design and Implementation
(May 2006).

34.	Walsh, K. and Sirer, E.G. Experience with an object
reputation system for peer-to-peer filesharing. In
Proceedings of the 3rd Symposium on Networked
Systems Design and Implementation (May 2006).

35.	Wang, L., Park, K., Pang, R., Pai, V.S., and Peterson,
L. Reliability and security in the CoDeeN content
distribution network. In Proceedings of the
USENIX 2004 Annual Technical Conference (June
2004).

36.	Wilcox-O’Hearn, B. Experiences deploying a large-
scale emergent network. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems
(Mar. 2002).

37.	Y alagandula, P. and Dahlin, M. A scalable distributed
information management system. In Proceedings of
SIGCOMM ’04 (2004).

38.	 Zhang, X., Liu, J., Li, B. and Yum, T-S.P.
CoolStreaming/DONet: A data-driven overlay
network for peer-to-peer live media streaming. In
Proceedings of INFOCOM ’05 (2005).

Rodrigo Rodrigues (rodrigo@mpi-sws.org) is a tenure-
track faculty member at the Max Planck Institute for
Software Systems (MPI-SWS), where he heads the
dependable systems group.

Peter Druschel (druschel@mpi-sws.org) is the founding
director of the Max Planck Institute for Software
Systems (MPI-SWS), where he heads the distributed
systems group.

© 2010 ACM 0001-0782/10/1000 $10.00

http://about.skype.com/2008/02/100_billion_skypetoskype_minut.html
http://about.skype.com/2008/02/100_billion_skypetoskype_minut.html
http: //news.bbc.co.uk/2/hi/technology/7187967.stm
mailto:rodrigo@mpi-sws.org
mailto:druschel@mpi-sws.org
http: //news.bbc.co.uk/2/hi/technology/7187967.stm
http://www.skinkers.com/About_us/About_Skinkers
http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://en.wikipedia.org/wiki/BitTorrent_(protocol)#Adoption
http://en.wikipedia.org/wiki/BitTorrent_(protocol)#Adoption

research highlights

october 2010 | vol. 53 | no. 10 | communications of the acm 83

p. 95

Nonparametric
Belief Propagation
By Erik B. Sudderth, Alexander T. Ihler, Michael Isard,
William T. Freeman, and Alan S. Willsky

p. 94

Technical
Perspective
Belief Propagation
By Yair Weiss and Judea Pearl

p. 85

Difference Engine:
Harnessing Memory Redundancy
in Virtual Machines
By Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage,
Alex C. Snoeren, George Varghese, Geoffrey M. Voelker, and Amin Vahdat

p. 84

Technical
Perspective
A VM ‘Engine’ That
Makes a Difference
By Carl Waldspurger

84 communications of the acm | october 2010 | vol. 53 | no. 10

The past decade has witnessed a renais-
sance in server virtualization, which is
transforming enterprise computing by
offering new capabilities and efficien-
cies. The following paper by Diwaker
Gupta et al. presents a novel approach
for significantly improving the efficien-
cy of virtualized servers. Their “Differ-
ence Engine” eliminates memory re-
dundancy by exploiting similarity both
within and across virtual machines.

A virtual machine (VM) is a software
abstraction that behaves like hardware.
The classic definition by Popek and
Goldberg is “an efficient, isolated du-
plicate of a real machine.” For example,
a VM that presents the illusion of being
a physical x86 server may run an un-
modified operating system designed
for that platform, such as Windows or
Linux. Neither the OS nor its users need
be aware they are interacting with a VM
instead of dedicated hardware.

Little more than a decade ago, vir-
tual machines were considered a fairly
exotic mainframe technology. Today,
VMs are pervasive in corporate data-
centers, and serve as the foundation
for cloud-computing platforms. The
commercial success of virtual ma-
chines has influenced the design of
high-volume processor architectures,
which now contain special-purpose
hardware to accelerate virtualization.

Why have VMs proliferated so rap-
idly? One reason is that virtualization
is an extremely versatile technology.

There is a well-known adage: “All
problems in computer science can
be solved by another level of indirec-
tion.” The virtualization software layer,
known as a hypervisor, provides this
level of indirection, decoupling an
OS and its applications from physical
hardware. Eliminating the traditional
“one machine, one OS” constraint
opens up numerous possibilities.

Initially, the most compelling use of
VMs was basic partitioning and server
consolidation. In typical unvirtualized
environments, individual servers were

grossly underutilized. Virtualization al-
lowed many servers to be consolidated
as VMs onto a single physical machine,
resulting in significantly lower capi-
tal and management costs. This abil-
ity to “do more with less” fueled the
rapid adoption of virtualization, even
through economic downturns.

As virtualization became more main-
stream, innovations arose for manag-
ing distributed systems consisting of
many virtualized servers. Since VMs
are independent of the particular hard-
ware on which they execute, they are
inherently portable. Live, running VMs
can migrate between different physical
servers, enabling zero-downtime infra-
structure maintenance, and supporting
automated dynamic load balancing in
production datacenters and clouds.

Additional virtualization features le-
verage indirection to offer capabilities
beyond those of physical platforms. By
interposing on VM operations trans-
parently, no changes are required to the
software running within the VM. Exam-
ples include improving security by add-
ing checks that cannot be defeated by
compromised software within the VM,
and replicating VM state across physi-
cal machines for fault tolerance.

While core virtualization techniques
are now reasonably mature, research-
ers continue to develop innovative ways
to optimize VM efficiency and improve
server utilization. Today, limited hard-
ware memory often constrains the de-
gree of server consolidation on modern
machines equipped with many proces-
sor cores. The Difference Engine clev-
erly exploits the extra level of indirec-
tion in virtualized memory systems to
reduce the memory footprint of VMs.
Since higher consolidation ratios trans-
late directly into cost savings, such
techniques are incredibly valuable.

Due to consolidation, many VMs on
the same physical machine typically
run similar OS instances and applica-
tions, or contain common data. The
Difference Engine extends the hyper-

visor with several mechanisms that
reclaim memory by eliminating redun-
dancy. First, when identical memory
pages are found, they are deduplicated
by retaining only a single instance that
is shared copy-on-write, similar to the
page-sharing feature that we intro-
duced in VMware’s hypervisor.

However, the Difference Engine goes
much further, taking advantage of de-
duplication opportunities that are left
on the table when sharing is restricted
to completely-identical pages. By ob-
serving that many more pages are nearly
identical, sharing at sub-page granular-
ity becomes very attractive. Candidates
for sub-page sharing are identified by
hashing small portions of pages, and
patches are generated against reference
pages to store near-duplicates com-
pactly. When pages are not sufficiently
similar, a conventional compression
algorithm is applied to wring out any re-
maining intra-page redundancy.

By combining these mechanisms
to eliminate full-page, sub-page, and
intra-page redundancy, the Difference
Engine achieves impressive space sav-
ings—more than twice as much as full-
page sharing alone for VMs running
disparate workloads. Of course, these
savings aren’t free; compressed pages
and sub-pages still incur page faults,
and hashing, patching, and compres-
sion are compute-intensive operations.

But given current trends, it’s a safe
bet that spare processor cycles will
be easier to find than spare memory
pages. The emergence of dense flash
memory, phase-change memory, and
other technologies will surely shift bot-
tlenecks and trade-offs, ensuring this
research area remains interesting.

Given the long history and extensive
literature associated with both virtual-
ization and memory management, it’s
refreshing to find a paper that is both
stimulating and practical. As virtual
machines become increasingly ubiq-
uitous, I’m confident that similar ideas
will be leveraged by both commercial
and research hypervisors. I strongly
urge you to get a glimpse of this future
now by reading this paper.	

Carl Waldspurger (carl@vmware.com) is a Principal
Engineer at VMware, Palo Alto, where he oversees core
resource management and virtualization technologies.

© 2010 ACM 0001-0782/10/1000 $10.00

Technical Perspective
A VM ‘Engine’ That
Makes a Difference
By Carl Waldspurger

research highlights

doi:10.1145/1831407.1831428

mailto:carl@vmware.com

doi:10.1145/1831407.1831429

OCTOber 2010 | vol. 53 | no. 10 | communications of the acm 85

Difference Engine:
Harnessing Memory Redundancy
in Virtual Machines
By Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren, George Varghese,
Geoffrey M. Voelker, and Amin Vahdat

Abstract
Virtual machine monitors (VMMs) are a popular platform
for Internet hosting centers and cloud-based compute ser-
vices. By multiplexing hardware resources among virtual
machines (VMs) running commodity operating systems,
VMMs decrease both the capital outlay and management
overhead of hosting centers. Appropriate placement and
migration policies can take advantage of statistical multi-
plexing to effectively utilize available processors. However,
main memory is not amenable to such multiplexing and is
often the primary bottleneck in achieving higher degrees of
consolidation.

Previous efforts have shown that content-based page
sharing provides modest decreases in the memory footprint
of VMs running similar operating systems and applica-
tions. Our studies show that significant additional gains can
be had by leveraging both subpage level sharing (through
page patching) and incore memory compression. We build
Difference Engine, an extension to the Xen VMM, to support
each of these—in addition to standard copy-on-write full-
page sharing—and demonstrate substantial savings across
VMs running disparate workloads (up to 65%). In head-to-
head memory-savings comparisons, Difference Engine
outperforms VMware ESX server by a factor 1.6–2.5 for het-
erogeneous workloads. In all cases, the performance over-
head of Difference Engine is less than 7%.

1. INTRODUCTION
Virtualization technology has improved dramatically over
the past decade to become pervasive within the service-
delivery industry. Virtual machines are particularly attrac-
tive for server consolidation. Their strong resource and
fault isolation guarantees allow multiplexing of hard-
ware among individual services, each with (potentially)
distinct software configurations. Anecdotally, individ-
ual server machines often run at 5–10% CPU utilization.
Operators’ reasons are manifold: because of the need to
over-provision for peak levels of demand, because fault
isolation mandates that individual services run on indi-
vidual machines, and because many services often run
best on a particular operating system configuration. The
promise of virtual machine technology for server con-
solidation is to run multiple services on a single physical
machine while still allowing independent configuration
and failure isolation.

While physical CPUs are frequently amenable to
multiplexing, main memory is not. Many services run
comfortably on a machine with 1GB of RAM; multiplexing
10 VMs on that same host, however, would allocate each just
100MB of RAM. Increasing a machine’s physical memory is
often both difficult and expensive. Incremental upgrades
in memory capacity are subject to both the availability of
extra slots on the motherboard and the ability to support
higher-capacity modules: such upgrades often involve
replacing—as opposed to just adding—memory chips.
Moreover, not only is high-density memory expensive, it
also consumes significant power. Furthermore, as many-
core processors become the norm, the bottleneck for VM
multiplexing will increasingly be the memory, not the
CPU. Finally, both applications and operating systems are
becoming more and more resource intensive over time. As
a result, commodity operating systems require significant
physical memory to avoid frequent paging.

Not surprisingly, researchers and commercial VM soft-
ware vendors have developed techniques to decrease the
memory requirements for virtual machines. Notably, the
VMware ESX server implements content-based page shar-
ing, which has been shown to reduce the memory footprint
of multiple, homogeneous virtual machines by 10–40%.19
We find that these values depend greatly on the operat-
ing system and configuration of the guest VMs. We are
not aware of any previously published sharing figures for
mixed-OS ESX deployments. Our evaluation indicates, how-
ever, that the benefits of ESX-style page sharing decrease as
the heterogeneity of the guest VMs increases, due in large
part to the fact that page sharing requires the candidate
pages to be identical.

The premise of this work is that there are significant
additional benefits from sharing at a subpage granularity,
i.e., there are many pages that are nearly identical. We show
that it is possible to efficiently find such similar pages and
coalesce them into a much smaller memory footprint.
Among the set of similar pages, we are able to store most as
patches relative to a single baseline page. We also compress

The original version of this paper is entitled “Differ-
ence Engine: Harnessing Memory Redundancy in Vir-
tual Machines” and was presented at USENIX OSDI,
December 2008. An extended abstract entitled “Difference
Engine” appeared in USENIX ;login; volume 34, number 2.

86 communications of the acm | october 2010 | vol. 53 | no. 10

research highlights

memory system, this approach does not scale well since
every time a page changes its fingerprints must be recom-
puted as well. Further, it is inefficient to find the maximal
intersecting set from among a large number of candidate
pages. Broder adapted Manber’s approach to the problem
of identifying documents (in this case, Web pages) that are
nearly identical using a combination of Rabin fingerprints
and sampling based on minimum values under a set of ran-
dom permutations.6

While these techniques can be used to identify similar
files, they do not address how to efficiently encode the dif-
ferences. Douglis and Iyengar explored using Rabin finger-
prints and delta encoding to compress similar files in the
DERD system,10 but only considered whole files. Kulkarni
et al.12 extended the DERD scheme to exploit similarity at the
block level. Difference Engine also tries to exploit memory
redundancy at several different granularities.

2.3. Memory compression
In-memory compression is not a new idea. Douglis et al.9
implemented memory compression in the Sprite operat-
ing system with mixed results. In their experience, memory
compression was sometimes beneficial, but at other times
the performance overhead outweighed the memory savings.
Subsequently, Wilson et al. argued Douglis’ mixed results
were primarily due to slow hardware.20 They also devel-
oped new compression algorithms (leveraged by Difference
Engine) that exploit the inherent structure present in vir-
tual memory, whereas earlier systems used general-purpose
compression algorithms. Tuduce et al.17 implemented a
compressed cache for Linux that adaptively manages the
amount of physical memory devoted to compressed pages
using a simple algorithm shown to be effective across a wide
variety of workloads.

3. ARCHITECTURE
Difference Engine uses three distinct mechanisms that
work together to realize the benefits of memory sharing, as
shown in Figure 1. In this example, two VMs have allocated
five pages total, each initially backed by distinct pages in
machine memory (Figure 1a). For brevity, we only show how
the mapping from guest physical memory to machine mem-
ory changes; the guest virtual to guest physical mapping
remains unaffected. First, for identical pages across the
VMs, we store a single copy and create references that point
to the original. In Figure 1b, one page in VM-2 is identical to
one in VM-1. For pages that are similar, but not identical, we
store a patch against a reference page and discard the redun-
dant copy. In Figure 1c, the second page of VM-2 is stored as
a patch to the second page of VM-1. Finally, for pages that
are unique and infrequently accessed, we compress them in
memory to save space. In Figure 1d, the remaining private
page in VM-1 is compressed. The actual machine memory
footprint is now less than three pages, down from five pages
originally.

In all three cases, efficiency concerns require us to select
candidate pages that are unlikely to be accessed in the near
future. We employ a global clock that scans memory in the
background, identifying pages that have not been recently

those pages that are unlikely to be accessed in the near
future; an efficient implementation of compression nicely
complements page sharing and patching.

In this paper, we present Difference Engine, an extension
to the Xen VMM5 that not only shares identical pages, but
also supports subpage sharing and in-memory compres-
sion of infrequently accessed pages. Our results show that
for a heterogeneous setup (different operating systems host-
ing different applications), Difference Engine can reduce
memory usage by nearly 65%. In head-to-head comparisons
against VMware’s ESX server running the same workloads,
Difference Engine delivers a factor of 1.5 more memory sav-
ings for a homogeneous workload and a factor of 1.6–2.5
more memory savings for heterogeneous workloads.

Critically, we demonstrate that these benefits can be
obtained without negatively impacting application perfor-
mance: in our experiments across a variety of workloads,
Difference Engine imposes less than 7% overhead. We fur-
ther show that Difference Engine can leverage improved
memory efficiency to increase aggregate system perfor-
mance by utilizing the free memory to create additional vir-
tual machines in support of a target workload.

2. RELATED WORK
Difference Engine builds upon substantial previous work in
page sharing, delta encoding, and memory compression. In
each instance, we attempt to leverage existing approaches
where appropriate.

2.1. Page sharing
Two common approaches in the literature for finding redun-
dant pages are content-based page sharing, exemplified by
VMWare’s ESX server,19 and explicitly tracking page changes
to build knowledge of identical pages, exemplified by “trans-
parent page sharing” in Disco.7 Transparent page sharing
can be more efficient, but requires several modifications
to the guest OS, in contrast to ESX server and Difference
Engine which require no modifications.

To find sharing candidates, both Difference Engine and
ESX hash contents of each page and use hash collisions to
identify potential duplicates. Once shared, our system can
manage page updates in a copy-on-write fashion, as in Disco
and ESX server. We build upon earlier work on flash cloning18
of VMs, which allows new VMs to be cloned from an exist-
ing VM in milliseconds; as the newly created VM writes to
its memory, it is given private copies of the shared pages.
An extension by Kloster et al. studied page sharing in Xen11
and we build upon this experience, adding support for fully
virtualized (HVM) guests, integrating the global clock, and
improving the overall reliability and performance.

