
Association for
Computing Machinery

COMMUNICATIONS
OF THE ACMcACM.acm.org� 07/2009 VOL.52 NO.07

Barbara Liskov
ACM’s A.M. Turing
Award Winner

Steps Toward
Self-Aware Networks

The Metropolis Model

Why Computer Science
Doesn’t Matter

Probabilistic
Databases

The Five-Minute Rule
20 Years Later

http://CACM.ACM.ORG

http://Reviews.com
http://www.Reviews.com
http://www.Reviews.com

014244x

ABCD springer.com

Easy Ways to Order for the Americas 7 Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA 7 Call: (toll free) 1-800-SPRINGER
7 Fax: 1-201-348-4505 7 Email: orders-ny@springer.com or for outside the Americas 7 Write: Springer Customer Service Center GmbH, Haberstrasse 7,
69126 Heidelberg, Germany 7 Call: +49 (0) 6221-345-4301 7 Fax : +49 (0) 6221-345-4229 7 Email: orders-hd-individuals@springer.com
7 Prices are subject to change without notice. All prices are net prices.

Noteworthy Titles
Model Driven
Engineering
and Ontology
Development
D. Gaševic, Simon Fraser
University, Surrey, BC,
Canada; D. Djuric,
V. Devedžic, University

of Belgrade, Serbia and Montenegro

Defining a formal domain ontology is
considered a useful, not to say necessary step
in almost every software project. This is
because software deals with ideas rather than
with self-evident physical artefacts. However,
this development step is hardly ever done, as
ontologies rely on well-defined and semanti-
cally powerful AI concepts such as description
logics or rule-based systems, and most
software engineers are largely unfamiliar with
these. This book fills this gap by covering the
subject of MDA application for ontology
development on the Semantic Web. The writing
is technical yet clear, and is illustrated with
examples. The book is supported by a website.

2nd ed. 2009. 153 illus. Hardcover
ISBN 978-3-642-00281-6 7 $69.95

Working
with India
The Softer Aspects
of a Successful
Collaboration with
the Indian IT & BPO
Industry

W. Messner, Capgemini India, Bangalore, India

Globalization requires effective international
and cross-cultural collaboration. This book is a
start on the journey of cultural appreciation for
managers, project leaders, and offshore
coordinators working together with Indians.
It is also a resource for business managers and
company strategists seeking to understand the
softer aspects behind the headlines that the
Indian IT and BPO industry so frequently creates.

2009. XIII, 178 p. 73 illus. Hardcover
ISBN 978-3-540-89077-5 7 $59.95

The China
Information
Technology
Handbook
P. Ordóñez de Pablos,
University of Oviedo,
Asturias, Spain;
M. D. Lytras, University

of Patras, Greece (Eds.)

The book is a reference for those interested in
information technologies and emerging
management practices in China. This reference
is timely, responding to the high demand of
society to adopt emerging technologies in all
aspects of business and economic activity,
towards innovative solutions to research
problems and high performance systems.
The emphasis on information technologies and
management provides a unique value
proposition and gives characteristics of
flexibility and adoption to diverse audiences.
The subject area is a combination of global
information technology and management
along with strategic management of IT.

2009. XVII, 433 p. 82 illus. Hardcover
ISBN 978-0-387-77742-9 7 $199.00

eCulture
Cultural Content in
the Digital Age

A. M. Ronchi, Politecnico
di Milano, Italy

Do virtual museums
really provide added
value to end-users, or do

they just contribute to the abundance of
images? Does the World Wide Web save
endangered cultural heritage, or does it foster a
society with less variety? These and other
related questions are raised and answered in
this book, the result of a long path across the
digital heritage landscape. It provides a
comprehensive view on issues and achieve-
ments in digital collections and cultural
content.

2009. XXX, 456 p. 271 illus. in color. Hardcover
ISBN 978-3-540-75273-8 7 $129.00

Enterprise
Governance and
Enterprise
Engineering
J. A. Hoogervorst, Sogeti
Netherlands BV, Diemen,
The Netherlands

Two themes underpin the fundamentally
different views outlined in this book. First, the
competence-based perspective on governance,
whereby employees are viewed as the crucial
core for effectively addressing the complex,
dynamic and uncertain enterprise reality, as
well as for successfully defining and operation-
alizing strategic choices. Second, enterprise
engineering as the formal conceptual
framework and methodology for arranging a
unified and integrated enterprise design, which
is a necessary condition for enterprise success.

2009. XXV, 429 p. 103 illus.
(The Enterprise Engineering Series) Hardcover
ISBN 978-3-540-92670-2 7 $79.95

From P2P
and Grids to
Services on
the Web
Evolving Distributed
Communities

I. J. Taylor, A. Harrison,
University of Cardiff, UK

This broad-ranging new edition of a classic
textbook/reference provides a comprehensive
overview of emerging distributed-systems
technologies and has been significantly
enhanced and extended to cover the many
new, state-of-the-art infrastructures and
technologies that have since appeared.
The focus is also broadened, retaining the
technical aspects, but additionally including
useful historical contexts for each of the
technologies.

2nd ed. 2009. XXIV, 448 p. 123 illus.
(Computer Communications and Networks)
Softcover
ISBN 978-1-84800-122-0 7 $79.95

http://springer.com
mailto:orders-ny@springer.com
mailto:orders-hd-individuals@springer.com

2 communications of the acm | july 2009 | vol. 52 | no. 7

Association for Computing Machinery
Advancing Computing as a Science & Profession

communications of the acm

Departments

5	 Editor’s Letter
Open, Closed, or Clopen Access?
By Moshe Y. Vardi

6	 Publisher’s Corner
Communications’
Annual Report Card
By Scott E. Delman

8	 Letters To The Editor
Inspire with Introductory
Computer Science

10	 blog@CACM
Sharing Ideas, Writing Apps,
and Creating a Professional
Web Presence
Greg Linden reveals his new
approach to reading research
papers, Mark Guzdial discusses
how to encourage students to
write computer programs, and
Tessa Lau shares her ideas about
the importance of Web visibility.

12	 CACM Online
Moving Forward and Backward
By David Roman

45	 Calendar

116	 Careers

Last Byte

120	 Q&A
Liskov on Liskov
Barbara Liskov talks about
her groundbreaking work
in data abstraction and
distributed computing.
By Leah Hoffmann

News

13	 Contemporary Approaches
to Fault Tolerance
Thanks to computer scientists
like Barbara Liskov, researchers
are making major progress with
cost-efficient fault tolerance for
Web-based systems.
By Alex Wright

16	 Toward Native Web Execution
Several software projects are
narrowing the performance gap
between browser-based applications
and their desktop counterparts.
In the process, they’re creating new
ways to improve the security of
Web-based computing.
By Kirk L. Kroeker

18	 Are We Losing Our Ability
to Think Critically?
Computer technology has
enhanced lives in countless ways,
but some experts believe it
might also be affecting people’s
ability to really think.
By Samuel Greengard

20	 Liskov’s Creative Joy
Barbara Liskov muses about the
creative process of problem solving,
finding the perfect design point,
and pursuing a research path.
By Karen A. Frenkel

23	 Master of Connections
Jon Kleinberg is honored for
his pioneering research on
the Web and social networking.
By Alan Joch

25	 ACM Award Winners
Among this year’s distinguished
honorees are Barbara Liskov
of Massachusetts Institute
of Technology and Jon Kleinberg
of Cornell University.

Viewpoints

28	 Legally Speaking
The Dead Souls of the Google
Book Search Settlement
Why the Google Book Search
settlement agreement under
consideration could result in
an extensive restructuring
of the book industry.
By Pamela Samuelson

31	 Technology Strategy and Management
Globalization of Knowledge-
Intensive Professional Services
Does the trend toward
standardization and modularization
of professional services make
outsourcing inevitable?
By Mari Sako

34	 The Business of Software
The Cliché Defense
A guide to playing the ploys
frequently employed by
cliché-driven management.
By Phillip G. Armour

37	 Viewpoint
Why Computer Science
Doesn’t Matter
Aligning computer science with
high school mathematics can help
turn it into an essential subject
for all students.
By Matthias Felleisen
and Shriram Krishnamurthi

41	 Point/Counterpoint
CS Education in the U.S.:
Heading in the Wrong Direction?
Considering the most effective
methods for teaching students
the fundamental principles of
software engineering.
By Robert Dewar and Owen Astrachan

july 2009 | vol. 52 | no. 7 | communications of the acm 3

07/2009
vol. 52 no. 07

Practice

48	 The Five-Minute Rule 20 Years Later
(and How Flash Memory
Changes the Rules)
Revisiting Gray and Putzolu’s
famous rule in the age of Flash.
By Goetz Graefe

60	 Fighting Physics: A Tough Battle
The laws of physics and the
Internet’s routing infrastructure affect
performance in a big way.
By Jonathan M. Smith

 Article development led by
 queue.acm.org

Contributed Articles

66	 Steps Toward Self-Aware Networks
Network software adapts to
user needs and load variations
and failures to provide reliable
communications in largely
unknown networks.
By Erol Gelenbe

76	 The Metropolis Model:
A New Logic for Development
of Crowdsourced Systems
It takes a city of developers to build
a big system that is never done.
By Rick Kazman and Hong-Mei Chen

Review Articles

86	 Probabilistic Databases:
Diamonds in the Dirt
Treasures abound from hidden facts
found in imprecise data sets.
by Nilesh Dalvi, Christopher Ré,
and Dan Suciu

Research Highlights

96	 Technical Perspective
The Ultimate Pilot Program
By Stuart Russell and Lawrence Saul

97	 Apprenticeship Learning
for Helicopter Control
By Adam Coates, Pieter Abbeel,
and Andrew Y. Ng

106	 Technical Perspective
A Compiler’s Story
By Greg Morrisett

107	 Formal Verification
of a Realistic Compiler
By Xavier Leroy

Virtual Extension

As with all magazines, page limitations often
prevent the publication of articles that might
otherwise be included in the print edition.
To ensure timely publication, ACM created
Communications’ Virtual Extension (VE).
	 VE articles undergo the same rigorous review
process as those in the print edition and are
accepted for publication on their merit. These
articles are now available to ACM members in
the Digital Library.

	 Improving the Cyber Security of
SCADA Communication Networks
Sandip C. Patel, Ganesh D. Bhatt,
and James H. Graham

	 Adoption Leadership
and Early Planners: Comcast’s
IP Upgrade Strategy
Anat Hovav and Ciprian Popivicu

	 Software Project Scope Alignment:
An Outcome-Based Approach
Richard W. Woolridge, David P. Hale,
Joanne E. Hale, and R. Shane Sharpe

	 A Relevancy-Based Services View
for Driving Adoption of Wireless
Web Services in the U.S.
Arvind Malhotra and
Claudia Kubowicz Malhotra

	 Churchman’s Inquirers as
Design Templates for Knowledge
Management Systems
James L. Parrish, Jr. and
James F. Courtney, Jr.

	 Security Challenges of
EPCglobal Network
Benjamin Fabian and Oliver Gunther

	 The Impact of Subversive
Stakeholders on Software Projects
Johann Rost and Robert L. Glass

	 Technical Opinion
The Ethics of IT Professionals
in China
Robert M. Davison, Maris G. Martinsons,
Henry W. H. Lo, and Yuan Li

About the Cover:
Boston-based photo
grapher Jared Leeds
captured Barbara Liskov,
recipient of the 2008
ACM A.M. Turing Award,
in front of the Stata Center
on the MIT campus
where she is the Ford
Professor of Engineering.

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 A
N

D
Y

 G
I

L
M

O
R

E

http://queue.acm.org

4 CoMMuniCATions of The ACM | juLY 2009 | voL. 52 | No. 7

coMMuNicAtioNs of the AcM
A monthly publication of AcM Media

Communications of the ACM is the leading monthly print and online magazine for the computing and information technology fi elds.
Communications is recognized as the most trusted and knowledgeable source of industry information for today’s computing professional.
Communications brings its readership in-depth coverage of emerging areas of computer science, new trends in information technology,
and practical applications. Industry leaders use Communications as a platform to present and debate various technology implications,
public policies, engineering challenges, and market trends. The prestige and unmatched reputation that Communications of the ACM
enjoys today is built upon a 50-year commitment to high-quality editorial content and a steadfast dedication to advancing the arts,
sciences, and applications of information technology.

P
L

E

A
S E R E C Y

C
L

E

T
H

I

S
 M A G A Z

I
N

E

ACM, the world’s largest educational
and scientifi c computing society, delivers
resources that advance computing as a
science and profession. ACM provides the
computing fi eld’s premier Digital Library
and serves its members and the computing
profession with leading-edge publications,
conferences, and career resources.

Executive Director and CEO
John White
Deputy Executive Director and COO
Patricia Ryan
Director, Offi ce of Information Systems
Wayne Graves
Director, Offi ce of Financial Services
Russell harris
Director, Offi ce of Membership
Lillian Israel
Director, Offi ce of SIG Services
Donna Cappo

ACM CouNCIL
President
Wendy hall
Vice-President
Alain Chesnais
Secretary/Treasurer
Barbara Ryder
Past President
Stuart I. Feldman
Chair, SGB Board
Alexander Wolf
Co-Chairs, Publications Board
Ronald Boisvert, holly Rushmeier
Members-at-Large
Carlo Ghezzi;
Anthony Joseph;
Mathai Joseph;
kelly Lyons;
Bruce Maggs;
Mary Lou Soffa;
SGB Council Representatives
Norman Jouppi;
Robert A. Walker;
Jack Davidson

PuBLICATIoNS BoARD
Co-Chairs
Ronald F. Boisvert and holly Rushmeier
Board Members
Gul Agha; Michel Beaudouin-Lafon;
Jack Davidson; Nikil Dutt; Carol hutchins;
Ee-Peng Lim; M. Tamer Ozsu; Vincent
Shen; Mary Lou Soffa; Ricardo Baeza-Yates

ACM U.S. Public Policy Offi ce
Cameron Wilson, Director
1100 Seventeenth St., NW, Suite 50
Washington, DC 20036 USA
T (202) 659-9711; F (202) 667-1066

Computer Science Teachers
Association
Chris Stephenson
Executive Director
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (800) 401-1799; F (541) 687-1840

Association for Computing Machinery
(ACM)
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA
T (212) 869-7440; F (212) 869-0481

STAFF

GROUP PUBLISHER
Scott E. Delman
publisher@cacm.acm.org

Executive Editor
Diane Crawford
Managing Editor
Thomas E. Lambert
Senior Editor
Andrew Rosenbloom
Senior Editor/News
Jack Rosenberger
Web Editor
David Roman
Editorial Assistant
zarina Strakhan
Rights and Permissions
Deborah Cotton

Art Director
Andrij Borys
Associate Art Director
Alicia kubista
Assistant Art Director
Mia Angelica Balaquiot
Production Manager
Lynn D’Addesio
Director of Media Sales
Jennifer Ruzicka
Marketing & Communications Manager
Brian hebert
Public Relations Coordinator
Virgina Gold
Publications Assistant
Emily Eng

Columnists
Alok Aggarwal; Phillip G. Armour;
Martin Campbell-kelly;
Michael Cusumano; Peter J. Denning;
Shane Greenstein; Mark Guzdial;
Peter harsha; Leah hoffmann;
Mari Sako; Pamela Samuelson;
Gene Spafford; Cameron Wilson

CoNTACT PoINTS
Copyright permission
permissions@cacm.acm.org
Calendar items
calendar@cacm.acm.org
Change of address
acmcoa@cacm.acm.org
Letters to the Editor
letters@cacm.acm.org

WEB SITE
http://cacm.acm.org

AuTHoR GuIDELINES
http://cacm.acm.org/guidelines

ADvERTISING

ACM ADVERTISING DEPARTMENT
2 Penn Plaza, Suite 701, New York, NY
10121-0701
T (212) 869-7440
F (212) 869-0481

Director of Media Sales
Jennifer Ruzicka
jen.ruzicka@hq.acm.org

Media Kit acmmediasales@acm.org

EDIToRIAL BoARD

EDITOR-IN-CHIEF
Moshe Y. Vardi
eic@cacm.acm.org

NEWS
Co-chairs
Marc Najork and Prabhakar Raghavan
Board Members
Brian Bershad; hsiao-Wuen hon;
Mei kobayashi; Rajeev Rastogi;
Jeannette Wing

VIEWPOINTS
Co-chairs
Susanne E. hambrusch;
John Leslie king;
J Strother Moore
Board Members
P. Anandan; William Aspray; Stefan
Bechtold; Judith Bishop; Soumitra Dutta;
Stuart I. Feldman; Peter Freeman;
Seymour Goodman; Shane Greenstein;
Mark Guzdial; Richard heeks;
Richard Ladner; Susan Landau;
Carlos Jose Pereira de Lucena;
helen Nissenbaum; Beng Chin Ooi;
Loren Terveen

 PRACTICE
Chair
Stephen Bourne
Board Members
Eric Allman; Charles Beeler;
David J. Brown; Bryan Cantrill;
Terry Coatta; Mark Compton;
Benjamin Fried; Pat hanrahan;
Marshall kirk Mckusick;
George Neville-Neil

The Practice section of the CACM
Editorial Board also serves as
the Editorial Board of .