2.2. Delta encoding
Our initial investigations into page similarity were inspired
by research in leveraging similarity across files in large file
systems. In GLIMPSE,14 Manber proposed computing Rabin
fingerprints over fixed-size blocks at multiple offsets in a
file. Similar files will then share some fingerprints. Thus the
maximum number of common fingerprints is a strong indi-
cator of similarity. However, in a dynamically evolving virtual

OCtober 2010 | vol. 53 | no. 10 | communications of the acm 87

•	 Mixed-1: Windows XP SP1 hosting RUBiS8; Debian 3.1
compiling the Linux kernel; Slackware 10.2 compiling
Vim 7.0 followed by a run of the lmbench
benchmark.15

•	 Mixed-2: Windows XP SP1 running Apache 2.2.8 host-
ing approximately 32,000 static Web pages crawled
from Wikipedia, with httperf running on a separate
machine requesting these pages; Debian 3.1 running
the SysBench database benchmark1 using 10 threads to
issue 100,000 requests; Slackware 10.2 running
dbench2 with 10 clients for 6 min followed by a run of
the IOZone benchmark.3

We designed these workloads to stress the memory-
saving mechanisms since opportunities for identical page
sharing are reduced. In this first experiment, for a variety
of configurations, we suspend the VMs after completing a
benchmark, and consider a static snapshot of their mem-
ory to determine the number of pages required to store the
images using various techniques. Table 1 shows the results
of our analysis for the Mixed-1 workload.

The first column breaks down these 393,120 pages into
three categories: 149,038 zero pages (i.e., the page con-
tains all zeros), 52,436 sharable pages (the page is not all
zeros, and there exists at least one other identical page),
and 191,646 unique pages (no other page in memory is
exactly the same). The second column shows the number
of pages required to store these three categories of pages

used. In addition, reference pages for sharing or patch-
ing must be found quickly without introducing perfor-
mance overhead. Difference Engine uses full-page hashes
and hash-based fingerprints to identify good candidates.
Finally, we implement a demand paging mechanism that
supplements main memory by writing VM pages to disk
to support overcommitment, allowing the total memory
required for all VMs to temporarily exceed the physical
memory capacity.

3.1. Page sharing
Difference Engine’s implementation of content-based
page sharing is similar to those in earlier systems. We walk
through memory looking for identical pages. As we scan
memory, we hash each page and index it based on its hash
value. Identical pages hash to the same value and a collision
indicates that a potential matching page has been found.
We perform a byte-by-byte comparison to ensure that the
pages are indeed identical before sharing them.

Upon identifying target pages for sharing, we reclaim
one of the pages and update the virtual memory to point
at the shared copy. Both mappings are marked read-only,
so that writes to a shared page cause a page fault that will
be trapped by the VMM. The VMM returns a private copy
of the shared page to the faulting VM and updates the vir-
tual memory mappings appropriately. If no VM refers to a
shared page, the VMM reclaims it and returns it to the free
memory pool.

3.2. Patching
Traditionally, the goal of page sharing has been to elimi-
nate redundant copies of identical pages. Difference Engine
considers further reducing the memory required to store
similar pages by constructing patches that represent a page
as the difference relative to a reference page. To motivate
this design decision, we provide an initial study into the
potential savings due to subpage sharing, both within and
across virtual machines. First, we define the following two
heterogeneous workloads, each involving three 512MB vir-
tual machines:

(a) Initial (b) Page sharing (c) Patching (d) Compression

page 1

page 2

page 3

page 1

page 2

page 3

page 2

page 1

page 3

page 2

page 1

page 3

page 3page 3

page 2

page 2
page 1

page 3

page 2

page 2page 1

page 1page 1

page 2

Identical to
page 3

Identical to
page 3

Identical to
page 3

Identical to
page 3

Identical to
page 3

Identical to
page 3

Similar to
page 2

VM 2

Guest
Virtual

Guest
physical

Machine
Memory

Machine
Memory

Machine
Memory

Machine
Memory

Guest
physical

Guest
physical

Guest
physical

VM 2

VM 1VM 1 VM 1 VM 1

VM 2 VM 2

Similar to
page 2

Similar to
page 2

Similar to
page 2

Similar to
page 2

Similar to
page 2

Similar to
page 2page 3 page 3

Figure 1. The three different memory conservation techniques employed by Difference Engine: page sharing, page patching, and
compression. In this example, five physical pages are stored in less than three machine memory pages for a savings of roughly 50%.

Table 1. Effectiveness of page sharing across three 512MB VMs
running Windows XP, Debian, and Slackware Linux using 4KB pages.

Pages Initial After Sharing After Patching

 U nique 191,646 191,646
  Sharable

  (non-zero)
  52,436    3,577

  Zero 149,038        1

Total 393,120 195,224 88,422

 R eference   50,727 50,727
  Patchable 144,497 37,695

88 communications of the acm | october 2010 | vol. 53 | no. 10

research highlights

little additional gain by hashing more blocks. Combining
blocks does not help much, at least for these workloads.
Furthermore, storing more candidates in each hash
bucket also produces little gain. Hence, Difference Engine
indexes a page by hashing 64-byte blocks at two fixed loca-
tions in the page (chosen at random) and using each hash
value as a separate index to store the page in the hash
table. To find a candidate similar page, the system com-
putes hashes at the same two locations, looks up those
hash table entries, and chooses the better of the (at most)
two pages found there.

3.3. Compression
Finally, for pages that are not significantly similar to other
pages in memory, we consider compressing them to reduce
the memory footprint. Compression is useful only if the
compression ratio is reasonably high, and, like patching,
if selected pages are accessed infrequently, otherwise the
overhead of compression/decompression will outweigh
the benefits. We identify candidate pages for compression
using a global clock algorithm (Section 4.2), assuming that
pages that have not been recently accessed are unlikely to be
accessed in the near future.

Difference Engine supports multiple compression
algorithms, currently LZO and WKdm as described in
Wilson et al.20; we invalidate compressed pages in the VM
and save them in a dynamically allocated storage area in
machine memory. When a VM accesses a compressed page,
Difference Engine decompresses the page and returns it to
the VM uncompressed. It remains there until it is again con-
sidered for compression.

3.4. Paging machine memory
While Difference Engine will deliver some (typically high)
level of memory savings, in the worst case all VMs might
actually require all of their allocated memory. Setting aside
sufficient physical memory to account for this case prevents
using the memory saved by Difference Engine to create addi-
tional VMs. Not doing so, however, may result in temporarily
overshooting the physical memory capacity of the machine
and cause a system crash. We therefore require a demand-
paging mechanism to supplement main memory by writing
pages out to disk in such cases.

A good candidate page for swapping out would likely not
be accessed in the near future—the same requirement as
compressed/patched pages. In fact, Difference Engine also
considers compressed and patched pages as candidates
for swapping out. Once the contents of the page are written
to disk, the page can be reclaimed. When a VM accesses a
swapped out page, Difference Engine fetches it from disk
and copies the contents into a newly allocated page that is
mapped appropriately in the VM’s memory.

Since disk I/O is involved, swapping in/out is an expen-
sive operation. Further, a swapped page is unavailable for
sharing or as a reference page for patching. Therefore, swap-
ping should be an infrequent operation. Difference Engine
implements the core mechanisms for paging, and leaves
policy decisions—such as when and how much to swap—to
user space tools.

using traditional page sharing. Each unique page must be
preserved; however, we only need to store one copy of a set
of identical pages. Hence, the 52,436 nonunique pages con-
tain only 3,577 distinct pages—implying there are roughly
14 copies of every nonunique page. Furthermore, only one
copy of the zero page is needed. In total, the 393,120 origi-
nal pages can be represented by 195,224 distinct pages—a
50% savings.

The third column depicts the additional savings available
if we consider subpage sharing. Using a cut-off of 2KB for the
patch size (i.e., we do not create a patch if it will take up more
than half a page), we identify 144,497 distinct pages eligible
for patching. We store the 50,727 remaining pages as is and
use them as reference pages for the patched pages. For each
of the similar pages, we compute a patch using Xdelta.13 The
average patch size is 1,070 bytes, allowing them to be stored
in 37,695 4KB pages, saving 106,802 pages. In sum, subpage
sharing requires only 88,422 pages to store the memory for
all VMs instead of 195,224 for fullpage sharing or 393,120
originally—an impressive 77% savings, or almost another
50% over full-page sharing. We note that this was the least
savings in our experiments; the savings from patching are
even higher in most cases. Further, a significant amount of
page sharing actually comes from zero pages and, therefore,
depends on their availability. For instance, the same work-
load when executed on 256MB VMs yields far fewer zero
pages. Alternative mechanisms to page sharing become
even more important in such cases.

One of the principal complications with subpage shar-
ing is identifying candidate reference pages. Difference
Engine uses a parameterized scheme to identify similar
pages based upon the hashes of several 64-byte portions of
each page. In particular, HashSimilarityDetector(k, s) hashes
the contents of (k · s) 64-byte blocks at randomly cho-
sen locations on the page, and then groups these hashes
together into k groups of s hashes each. We use each group
as an index into a hash table. In other words, higher values
of s capture local similarity while higher k values incorpo-
rate global similarity. Hence, HashSimilarityDetector(1,1)
will choose one block on a page and index that block;
pages are considered similar if that block of data matches.
HashSimilarityDetector(1,2) combines the hashes from two
different locations in the page into one index of length two.
HashSimilarityDetector(2,1) instead indexes each page twice:
once based on the contents of a first block, and again based
on the contents of a second block. Pages that match at least
one of the two blocks are chosen as candidates. For each
scheme, the number of candidates, c, specifies how many
different pages the hash table tracks for each signature.
With one candidate, we only store the first page found with
each signature; for larger values, we keep multiple pages in
the hash table for each index. When trying to build a patch,
Difference Engine computes a patch between all matching
pages and chooses the best one.

We have evaluated this scheme for a variety of parameter
settings on the two workloads described above. For both
the workloads, HashSimilarityDetector(2,1) with one candi-
date does surprisingly well. There is a substantial gain due
to hashing two distinct blocks in the page separately, but

OCtober 2010 | vol. 53 | no. 10 | communications of the acm 89

of memory. Changing the heap size requires pervasive code
changes in Xen, and will likely break the application binary
interface (ABI) for some OSes. We therefore restrict the size
of the page-sharing hash table so that it can hold entries
for only 1/5 of physical memory. Hence Difference Engine
processes memory in five passes, as described by Kloster
et al.11 In our test configuration, this partitioning results in a
1.76MB hash table. We divide the space of hash function val-
ues into five intervals, and only insert a page into the table if
its hash value falls into the current interval. A complete cycle
of five passes covering all the hash value intervals is required
to identify all identical pages.

4.4. Page-similarity detection
The goal of the page-similarity component is to find pairs
of pages with similar content, and, hence, make candidates
for patching. We implement a simple strategy for find-
ing similar pages based on hashing short blocks within a
page, as described in Section 3.2. Specifically, we use the
HashSimilarityDetector(2,1) described there, which hashes
short data blocks from two locations on each page, and
indexes the page at each of those two locations in a separate
page-similarity hash table, distinct from the page-sharing
hash table described above. We use the 1-candidate variation,
where at most one page is indexed for each block hash value.

Recall that the clock makes a complete scan through
memory in five passes. The page-sharing hash table is
cleared after each pass, since only pages within a pass are
considered for sharing. However, two similar pages may
appear in different passes if their hash values fall in different
intervals. Since we want to only consider pages that have not
been shared in a full cycle for patching, the page-similarity
hash table is not cleared on every pass. This approach also
increases the chances of finding better candidate pages to
act as the reference for a patch.

4.5. Compression
Compression operates similarly to patching—in both cases
the goal is to replace a page with a shorter representation
of the same data. The primary difference is that patching
makes use of a reference page, while a compressed repre-
sentation is self contained. There is one important interac-
tion between compression and patching: once we compress
a page, the page can no longer be used as a reference for a
later patched page. A naive implementation that compresses
all nonidentical pages as it goes along will almost entirely
prevent page patches from being built. Compression of a
page should be postponed at least until all pages have been
checked for similarity against it. A complete cycle of a page
sharing scan will identify similar pages, so a sufficient con-
dition for compression is that no page should be compressed
until a complete cycle of the page sharing code finishes.

4.6. Paging machine memory
Recall that any memory freed by Difference Engine cannot
be used reliably without supplementing main memory with
secondary storage. That is, when the total allocated memory
of all VMs exceeds the system memory capacity, some pages
will have to be swapped to disk.

4. IMPLEMENTATION
We have implemented Difference Engine on top of Xen 3.0.4
in roughly 14,500 lines of code. An additional 20,000 lines
come from ports of existing patching and compression algo-
rithms (Xdelta, LZO, WKdm) to run inside Xen.

4.1. Modifications to Xen
Xen and other platforms that support fully virtualized guests
use a mechanism called “shadow page tables” to manage
guest OS memory.19 The guest OS has its own copy of the page
table that it manages believing that they are the hardware
page tables, though in reality it is just a map from the guest’s
virtual memory to its notion of physical memory (V2P map).
In addition, Xen maintains a map from the guest’s notion of
physical memory to the machine memory (P2M map). The
shadow page table is a cache of the results of composing the
V2P map with the P2M map, mapping guest virtual memory
directly to machine memory.

Difference Engine relies on manipulating P2M maps
and the shadow page tables to interpose on page accesses.
For simplicity, we do not consider any pages mapped by
Domain-0 (the privileged, control domain in Xen), which,
among other things, avoids the potential for circular page
faults.

4.2. Clock
Difference Engine implements a not-recently-used (NRU)
policy16 to select candidate pages for sharing, patching,
compression, and swapping out. On each invocation,
the clock scans a portion of the memory, checking and
clearing the referenced (R) and modified (M) bits on pages.
Thus, pages with the R/M bits set must have been refer-
enced/modified since the last scan. We ensure that suc-
cessive scans of memory are separated by at least 4 s in
the current implementation to give domains a chance to
set the R/M bits on frequently accessed pages. In the pres-
ence of multiple VMs, the clock scans a small portion
of each VM’s memory in turn for fairness. The external
API exported by the clock is simple: return a list of pages
(of some maximum size) that have not been accessed in
some time.

Using the R/M bits, we can annotate each page with
its “freshness.” By default, we employ the following pol-
icy. Recently modified pages are ignored; pages accessed
recently but not modified are considered for sharing and to
be reference pages for patching, but cannot be patched or
compressed themselves; pages not recently accessed can be
shared or patched; and pages not accessed for an extended
period of time are eligible for everything, including com-
pression and swapping.

4.3. Page sharing
Difference Engine uses the SuperFastHash4 function to
compute digests for each scanned page and inserts them
along with the page-frame number into a hash table. Ideally,
the hash table should be sized so that it can hold entries for
all of physical memory. The hash table is allocated out of
Xen’s heap space, which is quite limited in size: the code,
data, and heap segments in Xen must all fit in a 12MB region

90 communications of the acm | october 2010 | vol. 53 | no. 10

research highlights

that compressing a page on our hardware is fast, requiring
slightly less than 30 ms on average. Patching, on the other
hand, is almost an order of magnitude slower: creating a
patch (patch_page) takes over 300 ms. This time is primar-
ily due to the overhead of finding a good candidate base page
and constructing the patch. Both decompressing a page and
reconstructing a patched page are also fairly fast, taking 10
and 18 ms respectively.

Swapping out takes approximately 50 ms. However, this
does not include the time to actually write the page to disk.
This is intentional: once the page contents have been cop-
ied to user space, they are immediately available for being
swapped in; and the actual write to the disk might be delayed
because of file system and OS buffering in Domain-0.
Swapping in, on the other hand, is the most expensive opera-
tion, taking approximately 7 ms. There are a few caveats,
however. First, swapping in is an asynchronous operation
and might be affected by several factors, including process
scheduling within Domain-0; it is not a tight bound. Second,
swapping in might require reading the page from disk, and
the seek time will depend on the size of the swap file, among
other things.

5.2. Real-world applications
We now present the performance of Difference Engine on a
variety of workloads. We seek to answer two questions. First,
how effective are the memory-saving mechanisms at reduc-
ing memory usage for real-world applications? Second, what
is the impact of those memory-sharing mechanisms on
system performance? Since the degree of possible sharing
depends on the software configuration, we consider several
different cases of application mixes.

To put our numbers in perspective, we conduct head-to-
head comparisons with VMware ESX server for three differ-
ent workload mixes. We run ESX Server 3.0.1 build 32,039 on
a Dell PowerEdge 1950 system. Note that even though this
system has two 2.3-GHz Intel Xeon processors, our VMware
license limits our usage to a single CPU. We therefore restrict
Xen (and, hence, Difference Engine) to use a single CPU for
fairness. We also ensure that the OS images used with ESX
match those used with Xen, especially the file system and disk
layout. Note that we are only concerned with the effectiveness
of the memory sharing mechanisms—not in comparing the
application performance across the two hypervisors. In an
effort to compare the performance of Difference Engine to
ESX in its most aggressive configuration, we configure both
to scan 10,000 pages/s, the highest rate allowed by ESX.a

The Xen VMM does not perform any I/O (delegating all
I/O to Domain-0) and is not aware of any devices. Thus, it
is not possible to build swap support directly in the VMM.
Further, since Difference Engine supports unmodified OSes,
we cannot expect any support from the guest OS. Hence, we
implement a single swap daemon (swapd) running as a user
process in Domain-0 to manage swap space. For each VM in
the system, swapd creates a separate thread to handle swap-
in requests.

To swap out a page, swapd makes a hypercall into
Xen, where a victim page is chosen by invoking the global
clock. If the victim is a compressed or patched page, we
first reconstruct it. We pause the VM that owns the page
and copy the contents of the page to a page in Domain-0’s
address space (supplied by swapd). Next, we remove all
entries pointing to the victim page in the P2M and M2P
maps, and in the shadow page tables. We then mark the
page as swapped out in the corresponding page table entry.
Meanwhile, swapd writes the page contents to the swap
file and inserts the corresponding byte offset in a hash
table keyed by <Domain ID, guest page-frame number>.
Finally, we free the page, return it to the domain heap, and
reschedule the VM.

When a VM tries to access a swapped page, it incurs a
page fault and traps into Xen. We pause the VM and allocate
a fresh page to hold the swapped in data. We populate the
P2M and M2P maps appropriately to accommodate the new
page. Xen dispatches a swap-in request to swapd contain-
ing the domain ID and the faulting page-frame number. The
handler thread for the faulting domain in swapd receives
the request and fetches the location of the page in the swap
file from the hash table. It then copies the page contents
into the newly allocated page frame within Xen via another
hypercall. At this point, swapd notifies Xen, and Xen restarts
the VM at the faulting instruction.

5. EVALUATION
We first present micro-benchmarks to evaluate the cost of
individual operations, the performance of the global clock
and the behavior of each of the three mechanisms in iso-
lation. Next, we evaluate whole system performance: for a
range of workloads, we measure memory savings and the
impact on application performance. We present head-to-
head comparisons with the VMware ESX server. Finally,
we demonstrate how our memory savings can be used to
boost the aggregate system performance. Unless other-
wise mentioned, all experiments are run on dual-proces-
sor, dual-core 2.33-GHz Intel Xeon machines and the page
size is 4KB.

5.1. Cost of individual operations
Before quantifying the memory savings provided by
Difference Engine, we measure the overhead of various
functions involved. Table 2 shows the overhead imposed by
the major Difference Engine operations. As expected, col-
lapsing identical pages into a copy-on-write shared page
(share_page) and recreating private copies (cow_break)
are relatively cheap operations, taking approximately 6 and
25 ms, respectively. Perhaps more surprising, however, is

Table 2. CPU overhead of different functions.

Function Mean execution time (ms)

share_pages        6.2
cow_break      25.1
compress_page      29.7
uncompress       10.4
patch_page    338.1
unpatch       18.6
swap_out_page      48.9
swap_in_page 7151.6

Base Scenario—Homogeneous VMs: In our first set of
benchmarks, we test the base scenario where all VMs on a
machine run the same OS and applications. This scenario
is common in cluster-based systems where several services
are replicated to provide fault tolerance or load balancing.
Our expectation is that significant memory savings are
available and that most of the savings will come from page
sharing.

On a machine running standard Xen, we start from 1 to 6
VMs, each with 256MB of memory and running RUBiS8—an
e-commerce application designed to evaluate application
server performance—on Debian 3.1. We use the PHP imple-
mentation of RUBiS; each instance consists of a Web server
(Apache) and a database server (MySQL). Two distinct client
machines generate the workload, each running the standard
RUBiS workload generator simulating 100 user sessions.
The benchmark runs for roughly 20 min. The workload gen-
erator reports several metrics at the end of the benchmark,
in particular the average response time and the total num-
ber of requests served.

We then run the same set of VMs with Difference Engine
enabled. Both the total number of requests and the average
response time remain unaffected while Difference Engine
delivers 65%–75% memory savings. In this case, the bulk
of memory savings comes from page sharing. Recall that
Difference Engine tries to share as many pages as it can
before considering pages for patching and compression,
so sharing is expected to be the largest contributor in most
cases, particularly in homogeneous workloads.

We next compare Difference Engine performance with
the VMware ESX server. We set up four 512MB virtual
machines running Debian 3.1. Each VM executes dbench2
for 10 min followed by a stabilization period of 20 min.
Figure 2 shows the amount of memory saved as a function
of time. First, note that eventually both ESX and Difference

OCtober 2010 | vol. 53 | no. 10 | communications of the acm 91

Engine reclaim roughly the same amount of memory (the
graph for ESX plateaus beyond 1,200 s). However, while
dbench is executing, Difference Engine delivers approxi-
mately 1.5 times the memory savings achieved by ESX. As
before, the bulk of Difference Engine savings come from
page sharing for the homogeneous workload case.
Heterogeneous OS and Applications: Given the increasing
trend toward virtualization, both on the desktop and in the
data center, we envision that a single physical machine will
host significantly different types of operating systems and
workloads. While smarter VM placement and scheduling
will mitigate some of these differences, there will still be
a diverse and heterogeneous mix of applications and envi-
ronments, underscoring the need for mechanisms other
than page sharing. We now examine the utility of Difference
Engine in such scenarios, and demonstrate that significant
additional memory savings result from employing patching
and compression in these settings.

Figures 3 and 4 show the memory savings as a function
of time for the two heterogeneous workloads—Mixed-1
and Mixed-2 described in Section 3.2. We make the follow-
ing observations. First, in steady state, Difference Engine
delivers a factor of 1.6–2.5 more memory savings than ESX.
For instance, for the Mixed-2 workload, Difference Engine
could host the three VMs allocated 512MB of physical
memory each in approximately 760MB of machine memory;
ESX would require roughly 1,100MB of machine memory.
The remaining, significant, savings come from patching
and compression. And these savings come at a small cost.
Table 3 summarizes the performance of the three bench-
marks in the Mixed-1 workload. The baseline configuration
is regular Xen without Difference Engine. In all cases, per-
formance overhead of Difference Engine is within 7% of the
baseline. For the same workload, we find that performance
under ESX with aggressive page sharing is also within 5% of
the ESX baseline with no page sharing.
Increasing Aggregate System Performance: Difference Engine
goes to great lengths to reclaim memory in a system, but eventu-
ally this extra memory needs to actually get used in a productive

80

100
DE Shared
DE Patched
DE Compressed

ESX aggressive

DE total

60

40

20

0
0 200 400 600 800

Time (s)

S
av

in
gs

 (%
)

1000 1200

Figure 2. Four identical VMs execute dbench. Both Difference Engine
and ESX eventually yield similar savings, but DE extracts more
savings while the benchmark is in progress.

70

60

DE Shared
DE Patched
DE Compressed

ESX aggressive

DE total50

40

30

20

10

0
0 200 400 600 800

Time (s)

S
av

in
gs

 (%
)

1000 1200 1400 1600

Figure 3. Memory savings for Mixed-1. Difference Engine saves up to
45% more memory than ESX.

a  After initial publication of our results, we were informed by VMware
that this version of ESX silently limits the effective page-sharing rate to a
maximum of 450 pages/sec per vm regardless of the configured scan rate.

research highlights

92 communications of the acm | october 2010 | vol. 53 | no. 10

deliver better aggregate performance. The remaining lines
show the performance with up to three extra VMs. Clearly,
Difference Engine enables higher aggregate performance
compared to the baseline. However, beyond a certain point
(two additional VMs in this case), the overhead of manag-
ing the extra VMs begins to offset the performance benefits:
Difference Engine has to manage 4.5GB of memory on a sys-
tem with 2.8GB of RAM to support seven VMs. In each case,
beyond 1,400 clients, the VM’s working set becomes large
enough to invoke the paging mechanism: we observe between
5,000 pages (for one extra VM) to around 20,000 pages (for
three extra VMs) being swapped out, of which roughly a fourth
get swapped back in.

6. CONCLUSION
One of the primary bottlenecks to higher degrees of virtual
machine multiplexing is main memory. Earlier work shows
that substantial memory savings are available from harvest-
ing identical pages across virtual machines when running
homogeneous workloads. The premise of this work is that
there are significant additional memory savings available
from locating and patching similar pages and in-memory
page compression. We present the design and evaluation
of Difference Engine to demonstrate the potential memory
savings available from leveraging a combination of whole
page sharing, page patching, and compression. Our per-
formance evaluation shows that Difference Engine delivers
an additional factor of 1.6–2.5 more memory savings than
VMware ESX server for a variety of workloads, with minimal
performance overhead. Difference Engine mechanisms
might also be leveraged to improve single OS memory man-
agement; we leave such exploration to future work.

Acknowledgments
In the course of the project, we received invaluable assis-
tance from a number of people at VMware. We would like to
thank Carl Waldspurger, Jennifer Anderson, and Hemant
Gaidhani, and the Performance Benchmark group for feed-
back and discussions on the performance of ESX server.
Also, special thanks are owed to Kiran Tati for assisting

Table 3. Application performance under Difference Engine for the
heterogeneous workload Mixed-1 is within 7% of the baseline.

Kernel
Compile (s)

Vim
compile,

lmbench (s)
RUBiS

requests

RUBiS
response
time(ms)

Baseline 670 620 3149 1280
DE 710 702 3130 1268

70

60

DE Shared
DE Patched
DE Compressed

ESX aggressive

DE total
50

40

30

20

10

0
0 200 400 600 800

Time (s)

S
av

in
gs

 (%
)

1000 1200 1400 1600

Figure 4. Memory savings for Mixed-2. Difference Engine saves
almost twice as much memory as ESX.

600 800 1,000 1,200 1,400 1,600

Total offered load (# clients)

50,000

100,000

150,000

200,000

250,000

To
ta

l r
eq

ue
st

s
ha

nd
le

d

Baseline 4VMs
DE 5VMs
DE 6VMs
DE 7VMs

Figure 5. Up to a limit, Difference Engine can help increase aggregate
system performance by spreading the load across extra VMs.

manner. One can certainly use the saved memory to create more
VMs, but does that increase the aggregate system performance?

To answer this question, we created four VMs with 650MB
of RAM each on a physical machine with 2.8GB of free
memory (excluding memory allocated to Domain-0). For the
baseline (without Difference Engine), Xen allocates mem-
ory statically. Upon creating all the VMs, there is clearly not
enough memory left to create another VM of the same con-
figuration. Each VM hosts a RUBiS instance. For this experi-
ment, we used the Java Servlets implementation of RUBiS.
There are two distinct client machines per VM to act as work-
load generators.

The goal is to increase the load on the system to satu-
ration. The solid line in Figure 5 shows the total requests
served for the baseline, with the total offered load marked
on the X-axis. Beyond 960 clients, the total number of
requests served plateaus at around 180,000 while the
average response time (not shown) increases sharply. Upon
investigation, we find that for higher loads all of the VMs
have more than 95% memory utilization and some VMs actu-
ally start swapping to disk (within the guest OS). Using fewer
VMs with more memory (e.g., 2 VMs with 1.2GB RAM each)
did not improve the baseline performance for this workload.

Next, we repeat the same experiment with Difference
Engine, except this time we utilize reclaimed memory to cre-
ate additional VMs. As a result, for each data point on the
X-axis, the per VM load decreases, while the aggregate offered
load remains the same. We expect that since each VM individ-
ually has lower load compared to the baseline, the system will

Diwaker Gupta (diwaker@asterdata.
com), University of California, San Diego,
Currently at Aster Data.

Sangmin Lee (sangmin@cs.utexas. edu),
University of California, San Diego,
Currently at UT Austin.

Michael Vrable (mvrable@cs.ucsd.edu),
University of California, San Diego.

Stefan Savage (savage@cs.ucsd.edu),
University of California, San Diego.

Alex C. Snoeren (snoeren@cs.ucsd.
edu), University of California,
San Diego.

George Varghese (varghese@cs.ucsd.
edu), University of California, San Diego.

Geoffrey M. Voelker (voelker
@cs.ucsd.edu), University of California,
San Diego.

Amin Vahdat (vahdat@cs.ucsd.edu),
University of California, San Diego.

OCtober 2010 | vol. 53 | no. 10 | communications of the acm 93

	 1.	 http://sysbench.sourceforge.net/.
	 2.	 http://samba.org/ftp/tridge/dbench/.
	 3.	 http://www.iozone.org/.
	 4.	 http://www.azillionmonkeys.com/qed/

hash.html.
	 5.	B arham, P., Dragovic, B., Fraser, K.,

Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A. Xen and the
art of virtualization. In Proceedings
of the 19th ACM Symposium on
Operating Systems Principles (2003).

	 6.	B roder, A.Z. Identifying and filtering
near-duplicate documents. In
Proceedings of the 11th Annual
Symposium on Combinatorial Pattern
Matching (2000).

	 7.	B ugnion, E., Devine, S., Rosenblum, M.
Disco: Running commodity operating
systems on scalable multiprocessors.
In Proceedings of the 16th ACM
Symposium on Operating System
Principles (1997).

	 8.	C ecchet, E., Marguerite, J.,
Zwaenepoel, W. Performance and
scalability of EJB applications.
In Proceedings of the 17th ACM
Conference on Object-oriented
Programming, Systems, Languages,
and Applications (2002).

	 9.	D ouglis, F. The compression cache:
Using on-line compression to extend
physical memory. In Proceedings
of the USENIX Winter Technical
Conference (1993).

	10.	D ouglis, F., Iyengar, A. Application-
specific delta-encoding via
resemblance detection. In
Proceedings of the USENIX Annual
Technical Conference (2003).

	11.	 Kloster, J.F., Kristensen, J., Mejlholm,
A. On the feasibility of memory
sharing. Master’s thesis, Aalborg
University (2006).

	12.	 Kulkarni, P., Douglis, F., Lavoie, J.,

with ESX setup and monitoring and to Emil Sit for provid-
ing insightful feedback on the paper. Finally, we would like
to thank Michael Mitzenmacher for his assistance with
min-wise hashing, our OSDI shepherd Fred Douglis for his
insightful feedback and support, Rick Farrow at ;login; and
the anonymous OSDI ’08 reviewers for their valuable com-
ments. This work was supported in part by NSF CSR-PDOS
Grant No. CNS-0615392, the UCSD Center for Networked
Systems (CNS), and UC Discovery Grant 07–10237. Vrable
was supported in part by an NSF Graduate Research
Fellowship.�

References

Tracey, J.M. Redundancy elimination
within large collections of files. In
Proceedings of the USENIX Annual
Technical Conference (2004).

	13.	 MacDonald, J. xdelta. http://www.
xdelta.org/.

	14.	 Manber, U., Wu, S. GLIMPSE:
A tool to search through entire
file systems. In Proceedings of
the USENIX Winter Technical
Conference (1994).

	15.	 McVoy, L., Staelin, C. lmbench:
Portable tools for performance
analysis. In Proceedings of the
USENIX Annual Technical Conference
(1996).

	16.	T anenbaum, A.S. Modern Operating
Systems. Prentice Hall (2007).

	17.	T uduce, I.C., Gross, T. Adaptive main
memory compression. In Proceedings

of the USENIX Annual Technical
Conference (2005).

	18.	 Vrable, M., Ma, J., Chen, J., Moore, D.,
VandeKieft, E., Snoeren, A.C., Voelker,
G.M., Savage, S. Scalability, fidelity and
containment in the Potemkin virtual
honeyfarm. In Proceedings of the 20th
ACM Symposium on Operating System
Principles (2005).

	19.	W aldspurger, C.A. Memory resource
management in VMware ESX server. In
Proceedings of the 5th ACM/USENIX
Symposium on Operating System
Design and Implementation (2002).

	20.	W ilson, P.R., Kaplan, S.F.,
Smaragdakis, Y. The case for
compressed caching in virtual
memory systems. In Proceedings
of the USENIX Annual Technical
Conference (1999).

© 2010 ACM 0001-0782/10/1000 $10.00

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

http://www.xdelta.org/
http://sysbench.sourceforge.net/
http://samba.org/ftp/tridge/dbench/
http://www.iozone.org/
http://www.azillionmonkeys.com/qed/hash.html
http://www.azillionmonkeys.com/qed/hash.html
mailto:mvrable@cs.ucsd.edu
mailto:savage@cs.ucsd.edu
mailto:voelker@cs.ucsd.edu
mailto:vahdat@cs.ucsd.edu
http://www.mentornet.net
http://www.acm.org/mentornet
http://www.xdelta.org/
mailto:snoeren@cs.ucsd.edu
mailto:snoeren@cs.ucsd.edu
mailto:varghese@cs.ucsd.edu
mailto:varghese@cs.ucsd.edu
mailto:voelker@cs.ucsd.edu
mailto:sangmin@cs.utexas. edu
mailto:diwaker@asterdata.com
mailto:diwaker@asterdata.com

94 communications of the acm | october 2010 | vol. 53 | no. 10

When a pair of nuclear-powered Russian
submarines was reported patrolling
off the eastern seaboard of the U.S. last
summer, Pentagon officials expressed
wariness over the Kremlin’s motiva-
tions. At the same time, these officials
emphasized their confidence in the U.S.
Navy’s tracking capabilities: “We’ve
known where they were,” a senior De-
fense Department official told the New
York Times, “and we’re not concerned
about our ability to track the subs.”

While the official did not divulge
the methods used by the Navy to track
submarines, the Times added that such
tracking “can be done from aircraft,
ships, underwater sensors, or other
submarines.” But the article failed
to mention perhaps the most impor-
tant part of modern tracking technol-
ogy—the algorithm that fuses differ-
ent measurements at different times.
Nearly every modern tracking system
is based on the seminal work of Rudolf
Kalman1 who developed the optimal
fusion algorithm for linear dynamics
under Gaussian noise. This algorithm,
now known simply as the “Kalman
filter” is used in a remarkably broad
range of real-world applications—
from patient monitoring to spaceship
navigation. But in the 50 years since
Kalman first published his algorithm,
it has become apparent that the prob-
lem it addresses is a special case of a
much more general problem.