CONTRIBUTED ARTICLES
Co-chairs
Al Aho and Georg Gottlob
Board Members
Yannis Bakos; Gilles Brassard; Alan Bundy;
Peter Buneman; Ghezzi Carlo;
Andrew Chien; Anja Feldmann;
Blake Ives; James Larus; Igor Markov;
Gail C. Murphy; Shree Nayar; Lionel M. Ni;
Sriram Rajamani; Jennifer Rexford;
Marie-Christine Rousset; Avi Rubin;
Abigail Sellen; Ron Shamir; Marc Snir;
Larry Snyder; Veda Storey;
Manuela Veloso; Michael Vitale;
Wolfgang Wahlster;
Andy Chi-Chih Yao; Willy zwaenepoel

RESEARCH HIGHLIGHTS
Co-chairs
David A. Patterson and
Stuart J. Russell
Board Members
Martin Abadi; Stuart k. Card;
Deborah Estrin; Shafi Goldwasser;
Maurice herlihy; Norm Jouppi;
Andrew B. kahng; Linda Petzold;
Michael Reiter; Mendel Rosenblum;
Ronitt Rubinfeld; David Salesin;
Lawrence k. Saul; Guy Steele, Jr.;
Gerhard Weikum; Alexander L. Wolf

WEB
Co-chairs
Marti hearst and James Landay
Board Members
Jason I. hong; Jeff Johnson;
Greg Linden; Wendy E. Mackay

 BPA Audit Pending

ACM Copyright Notice
Copyright © 2009 by Association for
Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies
of part or all of this work for personal
or classroom use is granted without
fee provided that copies are not made
or distributed for profi t or commercial
advantage and that copies bear this
notice and full citation on the fi rst
page. Copyright for components of this
work owned by others than ACM must
be honored. Abstracting with credit is
permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to
lists, requires prior specifi c permission
and/or fee. Request permission to publish
from permissions@acm.org or fax
(212) 869-0481.

For other copying of articles that carry a
code at the bottom of the fi rst or last page
or screen display, copying is permitted
provided that the per-copy fee indicated
in the code is paid through the Copyright
Clearance Center; www.copyright.com.

Subscriptions
Annual subscription cost is included in
the society member dues of $99.00 (for
students, cost is included in $42.00 dues);
the nonmember annual subscription rate
is $100.00.

ACM Media Advertising Policy
Communications of the ACM and other
ACM Media publications accept advertising
in both print and electronic formats. All
advertising in ACM Media publications is
at the discretion of ACM and is intended
to provide fi nancial support for the various
activities and services for ACM members.
Current Advertising Rates can be found
by visiting http://www.acm-media.org or
by contacting ACM Media Sales at
(212) 626-0654.

Single Copies
Single copies of Communications of the
ACM are available for purchase. Please
contact acmhelp@acm.org.

CoMMuNICATIoNS oF THE ACM
(ISSN 0001-0782) is published monthly
by ACM Media, 2 Penn Plaza, Suite 701,
New York, NY 10121-0701. Periodicals
postage paid at New York, NY 10001,
and other mailing offi ces.

PoSTMASTER
Please send address changes to
Communications of the ACM
2 Penn Plaza, Suite 701
New York, NY 10121-0701 USA

Printed in the U.S.A.

mailto:publisher@cacm.acm.org
mailto:permissions@cacm.acm.org
mailto:calendar@cacm.acm.org
mailto:acmcoa@cacm.acm.org
mailto:letters@cacm.acm.org
http://cacm.acm.org
http://cacm.acm.org/guidelines
mailto:jen.ruzicka@hq.acm.org
mailto:acmmediasales@acm.org
mailto:eic@cacm.acm.org
mailto:permissions@acm.org
http://www.copyright.com
http://www.acm-media.org
mailto:acmhelp@acm.org

july 2009 | vol. 52 | no. 7 | communications of the acm 5

editor’s letter

Open, Closed,
or Clopen Access?

alize that publishing has real costs. Any
publishing business model must ac-
count for these costs. Even “free” must
be monetized! Google uses advertising
to monetize open access, but that does
not seem a viable option for scholarly
publishing. Many open-access publica-
tions have adopted the “author-pays”
model, requiring authors to pay thou-
sands of dollars for each published ar-
ticle. The argument in favor of “author
pays” is that it maximizes access to pub-
lished articles, but at the same time this
is simply a shifting of costs from readers
to authors. Is our community ready for
the author-pays model? Would this not
create a new inequity between “have”
and “have not” authors?

My perspective is that what really
propelled the open-access movement
was the continuing escalation of the
price of scientific publications during
the 1990s and 2000s, a period during
which technology drove down the cost
of scientific publishing. This price es-
calation has been driven by for-profit
publishers. In the distant past, our
field had several small- and medium-
sized for-profit publishers. There was
a sense of informal partnership be-
tween the scientific community and
these publishers. That was then. To-
day, there are two large and dominant
for-profit publishers in computing.
These publishers are thoroughly cor-
poratized. They are businesses with
one clear mission—to maximize the
return on investments to their owners
and shareholders. At the same time,
the scientific community, whose goal

I am asked: “Why don’t you adopt the
open-access model?” Good question!
Why don’t we?

Wikipedia defines open access pub-
lishing as “the publication of material
in such a way that it is available to all
potential users without financial or
other barriers.”

The Open Access movement began
brewing in the 1990s, becoming fully
formed with the October 2003 Berlin
Declaration on Open Access to Knowl-
edge in the Sciences and Humanities.
Since then, the idea has become a hot
topic in the scientific community. The
Directory of Open-Access Journals con-
tains over 4,000 publications. Indeed,
the idea of unfettered access to scien-
tific knowledge naturally resonates
with many researchers, including me.
So why doesn’t ACM become an open-
access publisher?

First, a point of precision. Open-ac-
cess experts distinguish between “Gold
OA,” described earlier, and “Green
OA,” which allows for open access self-
archiving of material (deposit by au-
thors) that may have been published as
non-open access. ACM Copyright Poli-
cy allows for self-archiving, so ACM is a
Green-OA publisher. Still, why doesn’t
ACM become a Gold-OA publisher?

The problem with the “information
wants to be free” principle is that “free,”
per se, is not a sound business model.
The current implosion of the U.S. news-
paper industry certainly testifies to that
claim. Having been personally involved
with an open-access publication for
about five years now, I have come to re-

is to maximize dissemination, contin-
ues to behave as if a partnership exists
with for-profit publishers, providing
them with content and editorial ser-
vices essentially gratis. This is a highly
anomalous arrangement, in my per-
sonal opinion. Why should for-profit
corporations receive products and la-
bor essentially for free?

As for ACM’s stand on the open-ac-
cess issue, I’d describe it as “clopen,”
somewhere between open and closed.
(In topology, a clopen set is one that
is both open and closed.) ACM does
charge a price for its publications, but
this price is very reasonable. (If you
do not believe me, ask your librarian.)
ACM’s modest publication revenues
first go to cover ACM’s publication
costs that go beyond print costs to in-
clude the cost of online distribution
and preservation, and then to support
the rest of ACM activities. To me, this
is a very important point. The “profits”
do not go to some corporate owners;
they are used to support the activities
of the association, and the association
is us, the readers, authors, reviewers,
and editors of ACM publications. Fur-
thermore, ACM operates as a demo-
cratic association. If you believe that
ACM should change its publishing
business model, then you should lob-
by for this position.

The bottom line is there are two dis-
tinct issues here. The first is the issue
of for-profit vs. association publish-
ing. The current relationship between
the scientific community and the for-
profit publishers makes no sense to
me. The second issue is the business
model of association publishing, for
example, “reader pays” vs. “authors
pays.” This is a legitimate topic of dis-
cussion, as long as we understand that
it cannot be separated from the over-
all business model of the association.
Just remember, “free” is not a sound
business model.

Moshe Y. Vardi, Editor-in-Chief

DOI:10.1145/1538788.1538789		 Moshe Y. Vardi

A frequent question I hear about
Communications, and about ACM publishing
in general, involves its access model.

6 communications of the acm | july 2009 | vol. 52 | no. 7

publisher’s corner

Communications’
Annual Report Card
This issue marks the first anniversary of the
completely revamped Communications, so
I thought it would be appropriate to report
on how we’re doing so far. There are two

main ways to gauge the magazine’s
performance. The first is by asking our
readers what they think of the new mag-
azine and comparing that feedback
to past results; the second is by exam-
ining actual current usage patterns,
primarily online. Of course, sometimes
what people tell us is different than
how they really behave, so by compar-
ing these two types of data points we can
gain insight into our progress and gather
enough valuable information to serve
our readers even better in the future.

While this is not an exact science, I
am very pleased to say that our readers
response is overwhelmingly positive re-
garding the direction Communications
is taking, but the proof is in the details.
Over the coming months, I will share
some of those details for interested
readers by highlighting comments
we received in recent months (some
of which are peppered in these pages)
and by sharing some of the up-to-date
usage statistics we continue to pull off
the new Communications Web site.

This past April, ACM conducted
an extensive readership survey that
was sent electronically to 5,000 of
our readers around the world. It gar-
nered a response rate of 12.16% or 608
completed surveys. Any experienced
market research professional will tell
you that a double-digit response rate
is exceptional and is usually a strong
indicator of definitive results, either
positive or negative. In this case,
the results are very positive. The last
such survey ACM conducted several

years ago indicated that 37.9% of all
respondents rated their satisfaction
with the editorial focus and format
of the magazine as either “satisfied”
or “very satisfied.” The same ques-
tion posed in the most recent survey
yields a result of 94.8%, a startling in-
crease in overall satisfaction. There
is, of course, an enormous amount of
detail behind this general improve-
ment in satisfaction, and for those
interested, we are placing the entire
survey results online at http://cacm.
acm.org/2009ReadershipSurvey.pdf.
From my own perspective, I think sev-
eral key statistics are worth noting as
strong indicators of a trend in ACM’s
membership and Communications’
readership. They are:

DOI:10.1145/1538788.1538790	 Scott E. Delman

The quality of
the editorial
content, as well
as the new
research papers
and introductions,
is the reason
I plan to remain
an ACM member.
Communications
is a vastly
better magazine
as a result of
these changes.
—Software vendor

“Communications
has become
a top scientific
journal again,
with quality
standards similar
to Nature
and Science.”
	  —Researcher

http://cacm.acm.org/2009ReadershipSurvey.pdf
http://cacm.acm.org/2009ReadershipSurvey.pdf

july 2009 | vol. 52 | no. 7 | communications of the acm 7

publisher’s corner

41.3% of respondents described ˲˲

their current job responsibilities as
Software/Applications Designer, De-
veloper, or Engineer, followed by
23.2% as Systems Architect, Designer,
or Engineer, followed by 19.9% as Aca-
demic. Indeed, we are watching an in-
creasing slant among the magazine’s
readership toward practitioners and
researchers in industry and the types
of content that appeals to them is driv-
ing some of the changes we are mak-
ing with Communications.

The average reader is male (88.8%), ˲˲

down from 91.7% in the previous sur-
vey, 43.1 years old, down from 45.6
years old in the previous survey, has an
average of 18.1 years of computing ex-
perience, down from 19.9 years in the
previous survey, and has been a mem-
ber of ACM for 9.8 years, down from
13.1 years in the previous survey. All
of these statistics indicate that more
women are entering the field (although
not as quickly as many would like) and
Communications is attracting a younger
overall readership.

The average respondent looks ˲˲

through 3.1 out of every 4 issues of the
magazine and spends an average of
60.9 minutes reading each issue. By
comparison, based on research con-
ducted by Harvey Research, Inc. from
1996 to present, the median time
spent reading business-to-business
magazine titles is 38 minutes for com-
puter titles (based on 12,500 respon-
dents over 131 studies) and 38 min-
utes for non-computer titles (based on
29,700 respondents over 351 studies)
with the average time spent reading
over all business-to-business maga-
zine titles being 30.7 minutes (based
on 1,796 studies conducted to date
over 456 different magazine titles).

68.6% of respondents noticed the ˲˲

editorial revamp of the magazine that
started with the July 2008 issue and of
those who noticed the change 89.9%
felt it had a positive effect on the
magazine.

58.7% of respondents read at least ˲˲

half of an issue’s total editorial content.
Of those who noticed the editorial ˲˲

revamp, 78.8% felt the changes make
it more likely they would recommend
the magazine to a friend and 77.3%
felt the magazine is more relevant to
them now than in the past.

The most frequently read “de-˲˲

partment” that appears in the maga-
zine is the Editor’s Letter (85.2%). The
most frequently read “section” is the
Research Highlights: Main Article
(93.4%). And the most frequently read
“column” is Viewpoints (86.4%).

In contrast, when asked to select ˲˲

their three favorite departments, sec-
tions, or columns, 53.1% of respon-
dents selected the Research High-
lights: Main Article, followed by 44.7%
for Contributed Articles, 35.9% for
Practice articles, and 35.9% for the Re-
search Highlights: Technical Perspec-
tives. For the most part, what people
are spending their time reading is not
always their favorite material, so more
investigation is certainly warranted.

Related to the new ˲˲ Communica-
tions Web site, which launched several
months ago, 46.2% of respondents
were aware the Web site was being
redesigned and 39.5% have visited
the redesigned site. If you have not al-
ready visited the site, please do so at
http://cacm.acm.org and login with
your ACM Web Account information.

The editorial staff and editorial
board for Communications will spend
the coming months reviewing and
analyzing all of the data compiled in
the 2009 Communications of the ACM
Readership Survey and in future is-
sues will begin implementing many of
the most frequently suggested chang-
es. While the work is really just begin-
ning, we at ACM are very pleased at
the initial steps taken and very much
appreciate your continued feedback
and support of the Association’s flag-
ship publication.

Scott E. Delman, publisher

“I feel the new
structure, sections,
and content provide
a richer experience…
perhaps with a
broader scope.”
	  —Practitioner

ACM
Transactions on

Accessible
Computing

◆ ◆ ◆ ◆ ◆

This quarterly publication is a
quarterly journal that publishes
refereed articles addressing issues
of computing as it impacts the
lives of people with disabilities.
The journal will be of particular
interest to SIGACCESS members
and delegrates to its affiliated
conference (i.e., ASSETS), as well
as other international accessibility
conferences.

◆ ◆ ◆ ◆ ◆

www.acm.org/taccess
www.acm.org/subscribe

CACM_TACCESS_one-third_page_vertical:Layout 1 6/9/09 1:04 PM Page 1

http://cacm.acm.org
http://www.acm.org/taccess
http://www.acm.org/subscribe

8 communications of the acm | july 2009 | vol. 52 | no. 7

letters to the editor

Inspire with Introductory Computer Science
DOI:10.1145/1538788.1538791		

M
ark Guzdial’s Viewpoint
“Teaching Computing
to Everyone” (May 2009)
was interesting read-
ing but included several

implications, possibly unintentional,
that should be corrected. For example,
one potential benefit of contextualized
computing is that it allows coursework
students may find more attractive and
relevant, but Guzdial seemed to im-
ply that DrScheme and How to Design
Programs (HtDP) cannot be used with
such coursework. In our experience,
this is not the case; our students are
attracted and very engaged by HtDP’s
evolving teaching libraries. For ex-
ample, students using HtDP can write
interactive graphical programs from
week one in a first-semester program-
ming course without sacrificing com-
puting fundamentals.

Libraries will soon enable them to
write applications for their cellphones
and embedded hardware. We look
forward to experimenting with these
domains in our introductory pro-
gramming courses. The rich variety
of contexts the HtDP community pro-
vides (and is continuously developing)
excites students, and they enjoy our
HtDP-based courses.

Another implication was that
DrScheme and HtDP were unsuit-
able for non-major and female stu-
dents. We found this surprising, as
it is not our experience in our three
very different settings. DrScheme’s
language levels and simple syntax
seem to reduce student frustration
in getting started with programming,
and HtDP’s design recipe approach
gives them a roadmap, from problem
statement and blank screen/page to
a working solution. The language lev-
els are particularly effective at reduc-
ing syntax errors by introducing new
programming constructs only as the
need for them arises. Both our major
and non-major female students have
taken quite well to this environment
and approach.

Some of us are also beginning to see
higher retention rates thanks to HtDP.

We were delighted to see more at-
tention on introductory computing
courses. They play a critical role in
how students use, perceive, and un-
derstand computing and computer-
based technology. It is important that
they be well-designed, empowering
students to use computing both in
and outside the classroom.

Marco T. Morazan, South Orange, NJ
	 Marc L. Smith, Poughkeepsie, NY
	 Sharon Tuttle, Arcata, CA

Author’s Response:
DrScheme (and its libraries) is undoubtedly
one of the best programming tools for
students. It inspired our Python tool,
JES. To make contextualized education
work, you need a language and libraries
that provide the opportunity for context,
a curriculum that provides examples,
and lectures that support the context, as
well as a course that takes advantage
of these opportunities and supports. Our
experience at Georgia Tech missed some
of these elements. I now anticipate using
DrScheme to create a great contextualized
computing course.

Mark Guzdial, Atlanta, GA

More for the Practitioner,
As in Web Site Design
Kudos to Steve Souders for his article
“High-Performance Web Sites” (Dec.
2008). While many of the techniques
he mentioned are indeed common-
sense for Web site developers—re-
duce the number of HTTP requests
and remove duplicate scripts—what
impressed me most was that such a
useful article made its way into Com-
munications at all. In the seven years
I’ve been a member of ACM, I’ve found
most of its articles to be news-related
or theoretical in nature. It’s about
time Communications recognized
that membership includes not only
researchers but also those of us keep-
ing businesses operating by applying
the theories developed in the lab and
outlined in the technical literature.
Please keep publishing such informa-

tive, useful articles for those of us who
are practitioners.

Bryan R. Meyer, Pittsburgh, PA

To Motivate CS Students,
Connect with People in Need
Two contributions (both in Apr. 2009),
“Computing Education Matters” by
Andrew McGettrick and “IT and the
World’s ‘Bottom Billion’” by Richard
Heeks, covered urgent problems com-
puter scientists can help address. The
former involves making computer-
related education more attractive for
both prospective and current students,
the latter for helping the Fourth World
develop itself. Students are typically
of an age when altruism could be a
driving force in their lives, and show-
ing them how IT helps people in the
Fourth World would add to their mo-
tivation.