This general problem, known as
“Bayesian inference in graphical mod-
els,” is defined on a graph where the
nodes denote random variables and
edges encode direct probabilistic de-
pendencies. Each node has access to a
noisy measurement about its state. In
the case of tracking a submarine, the
tth node will represent the location of a
submarine at time t, and edges will con-
nect node t to node t+1 in a temporal
chain, representing the fact that a sub-
marine’s current location is highly de-
pendent on its location in the previous
time. Kalman’s algorithm allows one to
efficiently compute the optimal esti-
mate of the submarine’s location, given

all the measurements. It assumes the
probabilistic dependencies are Gauss-
ian and the graph is a temporal chain.

The generalization of Kalman’s al-
gorithm to arbitrary graphical models
is called “belief propagation”2 and it
originated in the late 1970s after Judea
Pearl read a paper by the cognitive
psychologist David Rumelhart on how
children comprehend text.3 Rumelhart
presented compelling evidence that
text comprehension must be, first, a
collaborative computation among a
vast number of autonomous, neural-
like modules, each doing an extremely
simple and repetitive task and, sec-
ond, that some kind of friendly “hand-
shaking” must take place between
top-down and bottom-up modes of in-
ference, for example, the meaning of a
sentence helps disambiguate a word
while, at the same time, recognizing a
word helps disambiguate a sentence.
This disambiguation is similar to what
happens in a Kalman filter (where
measurements at one time can dis-
ambiguate measurements at another
time), but the dependency structure is
certainly not a temporal chain.

Not caring much about general-
ity, Pearl pieced together the simplest
structure he could think of (that is, a
tree) and tried to see if anything useful
can be computed by assigning each vari-
able a simple processor, forced to com-
municate only with its neighbors. This
gave rise to the tree-propagation algo-
rithm and, a year later, to belief propa-
gation on poly-trees, which supported
bi-directional inferences and interac-
tions known as “explaining-away.”

Although several algorithms were
later developed to perform Bayesian
updating in general, “loopy” struc-
tures, the prospects of achieving such
updating by local message passing
process remained elusive. Out of to-
tal frustration, yet still convinced that
such algorithms must guide many of
our cognitive abilities, Pearl imag-
ined a “shortsighted” algorithm that
totally ignores the loopy structure of
the graph and propagates messages

as if each module is situated in a poly-
tree environment. He then assigned
as a homework exercise2 the task of
evaluating the extent to which this un-
informed algorithm could serve as an
approximation to the exact Bayesian
inference problem. This “homework
exercise” was partially solved by differ-
ent researchers in the last decade and
loopy belief propagation is now used
successfully in applications ranging
from satellite communication to driv-
er assistance.

The success of loopy belief propaga-
tion, however, has been limited to dis-
crete state spaces. In the following pa-
per, Sudderth et al. provide an elegant
algorithm that handles continuous
variables. Unlike the Kalman filter, it
does not require the probabilistic de-
pendencies to be Gaussian, relying in-
stead on stochastic algorithms known
as “Monte Carlo” algorithms. An exten-
sion to Kalman filters called “particle
filters” also uses Monte Carlo algo-
rithms, but the authors provide an al-
gorithm that can work with any depen-
dency structure, not just a temporal
chain. They show how their algorithm
successfully solves some important
“loopy” problems in computer-vision
and sensor networks. One only won-
ders if in the future such algorithms
will be used to solve the really difficult
problems—figuring out the Kremlin’s
intent from partial, noisy observations,
or reading text as children do.	

References
1.	 Kalman, R.E. A new approach to linear filtering and

prediction problems. Transactions of the ASME—
Journal of Basic Engineering 82, Series D (1960)
35-45.

2.	 Pearl, J. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

3.	R umelhart, D. Toward and interactive model of
reading. Technical Report CHIP-56, Center for Human
Information Processing, University of California, San
Diego, 1976.

Yair Weiss (yweiss@cs.huji.ac.il) is a professor in the
School of Computer Science and Engineering at The
Hebrew University of Jerusalem, Israel.

Judea Pearl (Judea@cs.ucla.edu) is a professor of
computer science and director of the Cognitive Systems
Laboratory at University of California, Los Angeles.

© 2010 ACM 0001-0782/10/1000 $10.00

Technical Perspective
Belief Propagation
By Yair Weiss and Judea Pearl

research highlights

doi:10.1145/1831407.1831430

mailto:yweiss@cs.huji.ac.il
mailto:Judea@cs.ucla.edu

doi:10.1145/1831407.1831431

october 2010 | vol. 53 | no. 10 | communications of the acm 95

Nonparametric Belief Propagation
By Erik B. Sudderth, Alexander T. Ihler, Michael Isard, William T. Freeman, and Alan S. Willsky

Abstract
Continuous quantities are ubiquitous in models of real-
world phenomena, but are surprisingly difficult to reason
about automatically. Probabilistic graphical models such
as Bayesian networks and Markov random fields, and algo-
rithms for approximate inference such as belief propaga-
tion (BP), have proven to be powerful tools in a wide range of
applications in statistics and artificial intelligence. However,
applying these methods to models with continuous variables
remains a challenging task. In this work we describe an exten-
sion of BP to continuous variable models, generalizing par-
ticle filtering, and Gaussian mixture filtering techniques for
time series to more complex models. We illustrate the power
of the resulting nonparametric BP algorithm via two applica-
tions: kinematic tracking of visual motion and distributed
localization in sensor networks.

1. Introduction
Graphical models provide a powerful, general framework for
developing statistical models in such diverse areas as bioin-
formatics, communications, natural language processing,
and computer vision.28 However, graphical formulations
are only useful when combined with efficient algorithms
for inference and learning. Such algorithms exist for many
discrete models, such as those underlying modern error cor-
recting codes and machine translation systems.

For most problems involving high-dimensional continu-
ous variables, comparably efficient and accurate algorithms
are unavailable. Alas, these are exactly the sorts of problems
that arise frequently in areas like computer vision. Difficulties
begin with the continuous surfaces and illuminants that digi-
tal cameras record in grids of pixels, and that geometric recon-
struction algorithms seek to recover. At a higher level, the
articulated models used in many tracking applications have
dozens of degrees of freedom to be estimated at each time
step.41, 45 Realistic graphical models for these problems must
represent outliers, bimodalities, and other non-Gaussian sta-
tistical features. The corresponding optimal inference pro-
cedures for these models typically involve integral equations
for which no closed form solution exists. It is thus necessary
to develop families of approximate representations, and algo-
rithms for fitting those approximations.

In this work we describe the nonparametric belief propa-
gation (NBP) algorithm. NBP combines ideas from Monte
Carlo3 and particle filtering6, 11 approaches for represent-
ing complex uncertainty in time series, with the popular
belief propagation (BP) algorithm37 for approximate infer-
ence in complex graphical models. Unlike discretized
approximations to continuous variables, NBP is not limited
to low-dimensional domains. Unlike classical Gaussian
approximations, NBP’s particle-based messages can rep-
resent, and consistently reason about, the multimodal

distributions induced by many real-world datasets. And
unlike particle filters, NBP can exploit the rich nonsequen-
tial structure of more complex graphical models, like those
in Figure 1.

We begin in Section 2 by reviewing graphical models,
BP, Monte Carlo methods, and particle filters. Section 3
then develops the two stages of the NBP algorithm: a belief
fusion step which combines information from multiple par-
ticle sets, and a message propagation step which accounts
for dependencies among random variables. We review a
pair of previous real-world applications of NBP in Section
4: kinematic tracking of visual motion (Figures 6 and 7)
and distributed localization in sensor networks (Figure 8).
Finally, we conclude in Section 5 by surveying algorithmic
and theoretical developments since the original introduc-
tion of NBP.

2. Inference in Graphical Models
Probabilistic graphical models decompose multivariate
distributions into a set of local interactions among small
subsets of variables. These local relationships produce
conditional independencies which lead to efficient learn-
ing and inference algorithms. Moreover, their modular

The original versions of this paper were entitled “Non
parametric Belief Propagation,” by E. Sudderth, A. Ihler,
W. Freeman, and A. Willsky, and “PAMPAS: Real-Valued
Graphical Models for Computer Vision,” by M. Isard.
Both appeared in the IEEE Conference on Computer Vision
and Pattern Recognition, June 2003.

Hidden Markov model

Graphical models

Figure 1. Particle filters assume variables are related by a hidden
Markov model (top). The NBP algorithm extends particle filtering
techniques to arbitrarily structured graphical models, such as those
for arrays of image pixels (bottom left) or articulated human motion
(bottom right).

96 communications of the acm | october 2010 | vol. 53 | no. 10

research highlights

2.2. Belief propagation
For graphs that are acyclic or tree-structured, the desired
conditional distributions p(xi | y) can be directly calculated
by a local message-passing algorithm known as belief propa-
gation (BP).37, 50 At each iteration of the BP algorithm, nodes
j Î V calculate messages mji(xi) to be sent to each neighbor-
ing node i Î G(j):

The outgoing message is a positive function defined on Xi.
Intuitively, it is a (possibly approximate) sufficient statistic
of the information that node j has collected regarding xi. At
any iteration, each node can produce an approximation qi(xi)
to the marginal distribution p(xi | y) by combining incoming
messages with the local evidence potential:

These updates are graphically summarized in Figure 2.
For tree-structured graphs, the approximate marginals,
or beliefs, qi (xi) will converge to the true marginals p(xi | y)
once messages from each node have propagated across
the graph. With an efficient update schedule, the mes-
sages for each distinct edge need only be computed once,
and BP can be seen as a distributed variant of dynamic
programming.

Because each iteration of the BP algorithm involves only
local message updates, it can be applied even to graphs
with cycles. For such graphs, the statistical dependen-
cies between BP messages are not accounted for, and the
sequence of beliefs qi(xi) will not converge to the true mar-
ginals. In many applications, however, the resulting loopy
BP algorithm37 exhibits excellent empirical performance.8,

14, 15, 49 Recently, several theoretical studies have provided
insight into the approximations made by loopy BP, estab-
lishing connections to other variational inference algo-
rithms47 and partially justifying its application to graphs
with cycles.20, 23, 34, 50, 51

The BP algorithm implicitly assumes messages mji(xi) have
a finite parameterization, which can be tractably updated
via the integral of Equation 2. Most implementations

structure provides an intuitive language for expressing
domain-specific knowledge about variable relationships
and facilitates the transfer of modeling advances to new
applications.

Several different formalisms have been proposed that
use graphs to represent probability distributions.28, 30, 47, 50
Directed graphical models, or Bayesian networks, are widely
used in artificial intelligence to encode causal, generative
processes. Such directed graphs provided the basis for the
earliest versions of the BP algorithm.37 Alternatively, undi-
rected graphical models, or Markov random fields (MRFs),
provide popular models for the symmetric dependencies
arising in such areas as signal processing, spatial statistics,
bioinformatics, and computer vision.

2.1. Pairwise Markov random fields
An undirected graph G is defined by a set of nodes V and a
corresponding set of undirected edges E (see Figure 1). Let
Γ(i) ∆= { j | (i, j) Î E} denote the neighborhood of a node i Î V.
MRFs associate each node i Î V with an unobserved, or hid-
den, random variable xi Î Xi. Let x = {xi | i Î V} denote the
set of all hidden variables. Given evidence or observations y,
a pairwise MRF represents the posterior distribution p(x | y)
in factored form:

Here, the proportionality sign indicates that p(x, y) may
only be known up to an uncertain normalization constant,
chosen so that it integrates to one. The positive potential
functions ψij(xi, xj) > 0 can often be interpreted as soft, local
constraints. Note that the local evidence potential ψi(xi, y)
does not typically equal the marginal distribution p(xi | y),
due to interactions with other potentials.

In this paper, we develop algorithms to approximate the
conditional marginal distributions p(xi | y) for all i Î V. These
densities lead to estimates of xi, such as the posterior mean
[xi | y], as well as corresponding measures of uncertainty.
We focus on pairwise MRFs due to their simplicity and popu-
larity in practical applications. However, the nonparametric
updates we present may also be directly extended to models
with higher-order potentials.

xi

y

qi (xi) ∝ ψi(xi, y) Π
j∈Γ(i)

mji(xi)

mji(xi) ∝ ÚXj

ψij(xi, xj)ψj(xj, y) Π
k∈Γ(j)\ i

mkj(xj) dxj

xj

y

xi

Figure 2. Message-passing recursions underlying the BP algorithm. Left: Approximate marginal (belief) estimates combine the local
observation potential with messages from neighboring nodes. Right: A new outgoing message (red) is computed from all other incoming
messages (blue).

october 2010 | vol. 53 | no. 10 | communications of the acm 97

assume each hidden variable xi takes one of K discrete values
(|Xi| = K), so that messages and marginals can be represented
by K-dimensional vectors. The message update integral then
becomes a matrix–vector product, which in general requires
O(K2) operations. This variant of BP is sometimes called the
sum–product algorithm.30

For graphical models with continuous hidden vari-
ables, closed-form evaluation of the BP update integral
is only possible when the posterior is jointly Gaussian.
The resulting Gaussian BP algorithm, which uses linear
algebra to update estimates of posterior mean vectors
and covariance matrices, generalizes Kalman smoothing
algorithms for linear dynamical systems.2 More gener-
ally, a fixed K-point discretization sometimes leads to an
effective histogram approximation of the true continuous
beliefs.13, 14 However, as K must in general grow exponen-
tially with the dimension of Xi, computation of the dis-
crete messages underlying such approximations can be
extremely demanding.

2.3. Monte Carlo methods
By using random samples to simulate probabilistic models,
Monte Carlo methods3 provide flexible alternatives to varia-
tional methods like BP. Given a target distribution p(x | y),
many inference tasks can be expressed via the expected
value Ep[f (x)] of an appropriately chosen function. Given L
independent samples from p(x | y), the desired sta-
tistic can be approximated as follows:

This estimate is unbiased, and converges to Ep[f (x)] almost
surely as L → ∞. For the graphical models of interest here,
however, exact sampling from p(x | y) is intractable.

Importance sampling provides an alternative based on a
proposal distribution q(x), chosen so that q(–x) > 0 wherever
p(–x | y) > 0. Defining the importance weight function as
w(x)  = –p(x | y)/q(x), where p(x | y) ∝ –p(x | y) up to some poten-
tially unknown normalization constant, the expectation of
Equation 4 can be rewritten as follows:

Importance sampling thus estimates the target expectation
via a collection of L weighted samples .

For high-dimensional models like the full joint distri-
bution of Equation 1, designing tractable proposal dis-
tributions that closely approximate p(x | y) is extremely
challenging. Even minor discrepancies can produce
widely varying importance weights w(l), which may in turn
cause the estimator of Equation 5 to have a huge variance
even for large L. Instead, we use importance sampling to
locally approximate intermediate computations in the BP
algorithm.

2.4. Particle filters
Our approach is inspired by particle filters, an approximate
inference algorithm specialized for hidden Markov models
(HMMs). As depicted graphically in Figure 1, an HMM mod-
els a sequence of T observations y = {y1, …, yT} via a corre-
sponding set of hidden states x:

Recognizing this factorization as a special case of the pair-
wise MRF of Equation 1, the “forward” BP messages passed
to subsequent time steps are defined via the recursion

For continuous Xt where this update lacks a closed form,
particle filters6, 11 approximate the forward BP messages
mt−1, t(xt) via a collection of L weighted samples, or particles,

. Importance sampling is used to recursively
update the particle locations and weights via a single,
forward pass through the observations. A variety of proposal
distributions q(xt+1 | xt, yt+1), which aim to approximate
p(xt+1 | xt,  yt+1), have been suggested.6 For example, the
“bootstrap filter” samples , and incorporates
evidence via weights .

For the simple algorithm sketched above, each message
update introduces additional approximations, so that the
expected variance of the importance weights w(l)

t increases
over time. Particle filters avoid such sample depletion via a
resampling operation, in which the highest-weight particles
at time t determine a larger proportion of the outgoing mes-
sage particles  . The bootstrap filter then becomes:

After such resampling, outgoing message particles are
equally weighted as , l = 1, …, L. By stochastically
selecting the highest-weight particles multiple times, resam-
pling dynamically focuses the particle filter’s computational
resources on the most probable regions of the state space.

3. Nonparametric BP
Although particle filters can be adapted to an extremely wide
range of dynamical models and observation types, they are
specialized to the structure of temporal filtering problems.
Conversely, loopy BP can in principle be applied to graphs of
any structure, but is only analytically tractable when all hidden
variables are discrete or jointly Gaussian. In this section, we
describe an NBP algorithm26, 44 that generalizes sequential
Monte Carlo methods to arbitrary graphs. As in regularized
particle filters,11 we approximate the true BP messages and
beliefs by nonparametric density estimates. Importance
sampling and MCMC approximations then update these
sample-based messages, propagating information from local
observations throughout the graph.

3.1. Nonparametric representations
Consider again the BP algorithm of Section 2.2, and suppose

(8)

98 communications of the acm | october 2010 | vol. 53 | no. 10

research highlights

that messages mji(xi) are approximated by a set of weighted,
discrete samples. If Xi is continuous and these messages are
constructed from independent proposal distributions, their
particles will be distinct with probability one. For the mes-
sage product operation underlying the BP algorithm to pro-
duce sensible results, some interpolation of these samples
to nearby states is thus needed.

We accomplish this interpolation, and ensure that mes-
sages are smooth and strictly positive, by convolving raw
particle sets with a Gaussian distribution, or kernel:

Here, N(x; m, L) denotes a normalized Gaussian density
with mean m and covariance L, evaluated at x. As detailed
later, we use methods from the nonparametric density
estimation literature to construct these mixture approxi-
mations.42 The product of two Gaussians is itself a scaled
Gaussian distribution, a fact which simplifies our later
algorithms.

3.2. Message fusion
We begin by assuming that the observation potential is a
Gaussian mixture. Such representations arise naturally
from learning-based approaches to model identification.14
The BP belief update of Equation 3 is then defined by a
product of d = (|G(i)| + 1) mixtures: the observation poten-
tial ψi(xi, y), and messages mji(xi) as in Equation 9 from
each neighbor. As illustrated in Figure 3, the product of d
Gaussian mixtures, each containing L components, is itself
a mixture of Ld Gaussians. While in principle this belief
update could be performed exactly, the exponential growth
in the number of mixture components quickly becomes
intractable.

The NBP algorithm instead approximates the product
mixture via a collection of L independent, possibly impor-
tance weighted samples   from the “ideal”
belief of Equation 3. Given these samples, the bandwidth
Li of the nonparametric belief estimate (Equation 10) is
determined via a method from the extensive kernel den-
sity estimation literature.42 For example, the simple “rule
of thumb” method combines a robust covariance estimate
with an asymptotic formula that assumes the target density
is Gaussian. While fast to compute, it often oversmooths

multimodal distributions. In such cases, more sophisti-
cated cross-validation schemes can improve performance.

In many applications, NBP’s computations are domi-
nated by the cost of sampling from such products of
Gaussian mixtures. Exact sampling by explicit construc-
tion of the product distribution requires O(Ld) operations.
Fortunately, a number of efficient approximate samplers
have been developed. One simple but sometimes effec-
tive approach uses an evenly weighted mixture of the d
input distributions as an importance sampling proposal.
For higher-dimensional variables, iterative Gibbs sam-
pling algorithms are often more effective.44 Multiscale
KD-tree density representations can improve the mixing
rate of Gibbs samplers, and also lead to “epsilon-exact”
samplers with accuracy guarantees.25 More sophisticated
importance samplers5 and multiscale simulated or par-
allel tempering algorithms39 can also be highly effective.
Yet more approaches improve efficiency by introducing
an additional message approximation step.19, 22, 31 By first
reducing the complexity of each message, the product can
be approximated more quickly, or even computed exactly.
When ψi(xi, y) is a non-Gaussian analytic function, we can
use any of these samplers to construct an importance
sampling proposal from the incoming Gaussian mixture
messages.

3.3. Message propagation
The particle filter of Section 2.4 propagates belief estimates
to subsequent time steps by sampling .
The consistency of this procedure depends critically on the
HMM’s factorization into properly normalized conditional
distributions, so that ∫p(xt+1 | xt)dxt+1 = 1 for all xt Î Xt. By def
inition, such conditional distributions place no biases on xt.
In contrast, for pairwise MRFs, the clique potential ψij(xi, xj)
is an arbitrary nonnegative function that may influence the
values assumed by either linked variable. To account for
this, we quantify the marginal influence of ψij(xi, xj) on xj via
the following function:

If ψij(xi, xj) is a Gaussian mixture, ψij(xj) is simply the mixture
obtained by marginalizing each component. In the common
case where ψij(xi, xj) = ~ψij(xi − xj) depends only on the differ-
ence between neighboring variables, the marginal influence
is constant and may be ignored.

As summarized in the algorithm of Figure 4, NBP
approximates the BP message update of Equation 2 in two
stages. Using the efficient algorithms discussed in Section
3.2, we first draw L independent samples from a partial
belief estimate combining the marginal influence func-
tion, observation potential, and incoming messages. For
each of these auxiliary particles , we then interpret the
clique potential as a joint distribution and sample par-
ticles  from the conditional density proportional to

.
Particle-based approximations are only meaningful

when the corresponding BP messages mji(xi) are finitely inte-
grable. Some models, however, contain nonnormalizable

Figure 3. A product of three mixtures of L = 4 1D Gaussians. Although
the 43 = 64 components in the product density (thin lines) vary widely
in position and weight (scaled for visibility), their normalized sum
(thick line) has a simple form.

october 2010 | vol. 53 | no. 10 | communications of the acm 99

potentials that nevertheless encode important constraints.
For example, the kinematic tracking and sensor localiza-
tion applications considered in Section 4 both involve
“repulsive” potentials, that encourage pairs of variables to
not take similar values. In such cases, the NBP algorithm
in Figure 4 instead stores the weighted particles needed
to evaluate mji(

–xi) at any location –xi of interest. These mes-
sages then influence subsequent iterations via importance
weighting.

As illustrated in Figure 2, the BP update of message
mji(xi) is most often expressed as a transformation of the
incoming messages from all other neighboring nodes
k Î G(j)\i. From Equations 2 and 3, however, it can also be
expressed as

This transformation suggests an alternative belief sampling
form of the NBP algorithm, in which the latest belief esti-
mate provides a proposal distribution for auxiliary particles

. Overcounting of mij(xj) may then be avoided
via importance weights . Computationally,
belief sampling offers clear advantages: computation of
new outgoing messages to d neighbors requires O(dL) oper-
ations, versus the O(d2L) cost of the approach in Figure 4.
Statistically, belief sampling also has potentially desirable
properties,26, 29 but can be less stable when the number of
particles L is small.22

4. Illustrative Applications
In this section we show several illustrative examples of
applications that use NBP to reason about structured col-
lections of real-valued variables. We first show examples
of kinematic tracking problems in computer vision, in
which the variables represent the spatial position of parts
of an object. We then show how a similar formulation can
be used for collaborative self-localization and tracking
in wireless sensor networks. Other applications of NBP
include deformable contour tracking for medical image
segmentation,46 image denoising and super-resolution,38
learning flexible models of dynamics and motor response
in robotic control,17 error correcting codes defined for
real-valued codewords,31, 43 and sparse signal reconstruc-
tion using compressed sensing principles.4 NBP has also
been proposed as a computational mechanism for hier-
archical Bayesian information processing in the visual
cortex.32

4.1. Visual tracking of articulated motion
Visual tracking systems use video sequences from one
or more cameras to estimate object motion. Some of the
most challenging tracking applications involve articu-
lated objects, whose jointed motion leads to complex
pose variations. For example, human motion capture is
widely used in visual effects and scene understanding
applications.33 Estimates of human, and especially hand,
motion are also used to build more expressive computer
interfaces.48

To illustrate the difficulties, we consider a toy 2D object
localization problem in Figure 5. The model consists of
nine nodes: a central circle, and four jointed arms com-
posed of two rectangular links. The circle node’s state x0
encodes its position and radius, while each rectangular
link node’s state xi encodes its position, angle, width, and
height. Each arm prefers one of the four compass direc-
tions, arms pivot around their inner joints, and geometry is
loosely enforced via Gaussian pairwise potentials ψij(xi , xj);
for details see Isard.26

Our goal is to find the object in a sea of clutter (white
shapes in Figure 5) whose elements look exactly like com-
ponents of the object. This mimics the difficulties faced
in real video sequences: statistical detectors for individ-
ual object parts often falsely fire on background regions,
and global geometric reasoning is needed to disambigu-
ate them. Applied to this model, NBP’s particles encode
hypotheses about the pose xi of individual object parts,
while messages use geometric constraints to propagate
information between parts. When all of the true object’s
parts are visible, NBP localizes it after a single iteration. By
using Gaussian mixture potentials ψi(xi , y) that allow occa-
sional outliers in observed part locations, NBP remains
successful even when the central circle is missing. In this
case, however, it takes more iterations to propagate infor-
mation from the visible arms.

Kinematic tracking of real hand motion poses far
greater challenges. Even coarse models of the hand’s
geometry have 26 continuous degrees of freedom: each
finger’s joints have four angles of rotation, and the palm

Figure 4. Nonparametric BP update for the message mji(xi) sent from
node j to node i, as in Figure 2.

Given input messages mkj(xj) for each k Î G(j)\i, which may be either

kernel densities mkj(xj) = {xkj
(l), wkj

(l), Λkj}
L
l=1 or analytic functions, construct an

output message mji(xi) as follows:

	 1.	�D etermine the marginal influence ϕij(xj) of Equation (11).

	 2.	D raw L independent, weighted samples from the product

Optionally resample by drawing L particles with replacement

according to , giving evenly weighted particles.

	 3.	� If ψij(xi, xj) is normalizeable (∫ψij(xi, xj = x–) dxi < ∞ for all x– Î Xj),

construct a kernel-based output message:

(a) �For each auxiliary particle , sample an outgoing particle

Using importance sampling or MCMC methods as needed.

(b) �Set to account for importance weights in steps 2–4(a).

(c) �Set Λi via some bandwidth selection method (see Silverman42).

4.	 Otherwise, treat mji(xi) as an analytic function

parameterized by the auxiliary particles .

100 communications of the acm | october 2010 | vol. 53 | no. 10

research highlights

may take any 3D position and orientation.48 The graphi-
cal models in Figure 6 instead encode hand pose via the
3D pose of 16 rigid bodies.45 Analytic pairwise potentials
then capture kinematic constraints (phalanges are con-
nected by revolute joints), structural constraints (two
fingers cannot occupy the same 3D volume), and Markov
temporal dynamics. The geometry of individual rigid bod-
ies is modeled via quadric surfaces (a standard approach
in computer graphics), and related to observed images via
statistical color and edge cues.45

Because different fingers are locally similar in appear-
ance, global inference is needed to accurately associate
hand components to image cues. Discretization of the 6D
pose variable for each rigid body is intractable, but as illus-
trated in Figure 6, NBP’s sampling-based message approx-
imations often lead to accurate hand localization and
tracking. While we project particle outlines to the image
plane for visualization, we emphasize NBP’s estimates are
of 3D pose.

Finally, Figure 7 illustrates a complementary approach
to multicamera tracking of 3D person motion.41 While the
hand tracker used rigid kinematic potentials, this graphi-
cal model of full-body pose is explicitly “loose limbed,”
and uses pairwise potentials estimated from calibrated,
3D motion capture data. Even without the benefit of
dynamical cues or highly accurate image-based likeli-
hoods, we see that NBP successfully infers the full human
body pose.

4.2. Sensor self-localization
Another problem for which NBP has been very successful

is sensor localization.22 One of the critical first tasks in
using ad-hoc networks of wireless sensors is to deter-
mine the location of each sensor; the high cost of manual
calibration or specialized hardware like GPS units makes
self-localization, or estimating position based on local in-
network information, very appealing. As with articulated
tracking, we will be estimating the position of a number
of objects (sensors) using joint information about the
objects’ relative positions. Specifically, let us assume that
some subset of pairs of sensors (i, j) Î E are able to measure
a noisy estimate of their relative distance (e.g., through
signal strength of wireless communication or measuring
time delays of acoustic signals). Our measurements yij tell
us something about the relative positions xi, xj of two sen-
sors; assuming independent noise, the likelihood of our
measurements is

We can see immediately that this likelihood has the form
of a pairwise graphical model whose edges are the pairs of
sensors with distance measurements. Typically we assume
a small number of anchor sensors with known or partially
known position to remove translational, rotational, and
mirror image ambiguity from the geometry.

Figure 6. Articulated 3D hand tracking with NBP. Top: Graphical
models capturing the kinematic, structural, and temporal
constraints relating the hand’s 16 rigid bodies. Middle: Given a
single input image, projected estimates of hand pose after one
(left) and four (right) NBP iterations. Bottom: Two frames showing
snapshots of tracking performance from a monocular video
sequence.

Figure 5. Detection of a toy, four-armed articulated object (top
row) in clutter. We show NBP estimates after 0, 1, and 3 iterations
(columns), for cases where the circular central joint is either visible
(middle row) or occluded (bottom row).

october 2010 | vol. 53 | no. 10 | communications of the acm 101

A small 10-sensor network with 24 edges is shown in
Figure 8, indicating both the true 2D sensor positions
(nodes) and inter-sensor measurements (edges). The
beliefs obtained using NBP are displayed on the right, by
showing 500 samples from the estimated belief; the true
sensor positions are also superimposed (red dots). The
initial beliefs are highly non-Gaussian and often fairly
diffuse (top row). As information propagates through the
graph and captures more of the inter-sensor dependen-
cies, these beliefs tend to shrink to good estimates of the
sensor positions. However, in some cases, the measure-
ments themselves are nearly ambiguous, resulting in a
bimodal posterior distribution. For example, the sensor
located in the bottom right has only three, nearly colin-
ear neighbors, and so can be explained almost as well by
“flipping” its position across the line. Such bimodalities
indicate that the system is not fully constrained, and are
important to identify as they indicate sensors with poten-
tially significant errors in position.

5. Discussion
The abundance of problems that involve continuous variables
has given rise to a variety of related algorithms for estimating
posterior probabilities and beliefs in these systems. Here we
describe several influential historical predecessors of NBP,
and then discuss subsequent work that builds on or extends
some of the same ideas.

As mentioned in Section 2.2, direct discretization of
continuous variables into binned “histogram” poten-
tials can be effective in problems with low-dimensional
variables.4 In higher-dimensional problems, however,
the number of bins grows exponentially and quickly
becomes intractable. One possibility is to use domain
specific heuristics to exclude those configurations that
appear unlikely based on local evidence.8, 14 However, if
the local evidence used to discard states is inaccurate

6

5

1 3

2 4

7

8

ψ34

ψ43ψ21

ψ12

9

6

5

1 3

2 4

7

8

0

9

1

ψ34

time

..
9

9

2 ψ43ψ

Figure 7. Articulated 3D person tracking with NBP.41 Top: Graphical model
encoding kinematic and dynamic relationships (left), and spatial and
temporal potential functions (right) learned from mocap data. Middle:
Bottom-up limb detections, as seen from two of four camera views.
Bottom: Estimated body pose following 30 iterations of NBP.

Figure 8. NBP for self-localization in a small network of 10 sensors. Left: Sensor positions, with edges connecting sensor pairs with noisy
distance measurements. Right: Each panel shows the belief of one sensor (scatterplot), along with its true location (red dot). After the first
iteration of message passing, beliefs are diffuse with non-Gaussian uncertainty. After 10 iterations, the beliefs have stabilized near the true
values. Some beliefs remain multimodal, indicating a high degree of uncertainty in that sensor’s position due to near-symmetries that remain
ambiguous given the measurements.

Iteration 1:

. . .

...
Iteration 10:

. . .

102 communications of the acm | october 2010 | vol. 53 | no. 10

research highlights

efficiency of Monte Carlo estimates given a set of samples.
Another example, Hot Coupling,18 uses a sequential order-
ing of the graph’s edges to define a sequence of importance
sampling distributions.

The intersection of variational and Monte Carlo meth-
ods for approximate inference remains an extremely active
research area. We anticipate many further advances in the
coming years, driven by increasingly varied and ambitious
real-world applications.

Acknowledgments
The authors thank L. Sigal, S. Bhatia, S. Roth, and M. Black
for providing the person tracking results in Figure 7. Work
of WTF supported by NGA NEGI-1582-04-0004 and by MURI
Grant N00014-06-1-0734. Work of ASW supported by AFOSR
Grant FA9559-08-1-1080 and a MURI funded through AFOSR
Grant FA9550-06-1-0324.�

or misleading, these approximations will heavily distort
the resulting estimates.

One advantage of Monte Carlo and particle filtering
methods lies in the fact that their discretization of the
state space is obtained stochastically, and thus has excel-
lent theoretical properties. Examples include statistical
consistency, and convergence rates that do not depend
on the dimension.10 While particle filters are typically
restricted to “forward” sequential inference, the connec-
tion to discrete inference has been exploited to define
smoothing (forward and backward) algorithms,6 and to
perform resampling to dynamically improve the approxi-
mation.35 Monte Carlo approximations were also previ-
ously applied to other tree-structured graphs, including
junction trees.9, 29

Gaussian mixture models also have a long history of use
in inference. In Markov chains, an algorithm for forward
inference using Gaussian mixture approximations was first
proposed by Alspach and Sorenson1; see also Anderson
and Moore.2 Regularized particle filters smooth each par-
ticle with a small, typically Gaussian kernel to produce a
mixture model representation of forward messages.11 For
Bayesian networks, Gaussian mixture-based potentials
and messages have been applied to junction tree-based
inference.12

NBP combines many of the best elements of these meth-
ods. By sampling, we obtain probabilistic approximation
properties similar to particle filtering. Representing mes-
sages as Gaussian mixture models provides smooth esti-
mates similar to regularized particle filters, and interfaces
well with Gaussian mixture estimates of the potential func-
tions.12, 14, 17, 38 NBP extends these ideas to “loopy” message
passing and approximate inference.