To evaluate such ideas, my students
and I began a project last October to
provide critical information during
obstetrics procedures in remote parts
of sub-Saharan Africa. Obstetricians
there rarely have access to current best
practices, so our system gives them cur-
rent information related to the APGAR
scores of newborn babies. An interna-
tional team of students—from Aus-
tralia, China, Germany, and Switzer-
land—weighed the various aspects of
information delivery, from usability and
battery life to selective data persistence
on mobile devices with limited connec-
tivity. The project showed them how to
use their knowledge and inventiveness
to help others. Microsoft lent exten-
sive support and invited them to the
Imagine Cup competition. A number of
NGOs also suggested ways to extend the
project. We now invite Communications
readers to participate by sharing their
own ideas and imaginations.

Vladimir Stantchev, Berlin, Germany

With an Advisor Like Patterson…
Congratulations to David A. Patter-
son for his warm, supportive, effective
model for mentoring graduate stu-

july 2009 | vol. 52 | no. 7 | communications of the acm 9

letters to the editor

with some unintended inaccuracies
concerning the Cross Site Reference
Forgery or Cross Site Request Forgery
(XSRF) attack. XSRF leverages estab-
lished session state in the browser.
Also, if a user is authenticated into a
Web site and the attacker somehow
generates a URL to that site from the
same browser, it may be authenticated
as well. This is true for several types of
authentication mechanisms, includ-
ing session cookies. This type of attack
does not require multiple tabs and has
been around for a while, but tabs give it
a new dimension, since more and more
users keep multiple tabs open that are
potentially authenticated to important
(or high-value) sites. If a user logs into
a bank and then in a separate tab goes
to a page that somehow sends a mali-
cious URL to the bank, that URL may
be authenticated and able to perform
actions on the user’s bank account
without the user’s knowledge or con-
sent. What we were attempting to show
is that sometimes features have unin-
tended security implications, an issue
applicable to all major browsers.

While we regret this error, the arti-
cle’s original thrust is the same—that
browser security issues are complex,
more so every day, and the risks they
pose are not to be taken lightly.

Thomas Wadlow, San Francisco, CA
	 Vlad Gorelik, Palo Alto, CA

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2009 ACM 0001-0782/09/0700 $10.00

dents he explored in his “Viewpoint”
“Your Students Are Your Legacy” (Mar.
2009). With appropriate changes based
on the substance of study, the model is
extensible well beyond CS. Patterson’s
legacy is indeed well deserved. I only
wish he had been my advisor when I
was in graduate school.

George Sadowsky, Woodstock, VT

Educating Computer Scientists
About Social Science
The Viewpoint “Computing as Social
Science” (Apr. 2009) by Michael Buck-
ley was not really about social science,
but about social service, which is quite
a different thing. This is not a mere
quibble. In 20 years of work with com-
puter scientists, I have often had to
start from the beginning, educating
them about sociology—and the social
sciences—as analytic disciplines.

Barry Wellman, Toronto, Canada

Cold Boot, a Surprise for
Unsuspecting Users
The article “Lest We Remember: Cold-
Boot Attacks on Encryption Keys” by
J. Alex Halderman et al. (May 2009)
took me back to my student days in
the 1970s when I discovered that the
Control Data Kronos operating system
had a similar vulnerability. One could
access other users’ passwords by run-
ning the command-line tool to change
passwords followed by the debug tool
to “dump core” to a file. The privileged
password utility could read the system
password file to perform its function,
but because it didn’t “zero out” the
RAM disk buffers before it terminated,
the nonprivileged memory dump util-
ity revealed the IDs and passwords of
many other users.

Bruce Wallace, Ooltewah, TN

Equal Opportunity Support for All
You wouldn’t expect a woman CS de-
partment chair and a 1960s liberal to
jointly criticize an article promoting
women in computing, but we were dis-
turbed by some aspects of the cover ar-
ticle “Women in Computing—Take 2”
(Feb. 2009).

Much of the it was devoted to a set
of excellent suggestions for creating
and nurturing CS careers, from initial

childhood exposure through gaining
tenure at a research university. But why
were these suggestions covered in an
article limited to women in comput-
ing? Nearly every suggestion applies
equally well to any demographic: un-
derrepresented minorities, people
with handicaps, low-income people,
plain old white males. (There were a
few exceptions, such as “send students
to the Grace Hopper Conference” or
“join CRA-W,” but other career-advanc-
ing conferences and organizations can
be substituted with the same overall
message.) We would advise anyone
considering a career in CS, or anyone
in a position to nurture a CS career, to
pay close attention to the good ideas in
the article, while disregarding its focus
on women.

For example, it suggested that in-
troductory CS students should pro-
gram in pairs. We like this idea very
much for a number of reasons, none
concerning gender. One might think
intuitively that female students in par-
ticular prefer pair programming. How-
ever, from the statistics provided by
the cited study, there is an even more
positive influence on males than on
females. (That is, the technique had
a slightly better chance of motivating
any given reluctant male to continue
in CS than of motivating any given re-
luctant female.)

At the junior-professor level, the arti-
cle suggested less teaching for the first
two years, sufficient startup funding to
support graduate students, help writ-
ing grant proposals, and being clear
about what is expected to gain tenure.
Aren’t these strategies appropriate for
all junior faculty? Should females be
granted such departmental support
while males are denied? We certainly
hope not.

There’s no question that women
have faced obstacles over the years
when choosing and building careers
in CS, as well as in other fields. Still, an
article providing sound general advice,
while limiting it to women, is not an
appropriate solution.

Jeffrey D. Ullman and
Jennifer Widom, Stanford, CA

More on Browser Security
Our article “Security in the Browser”
(May 2009) included a paragraph

Coming Next Month in

Communications
How to glean meaning and
usability from a blind user’s
interaction with technology.

Boolean satisfiability:
From theoretical hardness
to practical success.

Revitalizing computer
education by building free
and open source software
for humanity.

Plus the latest news on collaborative
filtering, facial recognition technology,
and games and education.

mailto:letters@cacm.acm.org

blog@cacm

10 communications of the acm | july 2009 | vol. 52 | no. 7

The Communications Web site, http://cacm.acm.org,
features 13 bloggers in the BLOG@CACM community.
In each issue of Communications, we’ll publish excerpts
from selected posts, plus readers’ comments.

doi:10.1145/1538788.1538792			 http://cacm.acm.org/blogs/blog-cacm

Sharing Ideas,
Writing Apps, and
Creating a Professional
Web Presence
Greg Linden reveals his new approach to reading research
papers, Mark Guzdial discusses how to encourage students
to write computer programs, and Tessa Lau shares her ideas
about the importance of Web visibility.

lives pursuing solutions to this task
and what insights they gained. I think
about how I would solve the problem
myself. And only then do I turn to
their solution.

Read this way, it is much easier to
bask yourself in the flow of academic
publications, letting the thoughts
and insights wash over you. The
papers become an easy joy to read,
like having a conversation over
coffee with the authors. It becomes
what research should be, the sharing
of ideas.

From Mark Guzdial’s
“‘There’s an App for
That,’ and You Could
Write It”
The Apple ads for the
iPhone, with the catchy

phrase “There’s an app for that,” seem
ubiquitous on television these days.
They suggest that for whatever one
might want to do with an iPhone, from
printing a label to finding an apart-
ment near campus, there’s an applica-
tion ready and waiting to help you do
just that. Ready and waiting, but who
made it?

One of the challenges of comput-
ing education these days is convincing
students that there are new programs
to write, programs that they want, and
that they are the ones to write them.
Computing is a new literacy. As Chris
Crawford said, “Programming is the
new writing.” How do we convince stu-
dents that they also want to write? It’s
hard to come up with a compelling
argument for students that they need

From Greg Linden’s
“Enjoying Reading
Research”
Research papers take a
long time to read. They
are dense, narrowly fo-

cused, often seem abstract and de-
tached from practical issues, and oc-
casionally require much knowledge
of prior work to grasp.

Given all that work, why bother?
After all, as many of my colleagues
in industry say, due to the many as-
sumptions about the quality of the
data, needs of the users, performance
of the algorithms, or size of the data,
academic research often is unusable
to them as is.

What I find most valuable about
research work is that someone smart
has spent a long time thinking about
a particular problem. Someone
has spent much effort describing a

problem, why it is important, what
has been tried in the past, and what
should be tried.

The authors are working to advance
the state of the art, but the solution
often is less valuable than the jour-
ney. For those who are trying to solve
similar problems, it is the discussion
of the paths taken and not taken that
illuminates the road.

If you also believe this, then the
way you read papers might change.
Years ago, I used to turn first to the
implementation and experimental
results, then push the paper away if I
found the evaluation lacking.

Nowadays, I turn first to the intro-
duction, related work, conclusion,
and future work. I seek to understand
the problem, why it is important,
what has been tried, and what still
needs to be tried. I try to see why the
authors chose to spend part of their

http://cacm.acm.org
http://cacm.acm.org/blogs/blog-cacm

blog@cacm

july 2009 | vol. 52 | no. 7 | communications of the acm 11

real computing literacy—which isn’t
about using applications, and is about
what is possible with a computer.

There are arguments that we can give
students for numeracy and textual liter-
acy. They need those things to survive in
the world, because numeracy and textu-
al literacy is pervasive in our society. But
even without the pervasiveness, we can
make arguments about self-expression
and solving one’s own problems.

We tell kids that they need to learn
to write in order to write letters to
their grandmothers or to write to-do
lists. The fact that there have been let-
ters written in the past is irrelevant—
everyone’s letter to their grandma is
different. Few teachers tell kids that
they should learn to write in order to
become a great author (few kids will,
or will even find that motivating)
or that it will influence the way they
think (I wonder if even all teachers
believe that, though there’s good cog-
nitive science research suggesting
it’s true).

We do have a harder time arguing
that kids should learn mathematics
when they have calculators at hand.
“What happens if you don’t have a
calculator nearby?” and “You should
know how to check if your answer
makes sense” are both real reasons
for knowing about mathematics
without a calculator, but aren’t very
compelling for elementary school
children. The idea that mathematics
might influence the way one thinks
and problem-solves is again true, but
not compelling for a child. Yet, the
challenge to sell textual literacy or
numeracy is nothing compared to the
challenge of selling computational
literacy.

How much harder is it to come
up with a reason for coming to know
computation? “There’s an app for
that.” What should we be telling stu-
dents that they can do with compu-
tation that’s different or better than
downloading a readymade piece of
software? What’s the software equiv-
alent of the letter to grandma, that
there’s a compelling reason why your
program should be different from
other programs out there? In part, the
problem is a lack of imagination. As
Alan Kay says, “The Computer Revolu-
tion hasn’t happened yet.” How do you
convince kids that there’s a greater

revolution possible out there and they
can be part of making it happen?

So, how do these iPhone ads in-
fluence students? Do they convince
students that “Every application that
should be written has been written,
so just buy an iPhone and don’t take
computer science classes”? Or do they
suggest to students that “There are so
many cool applications to be written.
Who do you think wrote that apart-
ment-finding application? Could be
you!”? Do the iPhone ads suggest a
universe of possible apps, or suggest
that the applications universe is large
(certainly encompassing every need
you could possibly have), closed, fixed,
and ready for download?

Reader’s comment
This is a timely article for me as my school
is beginning a STEM initiative and part
of our goal is to convince people that
computing literacy is important for every
student. I am inspired to find a way for my
computer science students to write an app
for a G1 phone or an iPhone. That would be
a very exciting assignment for them—one
they would delightedly share with friends.
And I can’t think of a better way of “selling”
an idea than letting the students do the
selling to each other!

Do you have any resources that would
help me learn how to write apps for mobile
devices? I currently teach students Flash,
Java, C programming for robots, and
some Python. Finding the time to learn
new things can be difficult, but this seems
worthwhile.

—Debra Gouchy

Blogger’s comment
Hi Debra! There’s a cool class at Stanford
on programming cell phones--my colleague
Sarita Yardi pointed me to it. The class
materials are at http://www.stanford.
edu/class/cs193p/cgi-bin/index.php, with
more of an overview at http://studentapps.
stanford.edu/.

Some off-CACM respondents suggested
to me that it’s hard to make a utilitarian
argument to students for programming.
It might be better to think about arguing
for programming as a form of expression
(to build or say things that one can’t easily
do in any application, like with Processing,
http://www.processing.org) or to explore
ideas, like in computational science. I found
both to be compelling arguments.

—Mark Guzdial

From Tessa Lau’s
“Visibility Matters:
Why You Need
a Professional
Web Page”
I’ve been serving on a

lot of selection committees in the past
few years. As you get to be more senior
in your field, you are tapped to partici-
pate in these committees more and
more; all this volunteer work is what
makes our field of endeavor possible.
It’s how conferences are run, papers
are accepted or rejected, award winners
are chosen, fellows are nominated.

If you want to succeed in this field,
you need to be well known. One step
you can take toward being more known
is to create a Web page for yourself.

Web presence is also important at
more senior levels, to select speakers
for conferences, to chair a banquet, to
receive an award. Chances are good you
will be selected by a committee that
does not know you personally. In that
case, you need to have a professional
Web page that gives you credibility and
assures them that you are what they are
looking for.

Based on my experience, here are
the important details to include on your
professional Web page:

Name˲˲

Email address˲˲

High-level description of your re-˲˲

search interests (e.g., HCI and AI)
Current employer and job title˲˲

When and where you got your ˲˲

Ph.D. (or when you expect to get it)
Past and future conference respon-˲˲

sibilities
Conferences you have reviewed pa-˲˲

pers for
List of representative publications˲˲

Gender (a photo should be enough)˲˲

Awards you have received˲˲

Many of these should be on your CV
(if that isn’t on the Web, it should be).

I hope I’ve convinced you why it’s
important to have a Web presence. It’s
particularly important for students and
women in industry research labs to do
this (because you tend to be less vis-
ible). Now, go update your Web site!	

Mark Guzdial is a professor at the Georgia Institute of
Technology, Greg Linden is the founder of Geeky Ventures
in Seattle, WA, and Tessa Lau is a research staff member
at IBM Almaden Research Center.

© 2009 ACM 0001-0782/09/0700 $10.00

http://studentapps.stanford.edu/
http://www.processing.org
http://www.stanford.edu/class/cs193p/cgi-bin/index.php
http://www.stanford.edu/class/cs193p/cgi-bin/index.php
http://studentapps.stanford.edu/

12 communications of the acm | july 2009 | vol. 52 | no. 7

cacm online

Moving Forward and Backward

My old boss was thrilled the first time he saw the image of a spinning globe
online. But that was long ago, when Web users were explorers, the Internet was
a place of discovery, and an animated .gif could muster boyish enthusiasm. Ex-
pectations are much higher and far more sophisticated now that users have vis-
ited hundreds of sites that demonstrate the core truth of the cliché that notes
the Web is about constant change, with users like kids in a candy store pointing
out cool features they’d like to see.

We can now explore some of those user expectations in the results of a Reader
Profile Study conducted last April by Harvey Research Inc. for Communications
of the ACM. The study shows that Web readers have an eye on the future and
a foot in the past. Indeed, that sentiment is embodied in one reader’s sugges-
tion that ACM reintroduce self-assessment procedures and put them online.
These questionnaires, designed to help a person appraise and develop his or
her knowledge of a particular topic, were first launched over 30 years ago.

Other findings from the study show a split affinity for the old and the new.
Half of the survey’s respondents say they will use Communications’ Web site to
request RSS feeds or email alerts, fast and easy ways to get new articles. A greater
number, 77.1%, will use it to access the magazine’s archive of 50-plus years of ar-
ticles. (For more information about this readership survey, see Scott Delman’s
“Publisher’s Corner” on page 7.)

Recent site usage analysis reinforces the pushme-pullyu preferences of our
users. Alerts and feeds get more clicks than any other item on the ACM Resourc-
es page. Those electronic formats are balanced by old-fash-
ioned printouts. The “Print” button is consistently the
most popular click in the Tools for Readers, and that’s
true for both 4,000-word Contributed Articles and
350-word blog entries as well. These contrast-
ing tendencies would be reconciled if users
were printing their e-material. But who
would do that?

DOI:10.1145/1538788.1538793	 David Roman

ACM
Member
News
Gödel Prize Winners
Omer Reingold, Salil Vadhan,
and Avi Wigderson won the
2009 Gödel Prize for developing
a new type of graph that enables
the construction of large
expander graphs, which play
an important role in designing
robust computer networks
and constructing theories of
error-correcting computer
codes. The award, presented by
ACM’s Special Interest Group
on Algorithms and Computing
Theory and the European
Association for Theoretical
Computer Science, recognized
their work on the zig-zag graph—
a technique able to solve one
of the most intriguing open
problems in computational
complexity theory, that of
detecting a path from one node
to another in very small storage
for undirected graphs (in which
the nodes are connected by lines
with no direction).

SIGIR 09
The 32nd Annual ACM Special
Interest Group on Information
Retrieval (SIGIR) conference, the
major international forum for
the presentation of new research
results and the demonstration of
new systems and techniques in the
field of information retrieval, will
be held in Boston from July 19–23.

Networks and human
behavior will be the subject
of the SIGIR keynote speech
by Albert-László Barabási,
a professor at Northeastern
University and director
of its Center for Complex
Network Research. “Highly
interconnected networks with
amazingly complex topology
describe systems as diverse
as the World Wide Web, our
cells, social systems, or the
economy,” notes Barabási.
“Recent studies indicate that
these networks are the result
of self-organizing processes
governed by simple but generic
laws, resulting in architectural
features that make them much
more similar to each other
than one would have expected
by chance. I will discuss the
amazing order characterizing
our interconnected world
and its implications to
network robustness and
spreading processes.”