Since the original development of NBP, a number of
algorithms have been developed that use alternative
representations for inference on continuous, or hybrid,
graphical models. Of these, the most closely related is
particle BP, which uses a simplified importance sam-
pling representation of messages, more closely resem-
bling the representation of (unregularized) particle
filters. This form enables the derivation of convergence
rates similar to those available for particle filtering,21 and
also allows the algorithm to be extended to more general
inference techniques such as reweighted message-pass-
ing algorithms.24

Other forms of message representation have also been
explored. Early approaches to deterministic discrete mes-
sage approximation would often mistakenly discard states
in the early stages of inference, due to misleading local
evidence. More recently, dynamic discretization tech-
niques have been developed to allow the inference pro-
cess to recover from such mistakes by re-including states
that were previously removed.7, 27, 36 Other approaches sub-
stitute alternative, smoother message representations,
such as Gaussian process-based density estimates.40

Finally, several authors have developed additional ways
of combining Monte Carlo sampling with the principles of
exact inference. AND/OR importance sampling,16 for exam-
ple, uses the structure of the graph to improve the statistical

	 1.	A lspach, D.L. and Sorenson, H.W.
Nonlinear Bayesian estimation
using Gaussian sum
approximations, Morgan Kaufmann.
IEEE Trans. AC 17, 4 (Aug. 1972),
439–448.

	 2.	A nderson, B.D.O., Moore, J.B. Optimal
Filtering. Prentice Hall, New Jersey,
1979.

	 3.	A ndrieu, C., de Freitas, N., Doucet, A.,
Jordan, M.I. An introduction to MCMC
for machine learning. Mach. Learn. 50
(2003), 5–43.

	 4.	B aron, D., Sarvotham, S., Baraniuk,
R.G. Bayesian compressive sensing
via belief propagation. IEEE
Trans. Sig. Proc. 58, 1 (2010), 269–280.

	 5.	B riers, M., Doucet, A., Singh, S.S.
Sequential auxiliary particle belief
propagation. In ICIF (2005),
705–711.

	 6.	C appé, O., Godsill, S.J., Moulines, E.
An overview of existing methods and
recent advances in sequential Monte
Carlo. Proc. IEEE 95, 5 (May 2007),
899–924.

	 7.	C oughlan, J., Shen, H. Dynamic
quantization for belief propagation
in sparse spaces. Comput. Vis.
Image Underst. 106, 1 (2007),
47–58.

	 8.	C oughlan, J.M., Ferreira, S.J. Finding
deformable shapes using loopy belief
propagation. In ECCV, vol. 3, (2002),
453–468.

	 9.	D awid, A.P., Kjærulff, U., Lauritzen, S.L.
Hybrid propagation in junction trees.
In Advances in Intelligent Computing
(1995), 87–97.

10.	D el Moral, P. Feynman-Kac
Formulae: Genealogical and
Interacting Particle Systems with
Applications. Springer-Verlag,
New York, 2004.

11.	D oucet, A., de Freitas, N., Gordon, N.,
eds. Sequential Monte Carlo Methods
in Practice. Springer-Verlag, New York,
2001.

12.	D river, E., Morrell, D. Implementation
of continuous Bayesian networks
using sums of weighted Gaussians.
In UAI (1995), 134–140.

13.	 Felzenszwalb, P.F., Huttenlocher,
D.P. Pictorial structures for object
recognition. IJCV 61, 1 (2005),
55–79.

14.	 Freeman, W.T., Pasztor, E.C.,
Carmichael, O.T. Learning low-
level vision. IJCV 40, 1 (2000),

25–47.
15.	 Frey, B.J., MacKay, D.J.C. A revolution:

Belief propagation in graphs with
cycles. In NIPS 10 (1998), MIT Press,
479–485.

16.	G ogate, V., Dechter, R. AND/OR
importance sampling. In UAI (2008),
212–219.

17.	G rimes, D.B., Rashid, D.R., Rao, R.P.
Learning nonparametric models
for probabilistic imitation. In NIPS
(2007), MIT Press, 521–528.

18.	H amze, F., de Freitas, N. Hot
coupling: A particle approach
to inference and normalization
on pairwise undirected graphs
of arbitrary topology. In
NIPS 18 (2006), MIT Press,
491–498.

19.	H an, T.X., Ning, H., Huang, T.S.
Efficient nonparametric belief
propagation with application to
articulated body tracking. In CVPR
(2006), 214–221.

20.	H eskes, T. On the uniqueness of loopy
belief propagation fixed points. Neural
Comp. 16 (2004), 2379–2413.

21.	I hler, A., McAllester, D. Particle
belief propagation. In AI Stat. 12
(2009).

22.	I hler, A.T., Fisher, J.W., Moses, R.L.,
Willsky, A.S. Nonparametric belief
propagation for self-localization
of sensor networks. IEEE J. Sel.
Areas Commun. 23, 4 (Apr. 2005),
809–819.

23.	I hler, A.T., Fisher, J.W., Willsky, A.S.
Loopy belief propagation: Convergence
and effects of message errors. JMLR
6 (2005), 905–936.

24.	I hler, A.T., Frank, A.J., Smyth, P.
Particle-based variational inference
for continuous systems. In NIPS 22
(2009), 826–834.

25.	I hler, A.T., Sudderth, E.B., Freeman,
W.T., Willsky, A.S. Efficient multiscale
sampling from products of Gaussian
mixtures. In NIPS 16 (2004), MIT
Press.

26.	I sard, M. PAMPAS: Real-valued
graphical models for computer
vision. In CVPR, vol. 1 (2003),
613–620.

27.	I sard, M., MacCormick, J., Achan, K.
Continuously-adaptive discretization
for message-passing algorithms.
In NIPS (2009), MIT Press,
737–744.

28.	 Jordan, M.I. Graphical models. Stat.

References

october 2010 | vol. 53 | no. 10 | communications of the acm 103

Sci. 19, 1 (2004), 140–155.
29.	 Koller, D., Lerner, U., Angelov, D.

A general algorithm for approximate
inference and its application to
hybrid Bayes nets. In UAI 15
(1999), Morgan Kaufmann,
324–333.

30.	 Kschischang, F.R., Frey, B.J., Loeliger,
H.-A. Factor graphs and the sum-
product algorithm. IEEE Trans. IT 47,
2 (Feb. 2001), 498–519.

31.	 Kurkoski, B., Dauwels, J. Message-
passing decoding of lattices using
Gaussian mixtures. In ISIT (July
2008).

32.	 Lee, T.S., Mumford, D. Hierarchical
Bayesian inference in the visual
cortex. J. Opt. Soc. Am. A 20, 7
(July 2003), 1434–1448.

33.	 Moeslund, T.B., Hilton, A., Kruger, V.
A survey of advances in vision-based
human motion capture and analysis.
Comput. Vision Image Underst. 104
(2006), 90–126.

34.	 Mooij, J.M., Kappen, H.J. Sufficient
conditions for convergence of
the sum-product algorithm.
IEEE Trans. IT 53, 12 (Dec. 2007),
4422–4437.

35.	N eal, R.M., Beal, M.J., Roweis, S.T.
Inferring state sequences for
non-linear systems with
embedded hidden Markov
models. In NIPS 16 (2004),

MIT Press.
36.	N eil, M., Tailor, M., Marquez, D.

Inference in hybrid Bayesian
networks using dynamic
discretization. Stat. Comput. 17, 3
(2007), 219–233.

37.	 Pearl, J. Probabilistic Reasoning
in Intelligent Systems. Morgan
Kaufman, San Mateo, 1988.

38.	R ajaram, S., Gupta, M.D., Petrovic, N.,
Huang, T.S. Learning-based
nonparametric image super-
resolution. EURASIP J. Appl.
Signal Process. (2006),
229–240.

39.	R udoy, D. Wolf, P.J. Multi-scale
MCMC methods for sampling from
products of Gaussian mixtures.
In ICASSP, vol. 3 (2007), III-1201–
III-1204.

40.	S eeger M. Gaussian process
belief propagation. In
Predicting structured data
(2007), 301–318.

41.	S igal, L., Bhatia, S., Roth, S.,
Black, M.J., Isard, M. Tracking
loose-limbed people. In CVPR
(2004).

42.	S ilverman, B.W. Density Estimation for
Statistics and Data Analysis. Chapman
& Hall, London, 1986.

43.	S ommer, N., Feder, M., Shalvi, O.
Low-density lattice codes. IEEE
Trans. Info. Theory 54, 4 (2008),

1561–1585.
44.	S udderth, E.B., Ihler, A.T., Freeman,

W.T., Willsky, A.S. Nonparametric
belief propagation. In CVPR, vol. 1
(2003), 605–612.

45.	S udderth, E.B., Mandel, M.I.,
Freeman, W.T., Willsky, A.S. Visual
hand tracking using nonparametric
belief propagation. In CVPR
Workshop on Generative Model Based
Vision (June 2004).

46.	S un, W., Cetin, M., Chan, R.,
Willsky,, A.S. Learning the
dynamics and time-recursive
boundary detection of deformable
objects. IEEE Trans. IP 17, 11
(Nov. 2008), 2186–2200.

47.	W ainwright, M.J., Jordan, M.I.
Graphical models, exponential
families, and variational inference.
Foundations Trends Mach. Learn. 1,
(2008), 1–305.

48.	W u, Y., Huang, T.S. Hand modeling,
analysis, and recognition. IEEE
Signal Proc. Mag. (May 2001),
51–60.

49.	Y anover, C., Weiss, Y. Approximate
inference and protein-folding.
In NIPS 16 (2003), MIT Press,
1457–1464.

50.	Y edidia, J.S., Freeman, W.T.,
Weiss, Y. Understanding belief
propagation and its
generalizations. In G. Lakemeyer
 and B. Nebel, eds. Exploring
Artificial Intelligence in
the New Millennium.
Morgan Kaufmann, 2002.

51.	Y edidia, J.S., Freeman, W.T.,
Weiss, Y. Constructing free energy
approximations and generalized
belief propagation algorithms.
IEEE Trans. IT 51, 7 (July 2005),
2282–2312.

Erik B. Sudderth (sudderth@cs.brown.
edu), Brown University, Providence, RI.

Alexander T. Ihler (ihler@ics.uci.edu),
University of California, Irvine.

Michael Isard (misard@microsoft.com),
Microsoft Research, Mountain View, CA.

William T. Freeman (billf@mit.edu),
Massachusetts Institute of Technology,
Cambridge, MA.

Alan S. Willsky (willsky@mit.edu),
Massachusetts Institute of Technology,
Cambridge, MA.

© 2010 ACM 0001-0782/10/1000 $10.00

◆ ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACM Member, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

◆ ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2010. (Please consult with your tax advisor.)

◆ Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s Lifetime Membership Plan!

CACM lifetime mem half page ad:Layout 1 2/3/10 2:21 PM Page 1

mailto:sudderth@cs.brown.edu
mailto:ihler@ics.uci.edu
mailto:misard@microsoft.com
mailto:billf@mit.edu
mailto:willsky@mit.edu
http://www.acm.org/life
mailto:sudderth@cs.brown.edu

http://www.reviews.com
http://Reviews.com
http://Reviews.com

October 2010 | vol. 53 | no. 10 | communications of the acm 105

careers

Auburn University
Department of Computer Science
and Software Engineering
Assistant/Associate Professor

The Department of Computer Science and Soft-
ware Engineering (CSSE) invites applications for
a tenure-track faculty position at the Assistant /
Associate Professor level to begin Spring 2011 or
Fall 2011. We encourage candidates from all ar-
eas of computer science and software engineer-
ing to apply. We are especially interested in can-
didates specializing in software engineering and
cyber security. Candidates selected for these posi-
tions must be able to meet eligibility requirements to
work in the United States at the time appointment is
scheduled to begin and continue working legally for
the proposed term of employment; excellent commu-
nication skills required.

Applicants should submit a current curriculum
vita, research vision, teaching philosophy, and the
names and addresses of three references to Kai H.
Chang, Professor and Chair, kchang@eng.auburn.
edu (with copy to bjl0002@auburn.edu).

The applicant review process will begin Octo-
ber 15 2010. Detailed announcement of this posi-
tion can be found at: http://www.eng.auburn.edu/
csse/ Auburn University is an Affirmative Action/
Equal Opportunity Employer. Women and minori-
ties are encouraged to apply.

Azusa Pacific University
Instructor / Lab Manager

Azusa Pacific University, an evangelical Christian
university, announces the opening of a full-time
faculty position in the Department of Computer
Science beginning fall 2010. The ideal candidate
should have a Master’s degree in Computer Sci-
ence or Computer Information Systems and be
able to provide evidence of teaching excellence.
Women and minorities are encouraged to ap-
ply. Position subject to final funding. For a full
job description please go to http://www.apu.edu/
provost/employment/positions.

Duke University
Department of Computer Science
Tenure-track Faculty Positions - Assistant
Professor Level

The Department of Computer Science at Duke
University invites applications and nominations
for tenure-track faculty positions at an assistant
professor level, to begin August 2011. We are
interested in strong candidates in all active re-
search areas of computer science -- including
algorithms, artificial intelligence, computer ar-
chitecture, computer vision, database systems,
distributed systems, machine learning, operating
systems, optimization, programming languages,
and security – as well as interdisciplinary areas

to complement the increasing diversity of the
student body.

Montana State University
RightNow Technologies Professorships in
Computer Science

The Montana State University Computer Science
Department is searching for two faculty members
at either the Assistant, Associate or Full level,
based on experience. Candidates at the Associ-
ate or Full level must have established or rising
prominence in their field. A three-year start-up
package is being provided by RightNow Tech-
nologies. Montana State University is a Carnegie
Foundation RU/VH research university with an
enrollment of approximately 13,000. The website
www.cs.montana.edu/faculty-vacancies has infor-
mation on position requirements and application
procedures. ADA/EO/AA/Veterans Preference.

NEC Laboratories America, Inc.
Research Staff Member - Distributed Systems

NEC Laboratories America, Inc. (http://www.nec-
labs.com) conducts research in support of NEC
U.S. and global businesses. The research program
covers many areas–reflecting the breadth of NEC
business–and maintains a balanced mix of fun-
damental and applied research.

The Large-Scale Distributed Systems group
conducts advanced research in the area of design,
analysis, modeling and evaluation of distributed
systems. Our current focus is to create innovative
technologies to build next generation large-scale
computing platforms and to simplify and auto-
mate the management of complex IT systems
and services. Our researchers have expertise in
networking, statistics, modeling, distributed sys-
tems, and operating systems. Our group has many
ongoing projects, especially in the emerging Cloud
Computing area. The group strongly believes in
publishing our research and advancing the state-
of-the-art. We also build technologies that solve
real world problems and ultimately help industry
business needs. Many of our research results have
been/will be transferred into industry products.

The group is seeking a member to work in the
area of distributed systems. The candidate must
have deep knowledge and extensive experience in
system architecture design and implementation.
He/she must have a PhD in CS/CE with strong
publication records in the following areas:

˲˲ distributed systems, operating systems
˲˲ virtualization, resource provisioning
˲˲ �performance, reliability, dependability

and security
˲˲ data centers and cloud computing

For consideration, please forward your re-
sume and a research statement to recruit@nec-
labs.com and reference “ASDS-RSM” in the sub-
ject line. EOE/AA/MFDV.

such as computational economics and computa-
tional biology.

The department is committed to increasing the
diversity of its faculty, and we strongly encourage ap-
plications from women and minority candidates.

A successful candidate must have a solid
disciplinary foundation and demonstrate prom-
ise of outstanding scholarship in every respect,
including research and teaching. Please refer to
www.cs.duke.edu for information about the de-
partment and to www.provost.duke.edu/faculty/
for information about the advantages that Duke
offers to faculty.

Applications should be submitted online at
www.cs.duke.edu/facsearch. A Ph.D. in computer
science or related area is required. To guarantee
full consideration, applications and letters of ref-
erence should be received by November 1, 2010.

Durham, Chapel Hill, and the Research Tri-
angle of North Carolina are vibrant, diverse, and
thriving communities, frequently ranked among
the best places in the country to live and work.
Duke and the many other universities in the area
offer a wealth of education and employment op-
portunities for spouses and families.

Duke University is an affirmative action, equal
opportunity employer.

Michigan Technological University
Computer Network Systems Administration
Faculty Opening

The School of Technology at Michigan Techno-
logical University in Houghton, Michigan invites
applications for a faculty position in the Computer
Network Systems Administration (CNSA) program
starting January 2010. Primary responsibilities are
to instruct students in the CNSA program and es-
tablish a record of sustained scholarship. Informa-
tion about the School of Technology, along with
the curriculum, course descriptions, and complete
announcement, can be found on-line at: http://
www.tech.mtu.edu/. Send requested application
materials to Dean Frendewey at: jimf@mtu.edu

Michigan Technological University is an
Equal Opportunity Educational Institution/Equal
Opportunity Employer.

Middlebury College
Visiting Assistant Professor

Middlebury College invites applications for a
three-year faculty position in computer science,
at the rank of Visiting Assistant Professor, begin-
ning September 2011. Specialization is open, with
preference for candidates working in systems or
interdisciplinary areas. For more information,
see http://www.cs.middlebury.edu/job.

Review of applications will begin October 15,
2010, and continue until the position is filled.