LLL

L

1

24

6

35

9

8

10

START

7

RR

R

 N
news

july 2009 | vol. 52 | no. 7 | communications of the acm 13

Science | doi:10.1145/1538788.1538794	 Alex Wright

Contemporary Approaches
to Fault Tolerance
Thanks to computer scientists like Barbara Liskov, researchers are making
major progress with cost-efficient fault tolerance for Web-based systems.

A
s more and more data moves
into the cloud, many de-
velopers find themselves
grappling with the pros-
pect of system failure at

ever-widening scales.
When distributed systems first

started appearing in the late 1970s and
early 1980s, they typically involved a
small, fixed number of servers running
in a carefully managed environment.
By contrast, today’s Web-based distrib-
uted systems often involve thousands
or hundreds of thousands of servers
coming on and offline at unpredict-
able intervals, hosting multiple stored
objects, services, and applications that
often cross organizational boundaries
over the Internet.

“In a cloud we have relatively few
sites that are loaded with a huge num-
ber of processors,” says Danny Dolev,
a computer science professor at The
Hebrew University of Jerusalem. “Fault
tolerance needs to provide survivability
and security within a cloud and across
clouds.”

In this deeply intertwined environ-
ment, software designers have to plan
for a bewildering array of potential
failure points. Building large-scale
fault-tolerant systems inevitably in-

volves trade-offs in terms of cost, per-
formance, and development time.

As Web systems grow, those trade-
offs loom larger and larger. “Fault-tol-
erant systems have always been diffi-
cult to build,” says University of North
Carolina at Chapel Hill computer sci-
ence professor Mike Reiter. “Getting
a fault-tolerant system to perform as
well as a non-fault-tolerant one is a
challenge.”

Fortunately, the research commu-
nity has been making major strides
in this area of late, thanks in part to
the contributions of ACM A.M. Turing
Award winner Barbara Liskov of Mas-
sachusetts Institute of Technology,
whose breakthrough work in applying
Byzantine fault tolerance (BFT) meth-
ods to the Internet has helped point
the way to cost-efficient fault tolerance
for Web-based systems.“T

h
e

 B
y

z
antine

 G

enerals

 P

roblem

”
A

C
M

 T
O

P
L

A
S

V

ol

.4
,

I
ssue

 3

 (
J

uly

 1
9

8
2

)
D

O
I

:
1

0
.1

14
5

/3
5

7
1

7
2

.3
5

7
1

7
6

The Byzantine Generals Problem.

In the Byzantine Generals Problem, as defined by Leslie Lamport, Robert Shostak, and
Marshall Pease in their 1982 paper, a general must communicate his order to attack or retreat
to his lieutenants, but any number of participants, including the general, could be a traitor.

“Attack” “Attack”

“He said
retreat”

Lieutenant 1 Lieutenant 2

“Attack” “Retreat”

“He said
retreat”

Lieutenant 1 Lieutenant 2

Figure 1
Lieutenant 2 as the Traitor

Figure 2
Commander as the Traitor

Commander Commander

14 communications of the acm | july 2009 | vol. 52 | no. 7

news

ization by Leslie Lamport and later
surveyed by Fred Schneider. Lamport’s
work eventually led to the Paxos pro-
tocol, a descendant of which is now in
use at Google and elsewhere. Lamport
used the term “Byzantine” to describe
the array of possible faults that could
bedevil a system. The term derives
from the Byzantine Generals Problem,
a logic puzzle in which a group of gen-
erals must agree on a battle plan, even
though one or more of the generals
may be a traitor. The challenge is to
develop an effective messaging sys-
tem that will outsmart the traitors and
ensure execution of the battle plan.
The solution, in a nutshell, involves
redundancy.

While Lamport’s work has proved
foundational in the subsequent devel-
opment of Byzantine fault tolerance,
the basic ideas behind state machine
replication were also implemented in
other early systems. In the early 1980s,
Ken Birman pursued a related line
of work known as Virtual Synchrony
with the ISIS system. This approach
establishes rules for replication that
behave indistinguishably from a non-
replicated system running on a single,
nonfaulty node. The ISIS approach
eventually found its way into several
other systems, including the CORBA
fault-tolerance architecture.

At about the same time, Liskov de-
veloped viewstamped replication, a
protocol designed to address benign
failures, such as when a message gets
lost but there’s no malicious intent.

These pioneering efforts all laid the
foundation for an approach to state
machine replication that continues to

While researchers have developed
a number of different approaches to
fault tolerance over the years, ultimate-
ly they all share a common strategy:
redundancy. While hardware systems
can employ redundancy at multiple lev-
els, such as the central processing unit,
memory, and firmware, fault-tolerant
software design largely comes down
to creating mechanisms for consistent
data replication.

One of the most common ap-
proaches to software replication in-
volves a method known as state ma-
chine replication. With state machine
replication, any service provided by a
computer can be described as a state
machine, which accepts commands
from other client machines that alter
the state machine. By deploying a set
of replica state machines with identi-
cal initial states, subsequent client
commands can be processed by the
replicas in a pre-determined fashion,
so that all state machines eventually
reach the same state. Thus, the fail-
ure of any one state machine can be
masked by the surviving machines.

The origins of this approach to
fault tolerance stretch back to the
1970s when researchers at SRI Inter-
national began exploring the question
of how to fly mission-critical aircraft
using an assembly of computers. That
work laid the foundation for contem-
porary approaches to fault tolerance
by establishing the fundamental dif-
ference between timely systems, in
which network transmission times
are bounded and clocks are synchro-
nized, and asynchronous systems, in
which communication latencies have
infinite-tail distribution (most mes-
sages arrive within a certain time limit
but, with decreasingly low probability,
messages may be delayed in transit
beyond any bound).

The SRI work also helped draw im-
portant distinctions between the vari-
ous types of faults experienced in a
system, such as message omissions,
machine crashes, or arbitrary faults
due to software malfunction or other
undetected data alterations. Finally,
the SRI work helped to characterize
resilience bounds, or how many ma-
chines are needed to tolerate certain
failures.

The idea of state machine replica-
tion was given its first abstract formal-

underlie most contemporary work on
fault tolerance. However, most of these
projects involved relatively small, fixed
clusters of machines. “In this environ-
ment you only had to worry that the
machine you stored your data on might
have crashed,” Liskov recalls, “but it
wasn’t going to tell you lies.”

With the rise of the Internet in the
mid-1990s, the problem of “lies”—
or malicious hacks—rose to the fore.
Whereas once state machines could
trust each other’s messages, they now
had to support an additional layer of
confirmation to allow for the possibil-
ity that one or more of the state ma-
chines might have been hacked.

Two groups of developers began ex-
ploring ways of applying state-machine
replication techniques to cope with a
growing range of Byzantine failures.
Dahlia Malkhi and Mike Reiter intro-
duced a data-centric approach known
as the Byzantine quorum systems prin-
ciple. In contrast to active-replication
approaches like the Paxos protocol,
Byzantine quorum systems focus on
identifying a set of servers, rather than
focusing on the messages, and choos-
ing a set of servers so that they intersect
in specific ways to ensure redundancy.

In the mid-1990s, Liskov started
her breakthrough work on practi-
cal Byzantine fault tolerance (PBFT),
an extension of her earlier work on
viewstamped replication that adapted
the Paxos replication protocol to cope
with arbitrary failures. Liskov’s ap-
proach demonstrated that Byzantine
approaches could scale cost-effective-
ly, sparking renewed interest in the
systems research community.

While the foundational principles
of consistency and replication remain
essential, the rapid growth of Web sys-
tems is introducing important new
challenges. Many researchers are find-
ing that PBFT provides a useful frame-
work for developing fault-tolerant Web
systems. “I’m really excited about the
recent work Barbara and her colleagues
have done on making Byzantine Agree-
ment into a practical tool—one that we
can use even in large-scale settings,”
says Birman, a professor of computer
science at Cornell University.

Inspired by Lamport and Liskov’s
foundational work, Hebrew Universi-
ty’s Dolev has been working on an ap-
proach involving polynomial solutions

Practical Byzantine
fault tolerance
provides a useful
framework for
developing
fault-tolerant
Web systems.

news

july 2009 | vol. 52 | no. 7 | communications of the acm 15

Cloud Computing

Cloning
Smart-
phones
A pair of scientists at Intel
Research Berkeley have
developed CloneCloud, which
creates an identical clone of an
individual’s smartphone that
resides in a cloud-computing
environment.

Created by Intel researchers
Byung-Gon Chun and Petros
Maniatis, CloneCloud uses
a smartphone’s Internet
connection to communicate
with the phone’s online copy,
which contains its data and
applications, up to several
gigabits in size, in the cloud.
CloneCloud would make
smartphones significantly faster
and more powerful, enabling
them to perform processor-
heavy tasks in the cloud. For
example, Chun and Maniatis’s
CloneCloud prototype, running
on Google’s Android mobile
operating system, conducted a
test application involving the
facial recognition of photos.
Running the application on the
Android smartphone took 100
seconds; the phone’s clone,
operating on a desktop computer
in the cloud, completed the task
in one second.

According to the researchers,
CloneCloud would also
provide improved smartphone
security, with virus scans of
a device’s entire file system
being conducted in the cloud.
Moreover, CloneCloud would
improve a smartphone’s battery
life by having cloud-based
computers handle the most
processor-intensive tasks.

The CloneCloud research
could help with intelligently
allocating tasks to the most
energy-efficient or fastest
processor in a cloud-computing
environment. “There will be a
family of heterogeneous devices,
and you would like to move the
computing job to the one that
makes most sense; from that
standpoint, it is a great idea,”
said Allan Knies, associate
director of Intel Research
Berkeley, in an interview
with Technology Review.

The CloneCloud approach
could also help create a
computing environment that
would make it easier to share
data between mobile devices
and home-based computers.

to the general Byzantine agreement
problem. While his early work in this
area 25 years ago seemed largely theo-
retical, he is now finding practical ap-
plications for these approaches on the
Web. “My theoretical work was ignited
by Leslie [Lamport],” he says. “Barba-
ra’s work brought me to look again at
the practicality of the solutions.”

 At Microsoft, researcher Rama
Kotla has proposed a new BFT replica-
tion protocol known as Zyzzyva, that
strives to improve performance by us-
ing a technique called speculation to
achieve low performance overheads.
Kotla is also exploring a complemen-
tary technique called high throughput
BFT that exploits parallelism to im-
prove the performance of a replicated
application.

Also at Microsoft, director Chandu
Thekkath has been pioneering an al-
ternative approach to fault tolerance
for Microsoft’s Live Services, creating a
single “configuration master” to coor-
dinate recovery from machine failures
across multiple data services. The con-
cept of a configuration master also un-
derlies the design of several other lead-
ing services in the live services market,
such as Google’s Chubby lock server.

Lorezo Alvisi, a professor of com-
puter science at the University of
Texas at Austin, and colleagues are
probing the possibilities of applying
game theory techniques to fault toler-
ance problems, while Ittai Abraham, a
professor of computer science at The
Hebrew University of Jerusalem, and
colleagues are incorporating security
methods into distributed protocols to
punish rogue participants and deter
against the deviation of any collusion
among them.

While these efforts are opening new
research frontiers, they remain square-
ly rooted in the pioneering work on
Byzantine fault tolerance that started
more than three decades ago. Indeed,
many developers are just beginning to
encounter this foundational research
for the first time. “Engineers are start-
ing to discover and use these algo-
rithms instead of writing code by the
seat of their pants,” says Lamport.

Many developers still wrestle with
the cost and performance trade-offs of
fault tolerance, however, and a number
of large sites still seem willing to accept
a certain degree of system failure as a

cost of doing business on the Web.
“The reliability of a system increas-

es with increasing number of toler-
ated failures,” says Kotla, “but it also
increases the cost of the system.” He
suggests that developers look for ways
to balance costs against the need to
achieve reliability in terms of mean
time to failure, mean time to detect fail-
ures, and mean time to recover faulty
replicas. “We need more research work
in understanding and modeling faults
in various settings to help system de-
signers choose the right parameters,”
Kotla says.

Further complicating matters is
the rise of mobile devices that are only
sporadically connected to the Internet.
As people entrust more and more of
their personal data to these devices—
like financial transactions, messaging,
and other sensitive information—the
challenge of keeping all that data in
sync across multiple platforms will
continue to escalate. And the problem
of distributed fault tolerance will only
grow more, well, Byzantine.

“The Web is going live,” says Bir-
man, who believes that the coming
convergence of sensors, simulators,
and mobile devices will drive the need
for increasingly reliable data replica-
tion. “This is going to change the pic-
ture for replication, creating a demand
from average users.” When that hap-
pens, we may just see fault tolerance
coming out of the clouds and back
down to earth.	

Alex Wright is a writer and information architect who
lives and works in New York City.

© 2009 ACM 0001-0782/09/0700 $10.00

“The Web is going
live,” says Ken
Birman. “This is
going to change
the picture for
replication, creating
a demand from
average users.”

16 communications of the acm | july 2009 | vol. 52 | no. 7

news

image

 C

ourtesy

 of

 M

icrosoft

 R
esearc

h

Technology | doi:10.1145/1538788.1538795	 Kirk L. Kroeker

Toward Native Web Execution
Several software projects are narrowing the performance gap between
browser-based applications and their desktop counterparts. In the process, they’re
creating new ways to improve the security of Web-based computing.

M
ost Internet users do not
expect the performance
of browser-based appli-
cations to be the same
as desktop applications,

which are driven by code created from
high-quality compilers and designed
to run natively at the operating system
(OS) level. However, several ongoing
projects at Google, Microsoft, and oth-
er companies aim not only to close that
performance gap, but also to eliminate
some of the security weaknesses that
have plagued Web browsers since the
early days of the Internet.

For years, the Netscape plug-in API
and Microsoft’s ActiveX have provided
a way to use native code modules as
part of a Web application. Along with
enhanced browser functionality, these
extension technologies provide full ac-
cess to the OS’s file and networking in-
terfaces. But by relying on trust rather
than strong technical measures for
safety, these extension technologies
are vulnerable to social-engineering
attacks in which users are tricked into
permitting malicious operations.

One software project that chal-
lenges this trust model yet still offers
native performance is Xax, developed
at Microsoft Research. Xax separates
native instruction execution from na-
tive OS access, leveraging legacy code
to deliver desktop applications on the
Web. The project’s goal is to incorpo-
rate legacy code into browser-based
applications, which then run at native
performance levels and rely on a secu-
rity mechanism that is more flexible
than language isolation.

“Rather than use a language-based
isolation mechanism, why not instead
use the well-evolved and ubiquitous
memory management unit?” asks re-
searcher Jon Howell, who developed
Xax at Microsoft Research.

Howell and his colleagues at Micro-
soft Research are currently exploring

how a Xax interface can be used to de-
liver not just Web extensions, but all
of a Web application’s content, includ-
ing the rendering functions normally
provided by a browser. Realigning the
client’s role in this way, according to
Howell, will help make browsers more
secure and lead to more flexible ap-
plications that can use new rendering
frameworks without forcing developers
to wait for widespread client adoption.

In theory, it is possible to deliver
a new codec or a variant of an HTML
renderer in Flash or JavaScript. How-
ever, the new code, including all of its

libraries, would need to compile to the
special language and tolerate perfor-
mance penalties. “Being able to deliver
native code to the client loosens the
constraints,” says Howell.

Different Approaches
In contrast to Xax, which relies on the
memory management unit for memory
isolation and a kernel system-call patch
to prevent OS access, Google’s Native
Client takes a different approach. Us-
ing an OS-portable sandbox, Native Cli-
ent relies on x86 segmentation hard-
ware to enforce memory isolation and

Xax running a Mandelbrot set explorer to measure performance overhead. This CPU-bound
benchmark runs as quickly inside the Xax container as when hosted in a native OS process,
nearly 30 times faster than the fastest JavaScript implementations, according to Microsoft.

news

july 2009 | vol. 52 | no. 7 | communications of the acm 17

on a binary validator to isolate the OS
interface, preventing direct access to
the OS and resources such as the file
system and the network.

Despite the different implementa-
tion techniques, the idea behind Xax
and Native Client is similar, according
to Howell. “Let the software use the
processor however it likes,” he says,
“and rely for isolation on a simple bit
of hardware designed to do just that.”

Xax and Native Client are but two of
the software technologies designed to
close the performance gap and strength-
en the security of Web browsers. Sun’s
Java, Microsoft’s Silverlight, and Adobe’s
AIR represent another approach to iso-
lating untrusted modules from OS inter-
faces while narrowing the performance
gap with native execution. Of course, un-
like Xax and Native Client, these applica-
tion frameworks tend to be used mainly
as replacements for the browser-based
application environment.

Another alternative approach that is
gaining popularity is full virtualization.
Systems such as Xen or VMware aren’t
commonly used to deploy Web-based
applications, but that might change
soon. Because virtualization systems
use code-distribution formats based on
native code, they avoid the performance
obstacles of JavaScript and other simi-
lar languages. And to protect native OS
interfaces, they wrap untrusted code
in an entire instance of the OS and run
that on top of simulated hardware.

“The desire is to have some kind
of strong isolation barrier that an at-
tack will not be able to penetrate,” says
Mendel Rosenblum, cofounder of VM-
ware and a computer science professor
at Stanford University. “Hardware-level
virtual machines provide precisely that
high-assurance barrier yet can run ex-
isting browsers at near-native speeds.”

Rosenblum says the computer in-
dustry’s focus on low-level isolation
mechanisms is missing the larger
point about what virtualization layers
can do for performance and security,
especially as the Web evolves from a
document-delivery mechanism into an
ecosystem of interactive applications.
“The ability to run sophisticated code
safely, and with high performance on
the clients, will allow the new applica-
tions running in the cloud to support
the richer, highly interactive interfaces
users are accustomed to,” he says.

In the meantime, despite the prolif-
eration of technologies that aim to side-
step the performance issues associated
with running single-threaded scripts in
browsers, JavaScript remains indisput-
ably popular among developers as the
only viable choice for programming
browsers today. While most believe it
is unlikely that JavaScript performance
will catch up to the speed of native code
execution, both Firefox’s TraceMonkey
and Google’s V8, the JavaScript ren-
dering engine in the Chrome browser,
have received industrywide praise for
narrowing the performance gap.

“One thing we should never lose
sight of is the fact that language virtu-
al machines are not all about straight-
line speed of code and that there are
many moving parts in the system that
need to be balanced against each other,”
says Ivan Posva, a Google software engi-
neer who developed the V8 JavaScript
implementation for Chrome. Still, he
says, V8 has narrowed the gap.

In terms of the next speed increase
that users can expect from JavaScript
rendering engines, Posva says he re-
mains skeptical about the ability of ap-
plication-specific or language-specific
hardware to offer significant improve-
ment. “Currently in V8 there are still
many more optimizations that can be
applied on general-purpose CPUs,” he
says. “I do not think that JavaScript-
oriented hardware support would be a
silver bullet.”

In addition to the performance is-
sue, there remains the matter of secu-
rity. JavaScript running in a browser
opens up the possibility for local se-
curity attacks in which a malicious ap-
plication tries to elevate its privileges.
“Browser designers need to be aware
that the more control we give the third-
party programmers via JavaScript, the
more control somebody malicious
could potentially have,” Posva says.

“This is not a security issue on its own,
but there is a lot more potential control
in modern, high-performance virtual
machines that can be used to exploit
an independent security bug.”

To mitigate these risks, V8 uses a
layered approach with a sandboxed
renderer. “V8 tries to minimize the at-
tack surface by not giving total control
over the generated code for a piece of
JavaScript and by following common
practices such as marking all data non-
executable,” says Posva. “V8 has to en-
sure that the policies set by the binding
layer are followed properly.”

Posva says the performance of V8
will improve regardless of whether it
is embedded in a sandboxed environ-
ment. “We had to make some design
decisions in V8 to allow it being em-
bedded in the sandboxed renderer pro-
cess within Google Chrome,” he says.
“But none of these decisions prevent a
nonsandboxed use of V8, and none of
these decisions had an impact on the
real-world performance of V8.”

That performance versatility might
become increasingly important as
browsers evolve, perhaps even to the
point where they are no longer distin-
guishable from the applications they
run. “In a few years,” says Microsoft’s
Howell, “I don’t think we’ll mean the
same thing by ‘browser’ that we mean
today; we’ll mean much less.” Howell
predicts that most of the functions of
the traditional browser will be rendered
moot, replaced by flexible code linked
directly into the Web sites users visit.

Howell’s prediction amounts to say-
ing that the browser itself will become
the sandbox, more or less a simple iso-
lation framework. “Because Xax has
such a narrow interface, and because
we can compile the browser itself for
the Xax container, you can think of Xax
as a way to virtualize the browser,” says
Howell, who maintains that treating
the host OS as something special is a
short-lived phenomenon.

“As Web applications get richer,
they’re just as important to protect as
the host OS,” he says. “If Web applica-
tions are sandboxed, users can try one
with no risk of exposing everything on
their computer.”	

Based in Los Angeles, Kirk L. Kroeker is a freelance
editor and writer specializing in science and technology.

© 2009 ACM 0001-0782/09/0700 $10.00

Full virtualization
is an alternative
approach that is
gaining popularity.

18 communications of the acm | july 2009 | vol. 52 | no. 7

news

technology alters the way we see, hear,
and assimilate our world—the act of
thinking remains decidedly human.

Rethinking Thinking
Arriving at a clear definition for criti-
cal thinking is a bit tricky. Wikipedia
describes it as “purposeful and reflec-
tive judgment about what to believe or
what to do in response to observations,
experience, verbal or written expres-
sions, or arguments.” Overlay technolo-
gy and that’s where things get complex.
“We can do the same critical-reasoning
operations without technology as we
can with it—just at different speeds and
with different ease,” West says.

What’s more, while it’s tempting
to view computers, video games, and
the Internet in a monolithic good or
bad way, the reality is that they may
be both good and bad, and different
technologies, systems, and uses yield
entirely different results. For example,
a computer game may promote criti-
cal thinking or diminish it. Reading
on the Internet may ratchet up one’s
ability to analyze while chasing an end-
less array of hyperlinks may undercut
deeper thought.

Michael Bugeja, director of the
Greenlee School of Journalism and
Communication at Iowa State Univer-
sity of Science and Technology, says:
“Critical thinking can be accelerated
multifold by the right technology.”
On the other hand, “The technology
distraction level is accelerating to the
point where thinking deeply is dif-
ficult. We are overwhelmed by a con-
stant barrage of devices and tasks.”
Worse: “We increasingly suffer from
the Google syndrome. People accept
what they read and believe what they
see online is fact when it is not.”

One person who has studied the
effects of technology on people is
UCLA’s Greenfield. Exposure to tech-

S
ociety has long cherished
the ability to think beyond
the ordinary. In a world
where knowledge is revered
and innovation equals

progress, those able to bring forth
greater insight and understanding are
destined to make their mark and blaze
a trail to greater enlightenment.

“Critical thinking as an attitude is
embedded in Western culture. There
is a belief that argument is the way to
finding truth,” observes Adrian West,
research director at the Edward de
Bono Foundation U.K., and a former
computer science lecturer at the Uni-
versity of Manchester. “Developing our
abilities to think more clearly, richly,
fully—individually and collectively—
is absolutely crucial [to solving world
problems].”

To be sure, history is filled with tales
of remarkable thinkers who have de-
fined and redefined our world views:
Sir Isaac Newton discovering gravity;
Voltaire altering perceptions about so-
ciety and religious dogma; and Albert
Einstein redefining the view of the
universe. But in an age of computers,
video games, and the Internet, there’s
a growing question about how technol-
ogy is changing critical thinking and
whether society benefits from it.

Although there’s little debate that
computer technology complements—
and often enhances—the human mind
in the quest to store information and
process an ever-growing tangle of bits
and bytes, there’s increasing concern
that the same technology is changing
the way we approach complex prob-
lems and conundrums, and making it
more difficult to really think.

 “We’re exposed to [greater amounts
of] poor yet charismatic thinking, the
fads of intellectual fashion, opinion,
and mere assertion,” says West. “The
wealth of communications and in-

formation can easily overwhelm our
reasoning abilities.” What’s more,
it’s ironic that ever-growing piles of
data and information do not equate
to greater knowledge and better de-
cision-making. What’s remarkable,
West says, is just “how little this has
affected the quality of our thinking.”

According to the National Endow-
ment for the Arts, literary reading de-
clined 10 percentage points from 1982
to 2002 and the rate of decline is ac-
celerating. Many, including Patricia
Greenfield, a UCLA distinguished pro-
fessor of psychology and director of the
Children’s Digital Media Center, Los
Angeles, believe that a greater focus on
visual media exacts a toll. “A drop-off
in reading has possibly contributed to
a decline in critical thinking,” she says.
“There is a greater emphasis on real-
time media and multitasking rather
than focusing on a single thing.”

Nevertheless, the verdict isn’t in and
a definitive answer about how technol-
ogy affects critical thinking is not yet
available. Instead, critical thinking
lands in a mushy swamp somewhere be-
tween perception and reality; measur-
able and incomprehensible. It’s largely
a product of our own invention—and
a subjective one at that. And although

Are We Losing Our Ability
to Think Critically?
Computer technology has enhanced lives in countless ways, but some experts
believe it might be affecting people’s ability to think deeply.

Society | doi:10.1145/1538788.1538796	 Samuel Greengard

For better or worse, exposure to technology
fundamentally changes how people think.

P
h

otograp

h

 by

 A
dam

 G
ood

july 2009 | vol. 52 | no. 7 | communications of the acm 19

news

ogy extend beyond the flat earth of rote
memorization and teach decision-mak-
ing and analytical skills in immersive,
virtual environments that resemble the
real world, Gee says. Moreover, these
games—and some virtual worlds—give
participants freedom to explore ideas
and concepts that might otherwise be
inaccessible or off limits.

Kurt Squire, a University of Wis-
consin-Madison associate professor
in educational communications and
technology, has found that as children
play an educational game and learn
about a particular period in history or
an interesting concept, they often want
to learn more. For example, one young
student Squire studied sent him a list
of 27 books on ancient history the boy
had checked out of a library as a result
of playing the game Civilization. What
makes the games so compelling, he
relates, is they create a psychological
investment by “structuring problems
so that they are just beyond students’
current abilities.”

One thing is certain. In the digital
age, critical thinking is a topic that’s
garnering greater attention. As reading
and math scores decline on standard-
ized tests, many observers argue that
it’s time to take a closer look at tech-
nology and understand the subtleties
of how it affects thinking and analysis.
“Without critical thinking, we create
trivia,” Bugeja concludes. “We disman-
tle scientific models and replace them
with trendy or wishful ones that are
neither transferable nor testable.”	

Samuel Greengard is an author and freelance writer
based in West Linn, OR.

© 2009 ACM 0001-0782/09/0700 $10.00

Tools for Learning
How society views technology has a
great deal to do with how it forms per-
ceptions about critical thinking. And
nowhere is the conflict more apparent
than at the intersection of video games
and cognition. James Paul Gee, a pro-
fessor of educational psychology at the
University of Wisconsin-Madison and
author of What Video Games Have to
Teach Us About Learning and Literacy,
points out that things aren’t always as
they appear. “There is a strong under-
current of opinion that video and com-
puter games aren’t healthy for kids,”
he says. “The reality is that they are not
only a major form of entertainment,
they often provide a very good tool for
learning.”

In fact, a growing number of re-
searchers—and an expanding body of
evidence—indicate that joysticks can
go a long way toward building smarter
children with better reasoning skills.
Games such as Sim City, Civilization,
Railroad Tycoon, and Age of Mythol-

nology fundamentally changes the
way people think, says Greenfield,
who recently analyzed more than 50
studies on learning and technology,
including research on multitasking
and the use of computers, the Inter-
net, and video games. As reading for
pleasure has declined and visual me-
dia have exploded, noticeable chang-
es have resulted, she notes.

“Reading enhances thinking and
engages the imagination in a way that
visual media such as video games and
television do not,” Greenfield explains.
“It develops imagination, induction,
reflection, and critical thinking, as
well as vocabulary.” However, she has
found that visual media actually im-
prove some types of information pro-
cessing. Unfortunately, “most visual
media are real-time media that do not
allow time for reflection, analysis, or
imagination,” she says. The upshot?
Many people—particularly those who
are younger—wind up not realizing
their full intellectual potential.

Greenfield believes we’re watching
an adaptation process unfold. Today,
many individuals perform better at
common tasks but this doesn’t make
them better at thinking. The ability to
multitask and use technology is highly
beneficial in certain fields, including
medicine, business, and flying air-
craft. Consider: video game skills are
a better predictor of surgeons’ success
in performing laparoscopic surgery
than actual laparoscopic surgery expe-
rience. One study found that the best
video game players made 47% fewer er-
rors and performed 39% faster in lap-
aroscopic tasks than the worst video
game players.

“Most visual media
are real-time media
that do not allow
time for reflection,
analysis, or
imagination,” says
Patricia Greenfield.

The Royal Society and the
National Academy of Sciences
were among the organizations
that recently honored a select
group of computer scientists.

The Royal Society Fellows
Peter Buneman, a professor
of database systems at the
University of Edinburgh, and
Dame Wendy Hall, a professor
of computer science at the

University of Southampton and
ACM president, were among the
44 scientists elected as Fellows
of The Royal Society.

NAS Members
The National Academy of
Sciences elected 72 new
members and 18 foreign
associates from 15 countries in
recognition of their distinguished
and continuing achievements in

original research. Among the new
appointees are three computer
scientists: Sir Timothy Berners-
Lee, Massachusetts Institute of
Technology; John E. Hopcroft,
Cornell University; and Christos
Papadimitriou, University of
California, Berkeley.

SIROCCO Award
Nicola Santoro, a computer
science professor at Carleton

University, won the Prize for
Innovation in Distributed
Computing from the Colloquium
on Structural Information and
Communication Complexity
for his overall contribution
on the analysis of the labeled
graph properties that have been
shown to have a significant
impact on computability and
complexity in systems of
communication entities.

Milestones

Computer Science Awards

july 2009 | vol. 52 | no. 7 | communications of the acm 21

P
h

otograp

h

 by

 J
ared

 L

eeds

Liskov’s Creative Joy
Barbara Liskov muses about the creative process of problem solving,
finding the perfect design point, and pursuing a research path.

T
he greatest joy Barbara Lisk-
ov has experienced in her
distinguished career has not
been the results of her influ-
ential work but the creative

process itself. “It’s incredibly exciting,”
she says, “to be thinking about a prob-
lem and suddenly see a way to solve it
that you hadn’t thought of before, and
that makes a lot of other problems go
away.” Creative activity is what makes
research so interesting, she says, and
“is not dissimilar” to what artists of
all types experience during their work
process. “It just happened to show up
for me while thinking through solu-
tions to problems,” she says.

Among the contributions for which
Liskov received the ACM A.M. Turing
Award is using data abstraction to or-
ganize software systems. This new way
of thinking resulted in a paradigm
shift that had immense practical con-
sequences; it made systems much eas-
ier to build and more likely to operate
correctly. It involved creating modules
with an interface consisting of many
operations that provided more flexibil-
ity for users than previous techniques
and also allowed more details of the
implementation to be hidden.

The work that led to this insight be-
gan in 1971 when Liskov was at Mitre
Corporation building VENUS, a small,
interactive timesharing system. She
left to join Massachusetts Institute
of Technology, and during the transi-
tion began reflecting on what she had
accomplished with VENUS. “I stood
back and thought about program-
ming methodology and what I did in
organizing the system. I saw there was
this different technique being used,”
she says.

This major discovery was the basis
of a sequence of advances that refined
and extended these ideas, Liskov says.
First she saw that multi-operation
modules could be naturally linked to
programming languages as a way to
define new data types. Working with

her research team, she built on this
insight to design the programming
language CLU. She decided to design
a programming language because she
wanted everything to be well-defined
and such precision is necessary for
programming languages because they
are mathematical artifacts. Liskov also
thought presenting the idea of data ab-
straction in the context of a program-
ming language would make it easier to
communicate to programmers. Addi-
tionally, Liskov firmed up the separa-
tion between how a data abstraction
was implemented in a programming
language and how it was described in a
specification. Later, she developed the
Liskov substitution principle, which
explains how hierarchies of data types
should be organized.

During the early 1980s, Liskov be-
came interested in the ARPANET, the
precursor to the Internet. Only a few
major universities and a small group
of people were using it for email and
file transfers, but computer scientists
dreamed of building programs that
worked on a collection of ARPANET-
connected machines. No one knew
how to do that, so Liskov decided to

tackle the problem. While working on
CLU, she consciously had limited her
work to sequential programs as op-
posed to concurrent ones with many
parts running in parallel. “We had
enough problems without thinking
about concurrency,” she explains,
“but I had always planned as a next
step to return to concurrency.” The
result was the language Argus, which
enables coders to write programs with
components on different computers
that communicated remotely through
the fledgling Internet.

A stream of related work followed.
Liskov delved into other aspects of dis-
tributed computing, particularly how
to store files online instead of on an
individual’s machines. That, in turn
raised questions about crashes and
losing information. Liskov worked on
highly reliable storage on remote ma-
chines, which piqued her interest in
replication algorithms. “To solve the
problem, you must have more than one
machine to store data,” says Liskov,
“Then you need a protocol that enables
machines to keep data in synch so you
always get the most recent copy. That
was the precursor to my fault tolerance
work. Not yet Byzantine failures—just
plain old crashes.”

Asked what it was like to develop
a computer language, Liskov says,
“You’re trying to create something
simple and yet expressive. You’re look-
ing for the perfect design point where
the mechanisms that you put into the
language are powerful enough to al-
low people to do the things they need
to do in a fairly straightforward way,
and yet syntax and semantics remain
simple enough that the complexity of
language isn’t overwhelming. It’s very
hard work to find that design point,
but it’s very satisfying. It’s a lot like
mathematics because you’re looking
for the elegant solution.”

Reflecting on the progress of com-
puter science in general during her
career, Liskov says people were naïve

“It’s very hard
work to find that
[perfect] design
point, but it’s very
satisfying. It’s a lot
like mathematics
because you’re
looking for the
elegant solution.”

Milestones | doi:10.1145/1538788.1538797	 Karen A. Frenkel

news

22 communications of the acm | july 2009 | vol. 52 | no. 7

news

ACM Transactions on
Internet TechnologyInternet TechnologyInternet Technology

◆ ◆ ◆ ◆ ◆

This quarterly publication encompasses many disciplines
in computing—including computer software engineering,
middleware, database management, security, knowledge dis-
covery and data mining, networking and distributed systems,
communications, and performance and scalability—all under
one roof. TOIT brings a sharper focus on the results and roles
of the individual disciplines and the relationship among
them. Extensive multi-disciplinary coverage is placed on the
new application technologies, social issues, and public policies
shaping Internet development.

◆ ◆ ◆ ◆ ◆

http://toit.acm.org/

during the early years. “I worked on
a language translation project,” she
says. “People thought they could solve
that in a few years. It was easy to not
understand how difficult the problems
were.” Nevertheless, she acknowl-
edges tremendous progress. In the
1970s advances were made in defining
certain ways of doing things and, she
says, “that’s what data abstraction is
all about.” But the major challenge still
is how to build large software systems.
Such huge projects contain millions of
instructions and it’s hard to understand
something that big, and build them to
be correct and organized so that they’re
flexible and easy to modify, she says.