Middlebury College is an Equal Opportunity
Employer, committed to hiring a diverse faculty

mailto:kchang@eng.auburn.edu
mailto:bjl0002@auburn.edu
http://www.eng.auburn.edu/csse/
http://www.apu.edu/provost/employment/positions
http://www.tech.mtu.edu/
mailto:jimf@mtu.edu
http://www.cs.middlebury.edu/job
http://www.cs.montana.edu/faculty-vacancies
mailto:recruit@neclabs.com
http://www.eng.auburn.edu/csse/
http://www.apu.edu/provost/employment/positions
http://www.tech.mtu.edu/
mailto:recruit@neclabs.com
mailto:kchang@eng.auburn.edu
http://www.cs.duke.edu
http://www.provost.duke.edu/faculty/
http://www.cs.duke.edu/facsearch
http://www.nec-labs.com/
http://www.nec-labs.com/

106 communications of the acm | October 2010 | vol. 53 | no. 10

careers

promise, potential for developing an externally
funded research program, and commitment to
quality advising and teaching at the graduate and
undergraduate levels. A hired candidate who has
not defended his or her Ph.D. by September will be
hired at the rank of Instructor, and must complete
the Ph.D. by December 31, 2011 to be eligible for
tenure-track title retroactive to start date.

Applicants should go to http://www.cs.rutgers.
edu/employment/ to apply. Required materials
are a curriculum vitae, a research statement ad-
dressing both past work and future plans, a teach-
ing statement, and three references.

Applications should be received by November
15, 2010 for full consideration.

Rutgers values academic diversity and encour-
ages applications from individuals with a variety
of experiences, perspectives, and backgrounds.
Females, minorities, dual-career couples, and per-
sons with disabilities are encouraged to apply.

Rutgers is an affirmative
action/equal opportunity employer.

Stanford University
Department of Computer Science
Faculty Opening

The Department of Computer Science at Stanford
University invites applications for a tenure-track
faculty position at the junior level (Assistant or
untenured Associate Professor). We give higher
priority to the overall originality and promise of
the candidate’s work than to the candidate’s sub-

Nuance Communications
Senior Software Engineer

Senior Software Engineer wanted to develop
speech recognition software for OEM-based mo-
bility handsets. Must have Master’s deg. in Comp.
Sci, Engineering or a rel. field & 2 yrs. software
programming or engineering involving C/C++
programming & debugging & incl. embedded
software development. Must have strong profi-
ciency in C language, as demonstrated through
employer screening test. Must have strong inter-
personal skills for dealing directly with custom-
ers both verbally & in writing. Send resume to
Melissa Cornell, Employment Specialist, Nuance
Communications, Inc., One Wayside Road, Burl-
ington, MA 01803-4613.

Princeton University
Computer Science
Post Doctoral Research Associate
Postdoc Positions In Compilation For Parallel
Architecture Performance And Reliability

The Liberty Research Group (http://liberty.princ-
eton.edu/) at Princeton University’s Department
of Computer Science is soliciting applications
for a post-doctoral research positions in Compi-
lation for Parallel Architecture Performance and
Reliability. The position is a one-year position,
with possibility of renewal, starting immediately.

The ideal candidate will have recently com-
pleted a Ph.D. in Computer Science and will have

expertise and experience with one or more of the
following:

˲˲ Compiler Analysis and Optimization
˲˲ Affine Transformations
˲˲ Automatic Parallelization
˲˲ Parallel Applications
˲˲ Parallel Architectures
˲˲ Software Fault Tolerance
˲˲ Programming Language Design
˲˲ The LLVM Compiler

Princeton University is an equal opportunity em-
ployer and complies with applicable EEO and affir-
mative action regulations You may apply online at:

https://jobs.cs.princeton.edu/postdoc-august/ .
Questions regarding this position can be sent

by e-mail to David August
(http://www.cs.princetone.edu/~august/),

starting the subject line with “POSTDOC”

Rutgers University
Tenure-Track Position

The Department of Computer Science at Rutgers
University invites applications for faculty positions
at all ranks, with appointments starting in Septem-
ber 2011. The search focuses on theoretical and ap-
plied cryptography, although all candidates whose
research deals with security will be considered.

Applicants for this position must have com-
pleted or be in the process of completing a disserta-
tion in Computer Science or a closely related field,
and should show evidence of exceptional research

© 2010 NAS
(Media: delete copyright notice)

ACM
3.4375 x 4.75"
B&W

www.lanl.gov/jobs

Los Alamos National Laboratory is a premier national security research
institution, delivering innovative scienti c and engineering solutions for
the nation's most crucial and complex problems. Currently, we have an
excellent opportunity available for:

ASSOCIATE DIRECTOR, IT
As a key member of the Laboratory’s senior management team, the
Associate Director for Information Technology will provide leadership,
management, oversight, strategic planning and execution of information
systems and technology programs and services.

The successful candidate we seek will have experience leading large,
complex technical organizations/programs with signi cant  scal and
programmatic responsibilities. Distinguished track record setting
technical direction and goals, developing programs, implementing
effective business practices and systems. A BS degree in a related
technical discipline is required, while a graduate degree is preferred.
The candidate must have the ability to obtain and maintain a DOE Q
Clearance, which normally requires US citizenship.

To apply, please visit www.lanl.gov/jobs
and reference job number 220100.

Los Alamos suppor t s a drug-free
workplace and is an Equal Opportunity
Employer.

                   
         

VCU



  

 
      
        
       
          
        
        
     
         
         
         
     
         
       
           
          
        
    

     
     

       

  
  
      
  

http://liberty.princeton.edu/
http://liberty.princeton.edu/
https://jobs.cs.princeton.edu/postdoc-august/
http://www.lanl.gov/jobs
http://www.lanl.gov/jobs
http://www.cs.rutgers.edu/employment/
http://www.cs.rutgers.edu/employment/
http://www.cs.princetone.edu/~august/
mailto:cmscsearch@vcu.edu

October 2010 | vol. 53 | no. 10 | communications of the acm 107

area of specialization within Computer Science.
We are seeking applicants from all areas of Com-

puter Science, spanning theoretical foundations,
systems, software, and applications. We are also in-
terested in applicants doing research at the frontiers
of Computer Science with other disciplines, espe-
cially those with potential connections to Stanford’s
main multidisciplinary initiatives: Energy, Human
Health, Environment and Sustainability, the Arts
and Creativity, and the International Initiative.

Applicants must have completed (or be com-
pleting) a Ph.D., must have demonstrated the abil-
ity to pursue a program of research, and must have a
strong commitment to graduate and undergraduate
teaching. A successful candidate will be expected to
teach courses at the graduate and undergraduate
levels, and to build and lead a team of graduate stu-
dents in Ph.D. research. Further information about
the Computer Science Department can be found at
http://cs.stanford.edu. The School of Engineering
website may be found at http://soe.stanford.edu.

Applications should include a curriculum
vita, brief statements of research and teaching in-
terests, and the names of at least four references.
Candidates are requested to ask references to
send their letters directly to the search committee.
Applications and letters should be sent to: Search
Committee Chair, c/o Laura Kenny-Carlson, via
electronic mail to search@cs.stanford.edu.

The review of applications will begin on Dec.
1, 2010, and applicants are strongly encouraged
to submit applications by that date; however, ap-
plications will continue to be accepted at least
until March 1, 2011.

Stanford University is an equal opportunity
employer and is committed to increasing the
diversity of its faculty. It welcomes nominations
of and applications from women and members
of minority groups, as well as others who would
bring additional dimensions to the university’s
research and teaching missions.

Texas A&M University
Department of Computer Science and
Engineering
Senior Faculty Position

In recognition of the increasing importance of
computational sciences, the Department of Com-
puter Science and Engineering at Texas A&M
University (http://www.cse.tamu.edu) is recruit-
ing for a senior faculty position in computational
science as broadly defined. This position is one of
three new senior hires dedicated to computation-
al science that were created as part of an initiative
led by the Institute for Applied Mathematics and
Computational Science (http://iamcs.tamu.edu).
There is considerable startup funding available.

Applications are invited for a senior faculty
position in computational sciences, starting fall
2011, in the Department of Computer Science
and Engineering of the Dwight Look College of
Engineering at Texas A&M University.

The Department of Computer Science and
Engineering has 39 tenured, tenure-track faculty
and four senior lecturers. Texas A&M University
CSE faculty members are well recognized for
contributions to their fields. The department cur-
rently has one National Academy of Engineering
member, seven IEEE Fellows, one ACM Fellow
and over ten PYI/NYI/CAREER awardees. Addi-
tional information about the department can be

http://cs.stanford.edu
http://soe.stanford.edu
mailto:search@cs.stanford.edu
http://www.cse.tamu.edu
http://iamcs.tamu.edu
http://www.cityu.edu.hk

108 communications of the acm | October 2010 | vol. 53 | no. 10

careers

minorities are especially encouraged to apply.
A more extensive description of our search can

be found at http://www.cs.jhu.edu/Search2011.
More information on the department is available
at http://www.cs.jhu.edu.

Applicants should apply using the online ap-
plication which can be accessed from http://www.
cs.jhu.edu/apply. Applications should be received
by Dec 1, 2010 for full consideration. Questions
should be directed to fsearch@cs.jhu.edu. The
Johns Hopkins University is an EEO/AA employer.

Faculty Search
Johns Hopkins University
Department of Computer Science
Room 224 New Engineering Building
Baltimore, MD 21218-2682
Phone: 410-516-8775
Fax: 410-516-6134
fsearch@cs.jhu.edu
http://www.cs.jhu.edu/apply

Texas State University-San Marcos
Department of Computer Science

Applications are invited for a tenure-track position
at the rank of Assistant Professor. Applicants must
have completed all requirements for a PhD with spe-
cialization in software engineering by September
1, 2011. Consult the department recruiting page at
http://www.cs.txstate.edu/recruitment/ for job du-
ties, qualifications, application procedures, and in-
formation about the university and the department.

Texas State University-San Marcos will not dis-
criminate against any person (or exclude any person
from participating in or receiving the benefits of any
of its activities or programs) on any basis prohibited
by law, including race, color, age, national origin,
religion, sex or disability, or on the basis of sexual
orientation. Texas State University-San Marcos is a
member of the Texas State University System.

Toyota Technological Institute
at Chicago
Computer Science Faculty Positions
at All Levels

Toyota Technological Institute at Chicago (TTIC)
is a philanthropically endowed degree-granting
institute for computer science located on the
University of Chicago campus. The Institute is
expected to reach a steady-state of 12 traditional
faculty (tenure and tenure track), and 12 limited
term faculty. Applications are being accepted in
all areas, but we are particularly interested in:

˲˲ Theoretical computer science
˲˲ Speech processing
˲˲ Machine learning
˲˲ Computational linguistics
˲˲ Computer vision
˲˲ Computational biology
˲˲ Scientific computing

Positions are available at all ranks, and we
have a large number of limited term positions
currently available.

For all positions we require a Ph.D. Degree or
Ph.D. candidacy, with the degree conferred prior
to date of hire. Submit your application electroni-
cally at: http://ttic.uchicago.edu/facapp/

Toyota Technological Institute at Chicago
is an Equal Opportunity Employer

found at http://www.cse.tamu.edu.
Texas A&M University CSE faculty applicants

should apply online at http://www.cse.tamu.edu/
dept_faculty. For questions concerning the posi-
tion, contact: search@cse.tamu.edu .

Texas A&M University is an equal opportunity/
affirmative action employer and actively seeks
candidacy of women and minorities. Applica-
tions are welcome from dual career couples.

The Johns Hopkins University
Department of Computer Science
Tenure-track Faculty Positions

The Department of Computer Science at The
Johns Hopkins University is seeking applications
for tenure-track faculty positions. The search

is open to all areas of Computer Science, with a
particular emphasis on candidates with research
interests in machine learning, theoretical com-
puter science, computational biology, computa-
tional aspects of biomedical informatics, or other
data-intensive or health-related applications.

All applicants must have a Ph.D. in Computer
Science or a related field and are expected to show
evidence of an ability to establish a strong, inde-
pendent, multidisciplinary, internationally rec-
ognized research program. Commitment to qual-
ity teaching at the undergraduate and graduate
levels will be required of all candidates. Prefer-
ence will be given to applications at the assistant
professor level, but other levels of appointment
will be considered based on area and qualifica-
tions. The Department is committed to building
a diverse educational environment; women and

http://www.cse.tamu.edu
http://www.cse.tamu.edu/dept_faculty
mailto:search@cse.tamu.edu
http://www.cs.txstate.edu/recruitment/
http://www.cse.tamu.edu/dept_faculty
http://www.cs.jhu.edu/apply
mailto:fsearch@cs.jhu.edu
http://www.cs.jhu.edu
http://www.cs.jhu.edu/apply
http://www.cs.jhu.edu/apply
mailto:fsearch@cs.jhu.edu
http://www.cs.jhu.edu/Search2011
http://ttic.uchicago.edu/facapp/
http://www.iis.sinica.edu.tw
mailto:recruit@iis.sinica.edu.tw

October 2010 | vol. 53 | no. 10 | communications of the acm 109

Toyota Technological Institute
Faculty Position Open

Toyota Technological Institute has an opening for
a full professor or a tenure-track professor posi-
tion in the Department of Advanced Science and
Technology, Faculty of Engineering. For more in-
formation, please refer to the following website:
http://www.toyota-ti.ac.jp/Jinji/home_E.htm

Research field: Intelligent information pro-
cessing including learning theory and its appli-
cation, information theory and its application,
intelligent systems, computer vision, etc.
Qualifications: The successful candidate must
have a Ph.D degree (or equivalent), a record of out-
standing research achievements, and the ability to
conduct strong research programs in the specified
area. The candidate is expected to teach math-
ematics and programming of the introductory
level and machine learning, information theory
and signal processing at the advanced level. The
supervision of undergraduate and graduate stu-
dents in their research programs is also required.
Starting date: September 2011, or at the earliest
convenience
Documents:

(1) Curriculum vitae
(2) List of publications
(3) Copies of 5 representative publications
(4) �Description of major accomplishments

and future plans for research activities
and education (3 pages)

(5) �Names of two references with e-mail
addresses and phone numbers

(6) �Application form available from our
website

Deadline: December 20th, 2010
Inquiry: Committee chair,
Professor Tatsuo Narikiyo

�(Tel) +81-52-809-1816,
(E-mail) n-tatsuo@toyota-ti.ac.jp

The above should be sent to:
Mr. Takashi Hirato
Administration Division
Toyota Technological Institute
2-12-1, Hisakata, Tempaku-ku
Nagoya, 468-8511 Japan
(Please write “Application for Intelligent In-

formation Processing Laboratory” in red on the
envelope.)

The University of Alabama
at Birmingham
Department of Computer and
Information Sciences
Research Assistant Professor

The Department of Computer & Information Sci-
ences at the University of Alabama at Birmingham
(UAB) is seeking candidates for a non-tenure-track
faculty position at the Research Assistant Profes-
sor level beginning November 1, 2010 or until job
is filled. Candidates with expertise in Bioinfor-
matics, Artificial Intelligence, and Data Mining
who could interact with existing research groups
in the School of Medicine and CIS to apply these
techniques to the study of genetic diseases (in par-
ticular cystic fibrosis) are of interest. Also potential
for multidisciplinary collaboration with research
groups working in the areas of SNP analysis and
the function of introns would be advantageous.
The ideal candidate would also have a graduate

degree in microbiology, biochemistry or genetics
and actual laboratory experience. Experience as an
internal consultant in artificial intelligence/bioin-
formatics in either industry or academia would be
a plus. For additional information about the de-
partment please visit http://www.cis.uab.edu.

Applicants should have demonstrated the po-
tential to excel in one of these areas and in teach-
ing at all levels of instruction. They should also be
committed to professional service including de-
partmental service. A Ph.D. in Computer Science
or closely related field is required.

Applications should include a complete cur-
riculum vita with a publication list, a statement of
future research plans, a statement on teaching ex-
perience and philosophy, and minimally two let-
ters of reference with at least one letter addressing
teaching experience and ability. Applications and
all other materials may be submitted via email to
facapp@cis.uab.edu or via regular mail to:

Search Committee
Department of Computer and Information

Sciences
115A Campbell Hall
1300 University Blvd
Birmingham, AL 35294-1170

Interviewing for the position will begin as
soon as qualified candidates are identified, and
will continue until the position is filled.

The department and university are commit-
ted to building a culturally diverse workforce and
strongly encourage applications from women and
individuals from underrepresented groups. UAB
has an active NSF-supported ADVANCE program

and a Spouse Relocation Program to assist in the
needs of dual career couples. UAB is an Affirmative
Action/Equal Employment Opportunity employer.

University of Chicago
Department of Computer Science
Professor, Associate Professor, Assistant
Professor, and Instructor

The Department of Computer Science at the Univer-
sity of Chicago invites applications from exception-
ally qualified candidates in all areas of Computer
Science for faculty positions at the ranks of Profes-
sor, Associate Professor, Assistant Professor, and
Instructor. The University of Chicago has the high-
est standards for scholarship and faculty quality,
and encourages collaboration across disciplines.

The Chicago metropolitan area provides a di-
verse and exciting environment. The local econ-
omy is vigorous, with international stature in
banking, trade, commerce, manufacturing, and
transportation, while the cultural scene includes
diverse cultures, vibrant theater, world-renowned
symphony, opera, jazz, and blues. The University
is located in Hyde Park, a pleasant Chicago neigh-
borhood on the Lake Michigan shore.