Women in computing have also
made progress, although they contin-
ue to encounter unconscious gender
bias, Liskov says. As associate provost
for faculty equity, she educates col-
leagues, including members of search
committees, about unconscious bias.
She references studies of sexist hiring
processes, including one that involved
evaluations of résumés. When Swedish
researchers changed men’s and wom-
en’s names on resumes, the resumes

with a woman’s name were ranked
lower than those with a man’s. In an-
other example, a symphony orchestra
held auditions behind a curtain and,
with the gender of the musicians being
unknown, more women were offered

jobs. “Hopefully telling them makes
them more sensitive and sophisti-
cated,” says Liskov, “so that they no-
tice when a letter of recommenda-
tion compares a woman only to other
women, for example.” However, she
says the issue involves not only the
biased material that hiring commit-
tee members see, but also their bias in
how they interpret it.

Liskov’s advice for those wishing to
pursue a career in research is to avoid
taking a certain direction because it
is likely to yield many published pa-
pers. Instead, she encourages follow-
ing one’s own star. “It’s much better
to go for the thing that’s exciting,”
Liskov says. “But the question of how
you know what’s worth working on and
what’s not separates someone who’s
going to be really good at research and
someone who’s not. There’s no pre-
scription. It comes from your own intu-
ition and judgment.”	

Based in Manhattan, Karen A. Frenkel is a freelance writer
and editor specializing in science and technology.

© 2009 ACM 0001-0782/09/0700 $10.00

“The question
of how you know
what’s worth
working on and
what’s not separates
someone who’s
going to be really
good at research
and someone’s
who’s not. There’s
no prescription.”

http://toit.acm.org/

july 2009 | vol. 52 | no. 7 | communications of the acm 23

news

Milestones | doi:10.1145/1538788.1538798	 Alan Joch

Master of Connections
Jon Kleinberg is honored for his pioneering research
on the Web and social networking.

I
n 1981, 10-year-old Jon Kleinberg
realized he could use his Apple
II computer not just to play ex-
isting games but to invent his
own. “I had a sense that you

could actually create things with this
device, and that presented computing
in a very engaging way for me,” recalls
Kleinberg, now the Tisch professor of
computer science at Cornell University.

That epiphany kindled in Kleinberg
a passion that led him to become a ris-
ing star in computer science. The lat-
est kudo: In April, Kleinberg won the
ACM-Infosys Foundation Award in the
Computing Sciences for his pioneering
work in Web search techniques and
large social networks. Kleinberg has
previously received fellowships from
the MacArthur, Packard, and Sloan
foundations, and last year earned a
spot on Discover magazine’s list of
“best brains under 40.”

The Web link-analysis models
Kleinberg created while a visiting sci-
entist at IBM Almaden Research Cen-
ter in 1996 contributed to the success
of search-engine algorithms that help
people navigate the volume and diver-
sity of information on the Web, which
had just exploded onto the scene a
few years before. He has also used the
Web’s reach to explore the “six degrees
of separation” phenomenon, which
describes how closely connected indi-
viduals are throughout the world.

“There are problem posers, prob-
lem solvers, and problem kibitzers,”
says Tom Leighton, a professor of ap-
plied mathematics at Massachusetts
Institute of Technology, where Klein-
berg completed his graduate studies.
“Jon is very good at all of the pieces.
He’s the kind of guy who can come up
with the clever intellectual leaps and
then fill in the details to prove that the
ideas do work.”

What makes Kleinberg’s work dis-
tinctive is his ability to marry comput-
er and social sciences. “He is driven
by looking outside and then seeking

to explain it,” says Susan L. Graham,
computer science professor emerita
at the University of California, Berke-
ley. “There is interesting mathematics
behind what he does, but he doesn’t
describe it in terms of ‘Here are the the-
orems I’ve proven.’ He describes it in
terms of ‘Here’s how to explain why on
average there’s only the distance of six
hops from one person to another.’ ”

The ability to bridge scientific disci-
plines helps explain the popularity of a
class Kleinberg teaches at Cornell with
economist David Easley. The course,

called Networks, examines connections
among social, technological, and natu-
ral worlds. “We draw from the everyday
experiences of our undergrads, who
are fluent in applications that enrich
social connections, and ask, ‘What’s
the science behind it?’ ” Kleinberg says.
“That science involves computer sci-
ence, economics, and the quantitative
aspects of the social sciences.”

Prabhakar Raghavan, head of Ya-
hoo! Research, has seen this approach
in action since 1996, when he oversaw
Kleinberg’s work at Almaden. One eve-
ning, they sat outside a Starbucks and
watched as people ambled either into
the coffee shop or into a Jamba Juice
franchise next door. When Jamba Juice
closed for the day and Starbucks con-
tinued to attract customers for another
hour, Kleinberg quipped that Jamba
Juice was losing business because it
hadn’t done enough data mining to
understand the local market dynam-
ics. “Jon has a very pragmatic mind,”
says Raghavan, “but he’s always tying it
back to the work he has done.”	

Alan Joch is a business and technology writer based in
Francestown, NH.

© 2009 ACM 0001-0782/09/0700 $10.00

“There are problem
posers, problem
solvers, and problem
kibitzers,” says
Tom Leighton.
“Jon is very good at
all of the pieces.”

P
h

otograp

h

 by

 C
ornell

 U

niversity

 P

h
otograp

h
y

 /
 R

obert

 B

ar

k
er

Nominations are invited for the 2009 ACM A.M. Turing Award. This, ACM’s
oldest and most prestigious award, is presented for contributions of a
technical nature to the computing community. Although the long-term
influences of the nominee’s work are taken into consideration, there should
be a particular outstanding technical achievement that constitutes the
principal claim to the award. The award carries a prize of $250,000 and
the recipient is expected to present an address that will be published in an
ACM journal. Financial support of the Turing Award is provided by the
Intel Corporation and Google Inc.

Nominations should include:

1) A curriculum vitae, listing publications, patents, honors, other awards, etc.

2) �A letter from the principal nominator, which describes the work of the
nominee, and draws particular attention to the contribution which is seen
as meriting the award.

3) �Supporting letters from at least three endorsers. The letters should not
all be from colleagues or co-workers who are closely associated with the
nominee, and preferably should come from individuals at more than
one organization. Successful Turing Award nominations usually include
substantive letters of support from a group of prominent individuals
broadly representative of the candidate’s field.

For additional information on ACM’s award program
please visit: www.acm.org/awards/

Nominations should be sent electronically
by November 30, 2009 to:
Alan Kay, turing@vpri.org

ACM A.M. TURING AWARD
NOMINATIONS SOLICITED

Previous
A.M. Turing Award
Recipients

1966 A.J. Perlis
1967 Maurice Wilkes
1968 R.W. Hamming
1969 Marvin Minsky
1970 J.H. Wilkinson
1971 John McCarthy
1972 E.W. Dijkstra
1973 Charles Bachman
1974 Donald Knuth
1975 Allen Newell
1975 Herbert Simon
1976 Michael Rabin
1976 Dana Scott
1977 John Backus
1978 Robert Floyd
1979 Kenneth Iverson
1980 C.A.R Hoare
1981 Edgar Codd
1982 Stephen Cook
1983 Ken Thompson
1983 Dennis Ritchie
1984 Niklaus Wirth
1985 Richard Karp
1986 John Hopcroft
1986 Robert Tarjan
1987 John Cocke
1988 Ivan Sutherland
1989 William Kahan
1990 Fernando Corbató
1991 Robin Milner
1992 Butler Lampson
1993 Juris Hartmanis
1993 Richard Stearns
1994 Edward Feigenbaum
1994 Raj Reddy
1995 Manuel Blum
1996 Amir Pnueli
1997 Douglas Engelbart
1998 James Gray
1999 Frederick Brooks
2000 Andrew Yao
2001 Ole-Johan Dahl
2001 Kristen Nygaard
2002 Leonard Adleman
2002 Ronald Rivest
2002 Adi Shamir
2003 Alan Kay
2004 Vinton Cerf
2004 Robert Kahn
2005 Peter Naur
2006 Frances E. Allen
2007 Edmund Clarke
2007 E. Allen Emerson
2007 Joseph Sifakis
2008 Barbara Liskov

Additional information
on the past recipients of
the A.M. Turing Award
is available on: http://
awards.acm.org/home­
page.cfm?awd=140

http://awards.acm.org/homepage.cfm?awd=140
http://www.acm.org/awards/
mailto:turing@vpri.org
http://awards.acm.org/homepage.cfm?awd=140
http://awards.acm.org/homepage.cfm?awd=140

july 2009 | vol. 52 | no. 7 | communications of the acm 25

news

Milestones | doi:10.1145/1538788.1538799	

E
v e r y y e a r AC M honors select
individuals for their achieve-
ments and contributions in
the areas of education, theo-
ry and practice, and service

to the computing community.

ACM A.M. Turing Award
Barbara Liskov, Institute Professor,

Massachusetts Institute of
Technology

ACM-Infosys Foundation Award
in the Computing Sciences
Jon Kleinberg, Tisch University Profes-

sor, Cornell University

Software System Award
The Gamma Parallel Database System
David J. DeWitt, Microsoft; University

of Wisconsin-Madison (Emeritus)
Robert Gerber, Microsoft
Murali M. Krishna, Hewlett-Packard
Donovan A. Schneider, Yahoo!
Shahram Ghandeharizadeh, Univer-

sity of Southern California
Goetz Graefe, Hewlett-Packard
Michael Heytens, RGM Advisors
Hui-I Hsiao, IBM
Jeffrey F. Naughton, University of

Wisconsin-Madison
Anoop Sharma, Hewlett-Packard

ACM-AAAI Allen Newell Award
Barbara J. Grosz, Higgins Profes-

sor of Natural Sciences, School of
Engineering and Applied Sciences,
and Dean, Radcliffe Institute for
Advanced Study

Joseph Y. Halpern, Professor, Cornell
University

Grace Murray Hopper Award
Dawson Engler, Associate Professor,

Stanford University

Karl V. Karlstrom Outstanding
Educator Award
John E. Hopcroft, IBM Professor of

Engineering and Applied Math-
ematics, Cornell University

Paris Kanellakis Theory
and Practice Award
Corinna Cortes, Head, Google

Research, New York
Vladimir Vapnik, Fellow, NEC Labora-

tories/Columbia University

Distinguished Service Award
Telle Whitney, President and CEO,
Anita Borg Institute

Outstanding Contribution
to ACM Award
Wayne Graves, Director of Information

Systems, ACM
Bernard Rous, Deputy Director of

Publications and Electronic Pub-
lishing Program Director, ACM

ACM Fellows
Sanjeev Arora, Princeton University
Hari Balakrishnan, Massachusetts

Institute of Technology
Kenneth L. Clarkson, IBM Alma-den

Research Center
Jason (Jingsheng) Cong, University of

California at Los Angeles
Jack W. Davidson, University of Vir-

ginia
Umeshwar Dayal, Hewlett-Packard

Laboratories
Xiaotie Deng, City University of Hong

Kong
Jose J. Garcia-Luna-Aceves, University

of California Santa Cruz; Palo Alto
Research Center

Patrick Hanrahan, Stanford University
Charles H. House, Stanford University

MediaX Program
Alan C. Kay, Viewpoints Research

Institute
Joseph A. Konstan, University of Min-

nesota
Roy Levin, Microsoft Research Silicon

Valley
P. Geoffrey Lowney, Intel Corporation
Jitendra Malik, University of California

Berkeley
Kathryn S. McKinley, University

of Texas at Austin
J. Ian Munro, University of Waterloo

Judith S. Olson, University of Cali–
fornia at Irvine

Hamid Pirahesh, IBM Almaden
Research Center

Brian Randell, Newcastle University
Michael K. Reiter, University of North

Carolina at Chapel Hill
Jonathan S. Rose, University of Toronto
Mendel Rosenblum, Stanford University
Tuomas Sandholm, Carnegie Mellon

University
Vivek Sarkar, Rice University
Mark S. Squillante, IBM Thomas J.

Watson Research Center
Per Stenström, Chalmers University of

Technology
Douglas Terry, Microsoft Research

Silicon Valley

Doctoral Dissertation Award
Constantinos Daskalakis, Microsoft

Research Lab
Honorable Mention:
Derek Hoiem, University of Illinois at

Urbana-Champaign
Sachin Katti

ACM-W Athena Lecturer Award
Susan Eggers, Microsoft Professor of

Computer Science and Engineering,
University of Washington

ACM International Collegiate
Programming Contest
St. Petersburg State University of IT,

Mechanics and Optics

Computing Research Association
Distinguished Service Award
Eugene Spafford, Professor of Com-

puter Science, Purdue University

ACM-IEEE CS
Eckert-Mauchly Award
Joel Emer, Fellow, Intel Corporation

© 2009 ACM 0001-0782/09/0700 $10.00

ACM Award Winners
Among this year’s distinguished honorees are Barbara Liskov of
Massachusetts Institute of Technology and Jon Kleinberg of Cornell University.

Congratulations
ACM Senior Members

ACM honors 395 new inductees as Senior Members in recognition of their
demonstrated performance which sets them apart from their peers

Greg Adamson
Kevin W. Agnew

Robert Larry Akers
Ehab Al-Shaer

Jonathan Erik Aldrich
Nega Lakew Alemayehu

Alonso Alvarez
Murali Annavaram
Phillip G. Armour
Douglas Atique
Alan F. Babich

Saurabh Bagchi
Leemon Baird

Theodore P. Baker
Dusan Baljevic
Sylvia Barnard

Alvaro Barreiro Garcia
Ira D. Baxter

James M.A. Begole
Michael P. Bekakos
Alan Berenbaum

R. Daniel Bergeron
Alessandro Berni

Pankaj Bhatt
Norbert Bieberstein

Maria Bielikova
Benjamin J. Bishop

Jean R. S. Blair
Je� rey A. Bloom

Piero P. Bonissone
Kellogg S. Booth
Jens K.P. Borchers

Yuri Boreisha
Laszlo Böszörmenyi

Herve Bourlard
Guy André Boy

Wilhelm Braunschober
Duncan A. Buell

Richard Bunt
Michael A. Burns

Randal Burns
David W. Butler

Daniel K. Butler Jr.
Mario Cannataro
Robert L. Cannon

Calin Cascaval

Soumen Chatterjee
Jake Chen

Shu-Ching Chen
Zheng Chen
Ken Cheng

Gerardo Cisneros
Christina B. Class

Jack E. Cohen
Jens Coldewey
David H. Collins
Gregory Conti

Gene Cooperman
David W. Cordes
Fabio Crestani

Vladimir-Ioan Cretu
Terence Critchlow

Mark Crovella
Venu G. Dasigi
Danco Davcev

Clive B. Dawson
John D. Day
Tugrul Dayar
Paloma Diaz

Lloyd Dickman
Walter C. Dietrich, Jr.

Laura K. Dillon
Chen Ding

Mark Doernhoefer
Guozhu Dong

Jing Dong
Stefan Drees

Petros Drineas
Steven M. Drucker

Nelson F. F. Ebecken
David S. Ebert
Bo Einarsson

Samhaa R. El-Beltagy
David E. Emery
Avram Eskenazi

Opher Etzion
Claudio Feijoo

Harriet Fell
Rommel P. Feria

Bruce Filgate
Joaquim B. Filipe

Nancy Arthur Floyd

Patrick J. Flynn
Karl F. Fox

Guillermo A. Francia, III
Leo Frishberg

Antônio Augusto Fröhlich
Joachim Hans Fröhlich

Hamido Fujita
David Luigi Fuschi

Theresa Gaasterland
Samuel Henry Gamoran

Jianfeng Gao
Carlos A. Garcia

Minos Garofalakis
Marina L. Gavrilova

Edward F. Gehringer
Michael A. Gennert

Birgit Geppert
Thomas A. Gerace
Osvaldo Gervasi

Ratnanu Ghosh-Roy
Robert A. Gingell
Willard L. Graves

David Greco
Daniel C. Gri� n

Georges Grinstein
William I. Grosky
Holger H. Gruen

Nuno M. Guimaraes
Neil James Gunther

Philip J. Gust
Richard A. Gustafson

Mark J. Guzdial
Martin Haenggi

Peter-Michael Hager
Sharon Hagi

Timothy J. Halloran
Paul J. Hamill, III
Dennis Hammer
Charles Hansen
Simon Harper
Lou Harrison

Robert L. Hartmann
Leslie Young Harvill

Stephen A. Harwood
Mark A. Hasegawa-Johnson

Scott Hauck

Xudong He
Milena Head

Wendi Heinzelman
Sven Helmer

Pradeep Henry
Martin Hepp

Djoerd Hiemstra
Scott A. Hissam
Aykut Hocanin

Micha Hofri
Seongsoo Hong

Ellis Horowitz
Thomas Hou

Sun-Yuan Hsieh
Xian-Sheng Hua

Charles E. Hughes
Miquel Huguet

Mikhail B. Ignatyev
John Impagliazzo
Peter Ingerman

Michael S. Irizarry
Kazuaki Ishizaki

Takayuki Ito
Sugih Jamin

Michael Jenkin
Sanjay Kumar Jha

Wang Jingfang
Jeremy R. Johnson
Magnus Jonsson

Mike Joy
Philippe Joye

Michael A. Kahn
Ejub Kajan
Surya Kant
Sumi Kaoru

Bhanu Kapoor
Alan H. Karp

Carl A. Karrfalt
Paulo Keglevich-De-Buzin

Terence Kelly
Young Hwan Kim

James C. King
Dr. Kinshuk

Peter D. Kirchner
John R. Klein

Stanislav Klimenko

http://seniormembers.acm.org

Bryan T. Koch
Peter M. Kogge
Tamara G. Kolda

Fabio Kon
Hannu K. Koskela
Nectarios Koziris

M. Giridhar Krishna
Ajay D. Kshemkalyani

Amruth N. Kumar
Deepak Kumar
Yoshinori Kuno

Niels Müller Larsen
Cary Laxer

David J. Leciston
Dongman Lee
Guy Lemieux
Vitus J. Leung

Jun Li
Xiaoye S. Li
Yingjiu Li

Li Liao
Jerry Min-Chew Lim

Koon Sang Lim
Robert W. Lindeman

Tok Wang Ling
Stuart J. Lipo�

Chung-Shyan Liu
Chia-Tien Dan Lo

Julia M. Lobur
C. Douglass Locke

Antonio M. Lopez, Jr.
Karen Lopez

Manuel Lopez-Martin
David Luebke

Glenn R. Luecke
Michael R. MacFaden

Spiros Mancoridis
Sebastian Maneth

Nikolai N. Mansourov
Diana Marculescu

Timothy S. Margush
Chris Markovitch

Haralambos Marmanis
David Marston

Lutz Marten
Maurizio Martignano

J. Sperling Martin
Peter Marwedel

Michael Mascagni
Kanta Matsuura

Wolf-Ekkehard Matzke
Renee McCauley

Michael G. McKenna
Sandeep Mehta

Ronald B. Melton
Panagiotis T. Metaxas

Mira Mezini

Patrick J. Miller
Mikolay Mirenkov
Scott A. Mitchell

H. R. Mohan
Bryan R. Montgomery

Jaime H. Moreno
Nelson Morgan

John Patrick Morrison
Ali Movagher

Jörg Mühlbacher
Guenter Mueller

Debajyoti Mukhopadhyay
John Murphy

C. R. Muthukrishnan
David W. Mutschler
Elizabeth D. Mynatt

Yunmook Nah
Zensho Nakao

V. Lakshmi Narasimhan
Leandro Navarro

Pavol Navrat
Glenn A. Nead
Michael R. Neal
Anisoara Nica
Shojiro Nishio

Mark H. Nodine
Haruo Noma

Karl A. Nyberg
Joann J. Ordille

Thomas J. Ostrand
Barbara Boucher Owens

Jianping Pan
Gopal Pandurangan

Steven M. Paris
Joseph Pato

Trevor Pering
 Luiz Felipe Perrone

Mark J. Perry
Timothy M. Pinkston

Jeremy Pitt
Vasile Podaru

George C. Polyzos
Gerard A. Pompa
Adrian Popescu
Walter D. Potter
Costin Pribeanu
Milos Prvulovic

Pradeep K. Pujari
Helen S. Raizen

Sergio Rajsbaum
Garimella Rama Murthy

Stephen Paul Ramsay
Martin Rantzer
Sandy Ressler

Vladimir V. Riabov
Kenji Rikitake

John T. Robinson

William H. Robinson
Nayan B. Ruparelia

S. Sadagopan
R. Sadananda

Maytham Hassan Safar
Deepak Sahay
Toshiaki Saisho

Bo I. Sanden
Kenya Sato

William L. Scherlis
Theo Schlossnagle

Nicu Sebe
Doree Duncan Seligmann

Everett M. Sherwood
Timothy K. Shih

Behrooz A. Shirazi
Matthew W. Silveira

Maninder Singh
Sharad K. Singhai

Anand Sivasubramaniam
Anatol Slissenko
Gregory L. Smith
James D. Smith, II
Michael K. Smith

Mario E. Sosa
William Spees

Michael Sperber
Michael Stage

J. Gregory Ste� an
Fred A. Stelter

Christine Stephenson
David G. Stork

Hussein Suleman
Xian-He Sun

Je� rey V. Sutherland
Peter F. Sweeney
Richard E. Sweet

Efstathios D. Sykas
Clarence N.W. Tan

Nicolae Tapus
Mark Tarlton

William J. Tastle
Glenn S. Tenney

Jorge Teran
Roger E. Tipley

Satish Tiptur
Srikanta Tirthapura

Akio Tojo
Konstantin L. Tolskiy

Robert J. Torres
Thierry Turletti
Murray Turo�
John G. Tyler

George Tzanetakis
Brian William Unger
Aristides Vagelatos

Llorenç Valverde
Robert van Engelen
Sridhar Varadarajan

GiorgioVentre
Jose M. Vidal

Ioan Orest Vlase
David W. Walker
Henry M. Walker
James Z. Wang

James (Zijun) Wang
Derek T. Warnick
Bruce W. Weide

Matt Welsh
Roberto A. Wenzel
David B. Whalley

John H. Whitehouse, Jr.
James J. Whitmore

Frank Wiegand
William B. Willaford, IV

James Reed Wilson
Robert W. Wisniewski

V.E. Wolfengagen
Bernd E. Wol� nger

Andrew Woo
Murray Woodside

Xingfu Wu
Haiping Xu

Joseph K.K. Yau
Alison L. Young

Liyun Yu
Husam Yunis

Franco Zambonelli
Alan Zeichick

Du Zhang
Liang-Jie Zhang

Lixin Zhang
Ying Zhang
Zhao Zhang
Zeljko Zilic

Detlef Zuehlke
Michael Joseph Zyda

http://seniormembers.acm.org

28 communications of the acm | july 2009 | vol. 52 | no. 7

V
viewpoints

doi:10.1145/1538788.1538800	 Pamela Samuelson

Legally Speaking
The Dead Souls of the Google
Book Search Settlement
Why the Google Book Search settlement agreement under consideration
could result in an extensive restructuring of the book industry.

G
oogle has scanned the texts
of more than seven million
books from major univer-
sity research libraries for its
Book Search initiative and

processed the digitized copies to index
their contents. Google allows users to
download the entirety of these books
if they are in the public domain (about
one million of them are), but at this
point makes available only “snippets”
of relevant text when the books are still
in copyright (unless the copyright owner
has agreed to allow more).

In the fall of 2005, the Authors Guild,
which then had about 8,000 members,
and five publishers sued Google for
copyright infringement. Google argued
that its scanning, indexing, and snippet-
providing was a fair and non-infringing
use because it promoted wider public
access to books and because Google
would remove from its Book Search
repository any digitized books whose
rights holders objected to their inclu-
sion. Many copyright professionals ex-
pected the Authors Guild v. Google case
to be the most important fair use case of
the 21st century.

This column argues that the pro-
posed settlement of this lawsuit is a
privately negotiated compulsory license
primarily designed to monetize millions
of orphan works. It will benefit Google
and certain authors and publishers, but
it is questionable whether the authors
of most books in the corpus (the “dead
souls” to which the column title refers)
would agree that the settling authors
and publishers will truly represent their
interests when setting terms for access
to Book Search.

Orphan Works
An estimated 70% of the books in the
Book Search repository are in-copyright,
but out of print. Most of them are, for
all practical purposes, “orphan works,”
that is, works technically still in copy-
right, but for which it is virtually impos-
sible to locate the appropriate rights
holders to ask for permission to digitize
them.

A broad consensus exists about the
desirability of making orphan works
more widely available. Yet, without a
safe harbor against possible infringe-
ment lawsuits, digitization projects

pose significant copyright risks. Con-
gress is considering legislation to less-
en the risk of using orphan works, but it
has yet to pass.

The proposed Book Search settle-
ment agreement solves the orphan
works problem for books—at least for
Google. Under this agreement, which
must be approved by a federal court
judge to become final, Google would get,
among other things, a license to display
up to 20% of the contents of in-copyright
out-of-print books, to run ads alongside
these displays, and to sell access to the
full text of these books to institutional
subscribers and individual purchasers.

The Book Rights Registry
Approval of this settlement would estab-
lish a new collecting society, the Book
Rights Registry (BRR), initially funded
by Google with $34.5 million. The BRR
will be responsible for allocating $45
million in settlement funds that Google
is providing to compensate copyright
owners for past uses of their books.

More important is Google’s commit-
ment to pay the BRR 63% of the revenues
it makes from Book Search that are sub-

V
viewpoints

july 2009 | vol. 52 | no. 7 | communications of the acm 29

ning and whose copyrights Google was
violating. By bringing a class action law-
suit, the Authors Guild put considerable
financial pressure on Google because
the winner of a class action lawsuit is en-
titled to an award that equals all of the
monies owed to the class, which may be
exponentially higher than awards to in-
dividual plaintiffs.

In the absence of a settlement agree-
ment, Google would almost certainly
have vigorously fought against certifi-
cation of the class in the Authors Guild
case. After all, the guild has only a few
thousand members and most of them
do not write the kinds of scholarly works
that are typically found in major univer-
sity research libraries. Many scholarly
book authors might want their books to
be scanned by the Book Search project
so they will be more accessible to poten-
tial readers.

The publisher lawsuit did not start
out as a class action lawsuit, perhaps in
part because McGraw-Hill et al. recog-
nized how difficult it would be for them
to prove they adequately represented a
class of all book publishers whose books
Google had scanned.

However, the agreement that Google

ject to sharing provisions. The revenue
streams will come from ads appearing
next to displays of in-copyright books in
response to user queries and from indi-
vidual and institutional subscriptions
to some or all of the books in the corpus.
Google and the BRR may also develop
new business models over time that will
be subject to similar sharing.

One of the main jobs of the BRR
will be to distribute these revenues.
The money will go, less BRR’s costs, to
authors and publishers who have reg-
istered their copyright claims with the
BRR. Although the settlement agree-
ment extends only to books published
prior to January 5, 2009, the BRR is ex-
pected to attract authors and publishers
of later-published books to participate
in the revenue-sharing arrangement that
Google has negotiated with the BRR.

Class Action Settlement
By now, Communications readers may
be a bit puzzled. How can Google be
getting a license to make millions of in-
copyright books available through Book
Search just by settling a lawsuit brought
by a small fraction of authors and pub-
lishers?

U.S. law allows the filing of “class
action” lawsuits whose lead plaintiffs
claim they represent a class of persons
who have suffered the same kind of harm
as a result of the defendant’s wrongful
conduct as long as there are common
issues of fact and law that make it desir-
able to adjudicate the claims in one law-
suit instead of many.

The Authors Guild and three of its
members sued Google, claiming to
represent a class of similarly situated
authors whose books Google was scan-

How can Google be
getting a license to
make millions of
in-copyright books
available through
Book Search just by
settling a lawsuit?

P
h

otograp

h

 by

 F
lic

k
r

 U
ser

 O
rangecats

30 communications of the acm | july 2009 | vol. 52 | no. 7

viewpoints

has negotiated with the Authors Guild
and the Association of American Pub-
lishers (AAP) would, if approved, be
settled as a class action on behalf of all
book authors and publishers, with the
Guild and AAP claiming to represent
their entire respective classes. By acced-
ing to the certification of these classes
through the settlement, Google will get
a license from all authors and publish-
ers of books covered by the agreement
(which is to say nearly every in-copyright
book ever published in the U.S.) so that
it can commercialize them through the
Book Search.

Google’s New Monopoly
The proposed settlement agreement
would give Google a monopoly on the
largest digital library of books in the
world. It and the BRR, which will also
be a monopoly, will have considerable
freedom to set prices and terms and
conditions for Book Search’s commer-
cial services. The BRR is unlikely to
complain that the price is too high, the
digital rights management technology
is too restrictive, or the terms are too
onerous.

Google will also be the only service
lawfully able to sell orphan books and
monetize them through subscriptions.
The BRR will get 63% of these revenues
that it will pay out to registered authors
and publishers, even as to books in
which they hold no rights. (Some un-
claimed orphan work funds may go to
charities that promote literacy.) No au-
thor whose books are in the corpus can
get paid by the BRR unless he or she has
registered with it.

Virtually the only way that Amazon.
com, Microsoft, Yahoo!, or the Open
Content Alliance could get a compa-
rably broad license as the settlement
would give Google would be by starting
its own project to scan books. The scan-
ner might then be sued for copyright
infringement, as Google was. It would
be very costly and risky to litigate a fair
use claim to final judgment given how
high copyright damages may be (up to
$150,000 per infringed work). Chances
are also slim that the plaintiffs in such a
lawsuit would be willing or able to settle
on equivalent or even similar terms.

Dead Souls
The Book Search settlement brings to
mind Nikolai Gogol’s story, Dead Souls.

Chichikov, its main character, travels
around the Russian countryside to buy
“dead souls” in an attempt to become
a wealthy and influential man. In the
early 19th century, Russian landown-
ers had to pay annual taxes on the
number of serfs—counted as “souls”—
they owned as of the last census.

Chichikov offered to buy “dead
souls” (serfs who had died since the
last census) from the landowners. His
plan was to acquire enough of these
souls so that he could take out a large
loan secured by his portfolio, and there-
by become a wealthy man.

In Gogol’s story, Chichikov’s scheme
falls apart. Rumors fly that the souls he
owns are all dead and he flees the town
in disgrace. In Google’s story, however,
the dead soul scheme seems likely to
pay off handsomely, as Google will have
the exclusive right to commercially ex-
ploit millions of orphan books.

Representativeness?
As galling as it is to realize that the BRR
and its registered authors and publish-
ers will derive income from millions of
books they didn’t write or publish, it is
even more galling that copyright max-
imalists will almost certainly domi-
nate the BRR governing board.

(The Authors Guild president, for
example, complained about the “read
aloud” feature of Kindle, denoting it
a “swindle,” and a copyright infringe-
ment. The AAP is supporting legisla-
tion to forbid the U.S. National Insti-
tutes of Health from promoting “open
access” policies for articles written

under NIH grants. And of course, the
Authors Guild and AAP characterized
Google as a thief for scanning books
from research libraries.)

If asked, authors of orphan books
in major research libraries might
want their books to be available under
Creative Commons licenses or even
be put into the public domain so that
fellow researchers could have greater
access to them. The BRR will have an
institutional bias against encourag-
ing this or considering what term of
access most authors of books in the
corpus would want.

In reviewing the settlement, the
judge is supposed to consider wheth-
er the settlement is “fair” to the class-
es on whose behalf the lawsuits were
brought. He may assume the settle-
ment is fair because money will flow
to authors and publishers. But impor-
tantly absent from the courtroom will
be the orphan book authors who might
have qualms about the Authors Guild
and AAP as their representatives.

Conclusion
In the short run, the Google Book
Search settlement will unquestionably
bring about greater access to books
that major research libraries collected
over the years. But it is very worrisome
that this agreement, which was negoti-
ated in secret by Google and a few law-
yers working for the Authors Guild and
AAP (who will, incidentally, receive up
to $45.5 million in fees for their work
on the settlement—more than all of
the authors combined!), will create
two complementary monopolies with
exclusive rights over a research corpus
of this magnitude. Monopolies are
prone to engage in many abuses.

The Book Search agreement under
consideration is not really a settle-
ment of a dispute over whether scan-
ning books to index them is fair use. It
is a massive restructuring of the book
industry’s future without meaningful
government oversight. The market for
digitized orphan books could be com-
petitive, but will not be if this settle-
ment is approved in its current form
without modification. 	

Pamela Samuelson (pam@law.berkeley.edu) is the
Richard M. Sherman Distinguished Professor of Law and
Information at the University of California, Berkeley.

Copyright held by author.

The Book Search
agreement under
consideration is
not really a
settlement of a
dispute over
whether scanning
books to index
them is fair use.

mailto:pam@law.berkeley.edu

july 2009 | vol. 52 | no. 7 | communications of the acm 31

V
viewpoints

H
igh-end professional services
such as accounting and legal
support are starting to move
offshore in the same way
that software services did a

decade ago. These knowledge-intensive
services are similar to software services
in some respects, but different in oth-
ers. It is useful to examine the reasons
behind this trend and the associated
implications.

Consider legal services: GE Plastics
is credited with pioneering offshoring
the legal support function by establish-
ing a captive offshore base in India to
draft contracts in 2001.a Since then, the
legal departments of other global cor-
porations have followed suit. Law firms
are also exploring possibilities either by
establishing captive operations, as Clif-
ford Chance had done, or by outsourc-
ing to independent service providers.
These so-called legal process outsourc-
ing (LPO) providers are located in Indian
cities like Gurgaon, Mumbai, Pune, and
Hyderabad to provide legal support in
patent filing, contract reviews, legal re-
search, litigation, and compliance.b In-
stead of having paralegals and contract
lawyers located nearby, corporate legal
departments and law firms now man-

a	 Corporate Counsel, March 2003, p.78.
b	 Major LPO providers include CPA Global, In-

tegreon, Evalueserve, Law-Scribe, Mindcrest,
Pangea3, Quislex, and Bodhi Global.

age professionals carrying out equiva-
lent work thousands of miles away.

Why is the offshoring of professional
services—legal services in particular—
occurring? The main motivator for
offshoring, common across all types
of services, is wage arbitrage (access
to skilled labor at a fraction of the cost
in the U.S. or Europe). In legal services,
the hourly rate for associates in the U.S.
is typically $250–$300, compared to ap-
proximately $60 for U.S. paralegals and
$30 for Indian legal professionals. Off-
shoring is a tactic used by global cor-

porations to combat law firms’ billable
hour culture, which centers on the no-
tion that costs cannot be estimated in
legal work. Whereas in the past, corpo-
rate legal departments were regarded
as unavoidable overheads, now they
are scrutinized for more cost-effective
delivery, in the same way factories have
been for decades.

Behind this change in perspective
is the strategy to enhance competitive
advantage by unbundling corporate
functions in finance, human resourc-
es, IT, procurement, marketing, and so

Technology Strategy
and Management
Globalization of Knowledge-
Intensive Professional Services
Does the trend toward standardization and modularization
of professional services make outsourcing inevitable?

doi:10.1145/1538788.1538801	 Mari Sako

Employees of the knowledge process outsourcing firm Evalueserve provide business
and market research, data and financial analysis, and intellectual and property rights
services to companies worldwide from their office in New Delhi, India.