All applicants must apply through the Univer-
sity’s Academic Jobs website, academiccareers.
uchicago.edu/applicants/Central?quickFind=51071.
A cover letter, curriculum vitae including a list of
publications, a statement describing past and cur-
rent research accomplishments and outlining future
research plans, a description of teaching experience,
and a list of references must be uploaded to be con-

ACCEPT THE NAVY CHALLENGE
Become a member of an elite research and development community

involved in basic and applied scientific research and
advanced technological development for tomorrow’s Navy.

NAVAL RESEARCH LABORATORY
Senior Scientist for Advanced Computing Concepts

ST-1310, $119,554 to $179,700* per annum
*Rate limited to the rate for level III of the Executive Schedule (5U.S.C. 5304(g)(2))

Serves as the technical expert in the diverse areas of high performance computing and networking.
The position provides expertise in scalable, massively parallel systems, the storage technologies
required to service these systems, networking research, and application expertise for application
to the memory – and speed-intensive Department of Navy computational problems.

Provides vision and technical direction to research efforts in massively parallel computing and
high performance networking, including prototype systems.

As a distinguished scientist and recognized leader in his/her field the incumbent will be called
upon to brief DoD senior officials regarding Laboratory research efforts in the above areas, to
serve as an NRL liaison to the Navy and other national and international organizations, and to
consult on important scientific and programmatic issues. Because of the sensitivity of some of
the applications the incumbent must be eligible for TS-SCI security clearance.

Applicants should be recognized as national/international authorities in the above areas of
research, and should have demonstrated the scientific vision and organizational skills necessary
to bring long term, multi-faceted research programs to successful completion.

A resume or Optional Application for Federal Employment (OF-612) must be received by
November 1, 2010. Apply to: Naval Research Laboratory, ATTN: Ginger Kisamore, Code
1810 Announcement #NWO-XXXX-00-K9734979-FL, 4555 Overlook Avenue, SW, Washington,
DC 20375-5324 or apply online at https://hro1.nrl.navy.mil/jobs/index.htm. Faxed or emailed
applications Will Not be accepted. Please contact Ginger Kisamore atginger.kisamore@nrl.
navy.mil for more information.

Navy is an Equal Opportunity Employer

http://www.toyota-ti.ac.jp/Jinji/home_E.htm
mailto:n-tatsuo@toyota-ti.ac.jp
http://www.cis.uab.edu
mailto:facapp@cis.uab.edu
https://hro1.nrl.navy.mil/jobs/index.htm
mailto:atginger.kisamore@nrl.navy.mil
mailto:atginger.kisamore@nrl.navy.mil
http://academiccareers.uchicago.edu/applicants/Central?quickFind=51071
http://academiccareers.uchicago.edu/applicants/Central?quickFind=51071

110 communications of the acm | October 2010 | vol. 53 | no. 10

careers

in science, engineering and technology, commit-
ted to educating students for lifelong success in
a diverse world and conducting research and
outreach activities that sustain the economic,
environmental and social health of the region.
In February 2009, a campus-wide strategic plan-
ning initiative was launched to reposition UMass
Lowell as a world-class institution over the next
decade. A major component of that initiative is
to ensure that diversity and inclusion are in ev-
ery aspect of our strategic plan. We seek a diverse
talented candidate pool to be part of our mission
and achievements.

UMass Lowell is located about 25 miles north-
west of Boston in the high-tech corridor of Mas-
sachusetts. The Computer Science Department
has 15 tenured and tenure-track faculty, serving
about 220 BS students, 110 MS students, and 55
PhD students. It also offers bioinformatics op-
tions at all levels, and a PhD in computational
mathematics.

The Computer Science faculty received ap-
proximately $6M in the last two years in external
research funding from the NSF, DOD, DOH, and
corporations. The department has four NSF CA-
REER Award Recipients. See http://www.cs.uml.
edu for more information.

The Computer Science Department at the Uni-
versity of Massachusetts Lowell invites applica-
tions for one or two Assistant Professor positions,
and one or two positions at the rank of Associate
or Full Professor. Positions will start in September
2011. Initial review of applications will begin im-
mediately. The application deadline is December
1, 2010. Women and underrepresented minori-

sidered as an applicant. Candidates may also post
a representative set of publications, to this website.
The reference letters can be sent by mail or e-mail to:

Chair, Department of Computer Science
The University of Chicago
1100 E. 58th Street, Ryerson Hall
Chicago, IL. 60637-1581

Or to: �recommend-51071@mailman.cs.
uchicago.edu

�(attachments can be in pdf, postscript or
Microsoft Word).

Please note that at least three reference letters
need to be mailed or e-mailed to the above address-
es and one of them must address the candidate’s
teaching ability. Applicants must have completed
all requirements for the PhD except the disserta-
tion at time of application, and must have complet-
ed all requirements for the PhD at time of appoint-
ment. The PhD should be in Computer Science or
a related field such as Mathematics or Statistics.
To ensure full consideration of your application all
materials [and letters] must be received by Novem-
ber 19. Screening will continue until all available
positions are filled. The University of Chicago is an
Affirmative Action/Equal Opportunity Employer.

University of Massachusetts Lowell
Computer Science Department
Tenure-Track and Tenured Faculty Positions

The University of Massachusetts Lowell is a com-
prehensive university with a national reputation

ties are strongly encouraged to apply.
Assistant Professor. Applicants must hold

a PhD in computer science or a closely related
discipline, have two or more years of teaching
and research experience as assistant professors
or postdoctoral researchers, have participated
in significant federal grant writing, and be com-
mitted to developing and sustaining an externally
funded research program. We are especially seek-
ing candidates with strong ongoing research who
are PIs of funded projects from major US funding
agencies. These are tenure-track positions.

Associate or Full Professor. Applicants must
hold a PhD in computer science or a closely re-
lated discipline, have substantial teaching and
research experience, have made significant
contributions to their fields on strong ongoing
research projects, be current PIs of substantial
grants from major US funding agencies, and be
committed to sustaining and strengthening an
externally funded research program. These are
tenured or tenure-track positions depending on
qualifications.

All ranks: Outstanding candidates in any ma-
jor computer science research area will be con-
sidered. In addition to developing/expanding a
research program, the successful applicant will
be encouraged to contribute to the collaborative
research of the existing departmental groups. The
successful candidate will be expected to teach
undergraduate and graduate courses, including
department core and specialty areas based on the
candidate’s expertise, and must have prior effec-
tive teaching experience.

How to apply:
1. Submit a cover letter, a current CV, research

statement, teaching statement, and selected rel-
evant research publications through our web site
at http://jobs.uml.edu under “Faculty Positions”.
You must apply using the online system. Make
sure to apply to the correct rank.

2. Arrange for at least three letters of recom-
mendation to be included in your application.

3. Optional documents: If available, please in-
clude summaries of teaching evaluations.

The University of Massachusetts Lowell is
committed to increasing diversity in its faculty,
staff, and student populations, as well as curricu-
lum and support programs, while promoting an
inclusive environment. We seek candidates who
can contribute to that goal and encourage you to
apply and to identify your strengths in this area.

York University
Faculty Applications, Assistant Professor level

York University, Toronto, Canada: The Depart-
ment of Computer Science and Engineering in
collaboration with the Departments of Biology,
and Science and Technology Studies invite fac-
ulty applications in the following areas: (i) Vi-
sual Neuroscience or Computational Neurosci-
ence of Vision, and; (ii) Digital Media (Computer
Graphics) with research interest in Technosci-
ence - both at the Assistant Professor level in the
tenure track stream. The deadline for applica-
tions is November 30, 2010 with a start date of
July 1, 2011. For details, please visit http://yorku.
ca/acadjobs. York University is an Affirmative
Action Employer.

Department Head
Department of Electrical
Engineering & Computer Science
South Dakota State University
Brookings, SD
South Dakota State University invites applications
and nominations for the position of Department
Head of Electrical Engineering & Computer Science.
SDSU, the state’s land-grant and largest university,

is a Carnegie RU/H (high research activity) institution with 12,400
students. The university is seeking an energetic academic leader with
strategic vision, outstanding academic credentials and successful
administrative experience. The Department Head, who reports to the
Dean of Engineering, holds a 12-month position and oversees all of
the department’s administrative functions including academic, budget,
facilities, research and outreach. In FY 2010 the department had 25
base-funded faculty and 390 students enrolled in undergraduate and
graduate programs in electrical engineering, computer science and
software engineering. The department is enjoying strong growth in
enrollments and funded research, strong ties to industry and a beautiful
new $12 million-72,000 sq. ft. building.

The successful applicant must have an earned Ph.D. and distinguished
record of performance consistent with appointment as a tenured full
professor in a discipline appropriate to the department. He/she must
also have a record of innovative and strategic leadership that would
apply to a progressive and growing academic environment and a record
of effective university administrative experience.

For detailed electronic application instructions, a full description of the
position and information on the department, university and community,
please visit http://www.sdstate.edu/eecs/. For the most complete
consideration, applications should be received by Nov. 1, 2010. For
questions on the electronic employment process, contact SDSU Human
Resources at (605) 688-4128.

South Dakota State University is an AA/EEO employer.

http://mailman.cs.uchicago.edu
http://www.sdstate.edu/eecs/
http://jobs.uml.edu
http://mailman.cs.uchicago.edu
http://www.cs.uml.edu
http://www.cs.uml.edu

october 2010 | vol. 53 | no. 10 | communications of the acm 111

last byte

arms to the
scientific and computer science com-
munity.

It’s also a great testament to what can
happen when scientists and computer
scientists collaborate.

Yes. One of the tools we have pro-
duced in a project with the Berkeley
Water Center is called SciScope. The
researchers have been looking at the
hydrology of the Russian River Valley
in California, in which the patterns of
use have completely changed over the
last 50 years. Trees have been chopped
down, rivers have been dammed, hous-
es have been built, and all those sorts of
things. The U.S. Geological Survey has
stream data going back many years,
but if you want to combine it with the
rainfall data over the same period,
that’s held by National Oceanic and At-
mospheric Administration, a different
government agency.

So SciScope enables you to combine
the two data sets.

You can add your own data and do
new research. It’s an example of what
I call “scientific mashups,” and it is, I
think, increasingly how much research
will be done in some fields. It’s a little
like Tim Berners-Lee’s vision of the Se-
mantic Web, but in a scientific context.

Astronomy is another field that has
benefited from computer science.

The Sloan Digital Sky Survey
changed everything, because it gener-
ated a high-resolution survey of 25% of
the night sky. So, instead of an astrono-
mer getting time on a telescope to look
at a particular star system, going back
to the university, analyzing the data,
and publishing the results with one or
two grad students, you’ve now got data
on more than 300 million celestial ob-
jects available to study. In this case, the
data is published before any detailed
analysis has been done.

Gray was instrumental in building on-
line databases to house the Sloan Digi-
tal Sky Survey data.

Jim and Alex Szalay also thought
they could apply the same sort of in-
frastructure to a sensor network, so we
built a sensor network in the grounds
of Johns Hopkins University to inves-
tigate soil science. The exciting thing

[contin ue d f rom p. 112]

is that a similar sensor network is now
being deployed in Latin America, in the
Atlantic rainforest near São Paulo.

What have these projects taught you
about fostering meaningful collabora-
tion between the scientific and com-
puter science communities?

I’ve come to the conclusion that
you cannot force scientists to adopt a
technology no matter how useful you
think it would be for them! You have to
get as close to their way of working as
possible and give them an immediate
win. You can’t say, “Go climb this cliff,
and at the top there’s a reward.” So
you need to form a partnership where
there’s an early win for the scientist
and a win for you in that they’re using
at least some of your great research
technology, suitably packaged to be us-
able by scientists.

What sort of reception has The Fourth
Paradigm received?

It’s been very complimentary, which
is gratifying, and there’s been a huge
explosion on Twitter and in the blogo-
sphere. We’re working on ideas for a
follow-up, and I’m working with the
National Science Foundation’s Advi-
sory Committee on Cyberinfrastruc-
ture on a data task force. It would be
premature to say we know exactly what
people need, since that’s what the sci-
entific community has to tell us. We
haven’t got there yet, and that’s one of
the reasons why it’s a very exciting time
in science and computer science.	

Leah Hoffmann is a Brooklyn, NY-based technology
writer.

© 2010 ACM 0001-0782/10/1000 $10.00

“We are now seeing
the emergence
of a fourth paradigm
for scientific
research, namely
data-intensive
science.”

http://www.acm.org/trets
http://www.acm.org/subscribe

last byte

112 communications of the acm | october 2010 | vol. 53 | no. 10

P
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

 M
i

c
r

o
s

o
f

t

DOI:10.1145/1831407.1831432		 Leah Hoffmann

And that’s an idea you carry on in your
work with Microsoft?

Indeed. Computer science has pow-
erful technologies it can offer scien-
tists, but also things it can learn from
tackling some of the difficult scientific
challenges. So I really have a wonderful
job, working both with great computer
scientists and with great scientists.

The essays in The Fourth Paradigm fo-
cus on new research in areas like envi-
ronmental science, health, infrastruc-
ture, and communication.

There are important problems fac-
ing the world that we need to solve. The
book is a call to

data cleansing, data visualization, and
how relational databases work. The
new data-intensive research paradigm
does not replace the other ones—it’s
quite clear that data-intensive science
uses both theory and computation.

How did you come to be involved in
this line of research?

I first met Jim Gray in 2001, when I
was running the U.K.’s e-Science Pro-
gram. In discussions with Jim over the
next five years, I came to agree with his
view that the computer science com-
munity can really make a difference to
scientists who are trying to solve diffi-
cult problems.

To n y H e y, v i c e pre sident of the Ex-
ternal Research Division of Microsoft
Research, has long straddled the sci-
entific and computational worlds. Hey
began his career as a particle physi-
cist at the University of Southampton
before changing fields and serving as
head of its School of Electronics and
Computer Science. Prior to his ap-
pointment at Microsoft, Hey served
as director of the United Kingdom’s
e-Science Program, where he worked
to develop technologies to enable
collaborative, multidisciplinary, and
data-intensive science. Here, he talks
about a book of essays he co-authored,
The Fourth Paradigm, which commem-
orates the work of his late colleague
Jim Gray and points the way to a new
era of scientific collaboration.

The title of your book, The Fourth Par-
adigm, refers to the idea that we need
new tools to cope with the explosion of
data in the experimental sciences.

Jim Gray’s insight was that experi-
mental science and theoretical science
have been with us since Newton, and
over the last 50 years, computational
science has matured as a methodology
for scientific research. Jim thought that
we are now seeing the emergence of a
fourth paradigm for scientific research,
namely data-intensive science. For this,
researchers need a different set of skills
from those required for experimental,
theoretical, and computational science.

Different skill sets such as?
For data-intensive science, research-

ers need a totally new set of skills such
as an understanding of data mining,

Tony Hey speaking at the ninth annual Microsoft Research Faculty Summit, which brought
together 400 academics from 150 universities across five continents.

[continued on p. 111]

Q&A
Gray’s Paradigm
Tony Hey talks about Jim Gray and his vision
of a new era of collaborative, data-intensive science.

Introducing:

XRDS delivers the tools, resources, knowledge, and connections
that computer science students need to succeed

in their academic and professional careers!

The All-New XRDS: Crossroads is the official
magazine for ACM student members featuring:

� Breaking ideas from top researchers and PhD students

� Career advice from professors, HR managers, entrepreneurs, and others

� Interviews and profiles of the biggest names in the field

� First-hand stories from interns at internationally acclaimed research labs

� Up-to-date information on the latest conferences, contests, and submission
deadlines for grants, scholarships, fellowships, and more!

XRDS.acm.org

The ACM Magazine for Students

Also available
The All-New XRDS.acm.org

XRDS.acm.org is the new online hub of XRDS
magazine where you can read the latest news
and event announcements, comment on articles,
plus share what’s happening at your ACM chapter,
and more. Get involved by visiting today!

ACM_XRDS_Ad_Final.indd 1 4/21/10 12:41:51 PM

http://XRDS.acm.org
http://XRDS.acm.org
http://XRDS.acm.org

http://www.interact2011.org
http://twitter.com/interact2011
http://tinyurl.com/facebook-interact2011
http://www.interact2011.org

	Table of Contents
	Departments
	President’s Letter
	ACM is Built on Volunteers’ Shoulders

	Letters To The Editor
	How to Celebrate Codd’s RDBMS Vision

	BLOG@CACM
	In Search of Database Consistency

	CACM Online
	The Mobile Road Ahead

	Calendar
	Careers

	Last Byte
	Q&A
	Gray’s Paradigm

	News
	Linear Logic
	Personal Fabrication
	Should Code be Released?

	Viewpoints
	Historical Reflections
	Victorian Data Processing

	Technology Strategy and Management
	Platforms and Services: Understanding the Resurgence of Apple

	Inside Risks
	Risks of Undisciplined Development

	Kode Vicious
	Version Aversion

	Viewpoint
	SCORE: Agile Research Group Management

	Practice
	Photoshop Scalability: Keeping It Simple
	Thinking Clearly About Performance, Part 2
	Tackling Architectural Complexity with Modeling

	Contributed Articles
	A Neuromorphic Approach to Computer Vision
	How Offshoring Affects IT Workers

	Review Articles
	Peer-to-Peer Systems

	Research Highlights
	Technical Perspective
	A VM ‘Engine’ That Makes a Difference

	Difference Engine: Harnessing Memory Redundancy in Virtual Machines
	Technical Perspective
	Belief Propagation

	Nonparametric Belief Propagation