P
h

otograp

h

 by

 R
obert

 N
ic

k

elsberg

/G

etty

 I
mages

32 communications of the acm | july 2009 | vol. 52 | no. 7

viewpoints

able, scalable, and offshoreable. For
example, it is expected that document
discovery (including e-discovery)
will involve breaking a project into
clearly defined components that can
be worked on by separate teams in
parallel. Distance should not matter
in managing and coordinating these
geographically dispersed teams.

In reality, there are some legal tasks,
such as conveyancing, which can be
easily packaged and transferred to an
offshore destination. But there remain
other tasks that are part of, and can-
not be completely separated from, the
whole. Legal research provides a good
example. At one end of the spectrum,
a 50-state survey on a particular issue
is easily outsourceable as a standalone
project. At the other end of the spec-
trum lies case law research that de-
pends on knowledge of precedents and
case interpretation as well as an under-
standing of the whole case for which
research is undertaken.

Another example is document dis-
covery in litigation support. Objective
coding, involving entering the time
and addressee of each email message,
for example, is completely modulariz-
able. By contrast, subjective coding,
involving the identification of rele-
vant and privileged information, can-
not be done without the full knowl-
edge of the case.

Thus, the reductionist strategy to de-
compose legal support work into modu-
lar parts may be difficult to implement
in practice. If this sort of decomposi-
tion is easier said than done in software
development, many lawyers believe,
rightly or wrongly, that such things
are virtually impossible for legal work.
Thus, although few would doubt that
some simple legal support work may be
subjected to such decomposition, how
much of core legal services can (and
should) be decomposed in this man-
ner remains an open question.

Work Iteration
Legal work is not performed entirely
offshore, but instead the work moves
back and forth between the client’s
home base in the U.S. or Europe and
the offshore outsourcing site in In-
dia or the Philippines. This onshore/
offshore mix arises out of necessity in
the nature of legal work. For example,
in drafting contracts, an offshore LPO

forth. Both large and small enterprises
can purchase professional services in
these support functions off-the-shelf
in global markets.2 This involves the
application of a global delivery model,
perfected by Indian software firms for
IT services, to knowledge-intensive
professional services.

This all seems sensible, but will the
offshore outsourcing of legal services
succeed? There are major challenges
to managing and capturing profit in
this global value chain, including the
decomposition, iteration, and disag-
gregation of work processes.

Work Decomposition
A prerequisite for offshore outsourc-
ing is the breaking up of the value
chain into a sequence of tasks, each
with clearly defined interfaces. This
poses a challenge because lawyers
generally believe that decomposition
in this manner may not work well.
Traditionally, a client entrusted a
particular lawyer to carry out an inte-
grated service, with assistance from
junior associates, paralegals, and le-
gal secretaries. The integrated service,
typically delivered in a ‘job shop’ craft
mode, consists of at least three sepa-
rable steps: knowledge and informa-
tion management; consultative advice
and representation; and client rela-
tionship management. For example,
in litigation, document discovery (in-
creasingly dominated by e-discovery)
and legal research are part of the first
step, which becomes a basis for advis-
ing and representing clients in court.
Similarly, in intellectual property (IP)
work, prior art search and IP portfolio
analysis are part of the first step, while
commercialization studies of unused
patents are aspects of the second step
of giving insight and advice.

In the last two decades, informa-
tion and communication technology
(ICT) has enabled the separation of
knowledge management from ad-
visory work. ICT has been used pri-
marily to automate processes in data
management, for example by devel-
oping document assembly software
for contract drafting. Legal service,
just as manufacturing, is subjected to
process thinking to standardize, sys-
tematize, and package the law. Thus,
the use of technology is a first step to-
ward making legal work more repeat-

ACM
Journal on

Computing and
Cultural
Heritage

� � � � �

JOCCH publishes papers of
significant and lasting value in
all areas relating to the use of ICT
in support of Cultural Heritage,
seeking to combine the best of
computing science with real
attention to any aspect of the
cultural heritage sector.

� � � � �

www.acm.org/jocch
www.acm.org/subscribe

http://www.acm.org/jocch
http://www.acm.org/subscribe

viewpoints

july 2009 | vol. 52 | no. 7 | communications of the acm 33

provider may create a first draft based
on a template, followed by contract ne-
gotiations by the client law firm, which
results in requests for adding and mod-
ifying clauses. There may be several it-
erations of onshore negotiations and
offshore contract modifications before
the final contract is produced.

Similarly in litigation support, an
LPO provider may undertake document
discovery for a client law firm in New
York. Here, the iterative back-and-forth
between the client and the LPO pro-
vider occurs due to the client’s quality
check on the provider’s work and court-
imposed deadlines for submitting spe-
cific types of documents.

Distance involved in offshore out-
sourcing poses a challenge to this it-
erative nature of work as it requires
smooth handoffs and handbacks.
The traditional model of doing legal
work, in which an associate may walk
over to instruct contract lawyers and
paralegals face-to-face, is not amena-
ble to thinking about managing the
handoffs and handbacks in a system-
atic manner.

It was the rapid rise in legal fees that
caused law firms to use more contract
lawyers within the U.S. borders. But
these contract lawyers, hired through
staffing agencies, come and go. Some
leading India-based LPO providers
think that with more stable employ-
ment in India, it is easier to set up ro-
bust processes offshore than onshore,
using tighter project management
with milestones. Thus, ironically, U.S.
law firms may hire contract lawyers
located nearby on a short-term basis,
while they attempt to establish longer-
term stable relationships with legal
professionals at a distance. It may well
be that necessity is the mother of in-
vention, and that distance is forcing
LPO providers to take process control,
project management, and data securi-
ty more seriously. But it is not yet clear
how much of legal work can be eas-
ily shifted from a traditional model to
this model of process-based iteration
without undermining quality.

Work Disaggregation
Offshore outsourcing will affect the way
we think about professional work and
the nature of professionalism itself.
The shift from highly qualified to less
qualified occupational skills has been

well under way in legal, medical, and
other professional fields for reasons
that have nothing to do with offshore
outsourcing. However, ICT facilitates
disaggregating a particular piece of
work into finer standardized process
steps. And the more process steps are
disaggregated, the more it becomes
possible to enable a non-lawyer to do
legal support work. Thus, lawyers’ work
has become more fragmented in the
same way that craftsmen were deskilled
by Frederick Taylor’s scientific manage-
ment theory a century ago. Moreover,
ICT technology further undermines the
advisory function of the legal profes-
sion, as more clients rely on self-service
in consuming legal services.3 Ultimate-
ly, it is the changing nature of profes-
sions onshore that enables the offshore
outsourcing of professional services.

At the same time, there is an inher-
ent pull toward keeping the profession
whole, which mitigates against the
de-professionalization of lawyers. In
particular, some believe that even the
most segmentable low-end legal work
will suffer from poor quality without
proper legal training. Thus, some pat-
ent attorneys may claim the knowledge
of how to prosecute a patent is essen-
tial to do the most elementary aspects
of patent search and drafting.

Moreover, the legal profession is self-
regulated with nationally based juris-
diction. Thus, lawyers may be deemed
to be less offshorable than paralegals,
who in turn are less offshorable than
other legal support workers precisely
because the two defining characteris-
tics of jobs that cannot be offshored ap-
ply to the legal profession.1 So, not only
does legal work require face-to-face

personal communications and/or con-
tact with end users of the service; spe-
cific legal work must be also performed
at a U.S. work location rather than over-
seas. Given current regulation, Indian
lawyers are not permitted to practice
law in the U.S. or England, while U.S.
or English lawyers are not permitted to
practice law in India. India-based LPO
providers therefore merely supply legal
support work, but never practice law in
their clients’ jurisdiction.

Thus, the global delivery of legal
services is likely to further blur the
boundary between what is done by a
qualified professional and what can
be done by non-qualified personnel
with supervision from a qualified pro-
fessional. But exactly how offshore
outsourcing will affect the nature of
professions is uncertain because of
multiple forces at play.

Conclusion
There are several reasons why the off-
shore outsourcing of professional ser-
vices is occurring. But there are some
unknowns, especially in relation to the
nature of professions that will affect
the future of this phenomenon. The
factors motivating offshore outsourc-
ing are strong, and the pressures to off-
shore will remain. But the experience
with the offshore outsourcing of soft-
ware development sheds some light
on just how difficult it is to deal with is-
sues of work decomposition and itera-
tion. The trajectory of global delivery
of software work does not initially ap-
pear to translate well into that of pro-
fessional services due to an additional
factor of uncertainty in the nature of
self-regulation of professions and the
boundary of professional work. Thus,
it is not advisable to draw too many
conclusions about the future of the
professional service offshoring from
the experience thus far with software
offshore outsourcing.	

References
1.	 Blinder, A.S. How Many U.S. Jobs Might Be

Offshorable? CEPS Working Paper No. 142, 2007.
2.	 Palmisano, S. The globally integrated enterprise.

Foreign Affairs (May/June 2006).
3.	 Susskind, R. The End of Lawyers? Oxford University

Press, 2008.

Mari Sako (mari.sako@sbs.ox.ac.uk) is a professor of
Management Studies in Said Business School at the
University of Oxford, U.K.

Copyright held by author.

The reductionist
strategy to decompose
legal support work
into modular parts
may be difficult
to implement in
practice.

mailto:mari.sako@sbs.ox.ac.uk

34 communications of the acm | july 2009 | vol. 52 | no. 7

V
viewpoints

doi:10.1145/1538788.1538802	 Phillip G. Armour

T
here is a tendency exhibited
by certain types of managers
in certain types of organiza-
tions to manage with max-
ims and administer with an-

ecdotes. Their style often consists of a
warmed-over serving of the latest busi-
ness self-help book garnished with an
old war story and a side of the patently
obvious. Such people can show a re-
markable dedication to oversimpli-
fication and a common trait of this
managerial style is the persistent use
of the cliché.

A good cliché has several attri-
butes:

It covers a wide range of human ˲˲

behavior with just a few words.
It sounds specific and focused but ˲˲

doesn’t actually say much.
It favors style over substance, pre-˲˲

tence over production, and affect over
effect.

It has a veneer of truth that makes ˲˲

it plausible and difficult to argue
against.

It must suggest a solution to a ˲˲

problem without requiring the person

using the cliché (the cliché-er) to actu-
ally invest any energy in implementing
that solution.

It should leave the work of re-˲˲

solving the cliché to the unlucky lis-
tener (the cliché-ee). This allows any
success to be claimed by the cliché-
er, while locating the blame for any
shortcomings in the implementation
firmly on the shoulders of the unfor-
tunate cliché-ee.

How does one defend against
cliché-driven management? I have
seen whole teams play the “buzzword
bingo” game, gleefully tagging the
hackneyed slogans of the oblivious
manager. I know of senior executives
in large companies who are the unwit-
ting source of merriment for whole di-
visions based on their fine grasp of the
obvious and their predictable produc-
tion of clichés for all occasions.

The use of clichés is usually quite
harmless, though it may detract from
actually trying real solutions to real
problems. There are legitimate de-
fenses against certain clichés, but I
must caution readers that some of
these defenses use a technique called
“humor.” The best humor is shared be-
tween the parties involved and reflects
the comedy that exists in the situa-
tion. Use of a cliché defense as way of
publicly poking fun at the person who
is responsible for your continued em-
ployment has its perils.

The Cliché: “Do It Right
the First Time”
Much of the business of software in-
volves the discovery of what we are sup-
posed to be doing. In a true discovery
activity, it is only possible to not make

The Business of Software
The Cliché Defense
A guide to playing the ploys frequently employed by cliché-driven management.

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 M
aria

 S

c
h

neider

V
viewpoints

july 2009 | vol. 52 | no. 7 | communications of the acm 35

The Cliché: “Work
Smarter, Not Harder”
This is a fine cliché, since it strongly
implies that the cliché-er is actually
being solicitous of the health and well-
being of the cliché-ee. There are so
many sneaky positional inferences in
this cliché that it makes a very effective
one. It has that element of truth that
makes it difficult to argue against, too.
Excessive work may well be a symp-
tom of not having sufficiently thought
through the problem. However, many
organizations think that software is a
product to be produced (rather than a
knowledge medium to be populated),
so the job of a software developer is
to build something (rather than learn
something), so the engineers should
be working rather than thinking.

Inferences
It’s your fault you have to work so hard,
since you aren’t working smarter, so
you shouldn’t complain about the
workload. I, on the other hand, am
able to see that you are not working ef-
fectively even if you cannot. Therefore,
I must be smarter than you (as well as
having more authority and status).

Defense
If we were smart enough we would ˲˲

recognize that we aren’t working smart
enough. And if we were smart enough
we’d be able to identify the smarter
way of working and we’d also figure
out how to transition from our dumb
way of working to the smarter way of
working.

Therefore, if we were smart enough ˲˲

to figure out how to work smarter, we’d
already be doing it. Clearly, we aren’t
smart enough to work smarter.

“mistakes” though sheer blind luck—
when we just happen to hit on the opti-
mal solution right out of the box.

Imagine walking through a dense
forest for the first time. It would be
almost impossible to get through
the whole forest without taking a
“wrong” turn. The journey must nec-
essarily involve a certain amount of
eliminating incorrect paths. Some-
times the only way to do this is to
actually explore the wrong paths, be-
cause we don’t know they are wrong
until we try them. In fact, we could
argue that the highest source of val-
ue in software development is only
in exploring new ways to do things.
If we are able to navigate through
the forest without a misstep, it must
be because: we have already been
this way before (in which case why
are we doing it again?); or we have
a map (which means that someone
has been this way before). If we can
get through the forest both without
error and very quickly it must be be-
cause someone has built a highway
through the forest. If so, we are going
toward the same destination, and
building the same system, as every-
one else. The real value in software
is on the road less traveled, but we
cannot travel this road without some
exploration, and that means diverg-
ing from the path.

Inferences
You normally do it wrong, or at least
it takes you many attempts to do the
job properly. Clearly, you aren’t smart
enough to do it right without my guid-
ance. In fact, without my leadership
you aren’t even smart enough to real-
ize that you are doing it wrong at all.

Defense
If this truly is the first time, we cannot
“do it right” because:

We don’t know how to do it right ˲˲

(because it is the first time).
We may not even know what “right” ˲˲

is (because it is the first time).
Doing it “wrong” may be the only ˲˲

way to find out what “right” is.
We may actually learn more about ˲˲

the problem, the solution, or the busi-
ness, if we do get it “wrong.” An ad-
vocate for this approach was Thomas
Alva Edison who was quite famous for
getting it “wrong.”

The Cliché: “Quality is the
Most Important Thing”
Many organizations make this state-
ment. Some of them even mean it. Of
those companies that mean it, a few
even act like they mean it. Software is
a knowledge storage medium, so a de-
fect is simply a lack of knowledge—it
is something that we, as developers,
did not know or did not learn and
therefore didn’t build into the system.
So this exhortation is rather like the
“work smarter” cliché.

A defining characteristic of mod-
ern software development is that the
needs of the system change at close
to the speed at which we can build the
solution. So there may be nobody who
can definitively, and in advance, de-
termine what “perfect” is. Developers
may be held accountable to a standard
that no one can define.

Inferences
There is some perfect system represen-
tation that the developers should know
but through a combination of failings
(sloppiness, ignorance, laziness, in-
eptitude), developers have chosen to
not achieve this perfection, and need
to be reminded that it is important.
This perfection can also be achieved
without compromising any other of
the “most important” attributes of the
system (such as time and cost).

Defense
Just what is “quality” and who can ˲˲

provide us with unequivocal guidance
on it before or while we build the sys-
tem (as opposed to second-guessing it
after the event)?

Are we prepared to actually do ˲˲

what we need to do to obtain the qual-
ity we say we need?

If we delay delivering the system ˲˲

because of quality issues, then the sys-
tem is 100% defective (not one part of
it works, because the customer doesn’t
have it). Is this solution in the best in-
terests of the customer?

Quality, along with all the other at-
tributes of a system, is part of a balanc-
ing act. We might deliver higher quality
at the cost of delayed delivery or higher
cost or reduced functionality. Attain-
ing higher quality is not a matter of
just stating the goal; it usually involves
discipline and hard work. And some-
times it involves difficult choices.

Much of the
business of software
involves the
discovery of what
we are supposed to
be doing.

36 communications of the acm | july 2009 | vol. 52 | no. 7

viewpoints

The Cliché: “Our Customers Are
the Most Important Thing”
This cliché has that important veneer
of truth. Certainly, few companies can
continue in business if their customers
desert them, and in the business of soft-
ware delivering usable knowledge to a
customer is the ultimate goal. There is
ample evidence that software developers
do not routinely think from the custom-
er’s perspective. But simply exhorting
people to think of something important
is hardly an industrial-strength busi-
ness practice. Perhaps software organi-
zations should consider building truly
customer-centric development capabil-
ities? Of course, that would be more dif-
ficult to do than just firing off a cliché.

Cliché Inferences
You need me (the cliché-er) to remind
you (the cliché-ee) that we do, in fact,
have customers, because left to your
own devices, you software engineers
would only develop what you want to:
specifically the easy stuff or the “cool”
stuff. Besides, software developers re-
ally think they are the most important
thing.

Defense
There are many “customers” for ˲˲

a system. While the paying custom-
ers are undoubtedly the “most impor-
tant,” the people who test, install, sup-
port, or maintain the system are also
customers.

The value in a system is the extent ˲˲

to which it makes knowledge acces-
sible and usable. The extensibility of
this knowledge—how we can build on
it to service future customers—is also
very important. In fact, this aspect of
building systems is driving the entirely
appropriate focus on systems architec-
ture and scalability we see in modern
development. Few end-user customers
are sophisticated enough to specifical-
ly request such features as scalability,
but it is important nonetheless.

We could even argue that building
the capability of an organization is
more important than any particular
customer, since it leads to the ability
of the company to satisfy many more
customers in the future.

The Cliché: “Our People Are
the Most Important Thing”
Few clichés have more power to gen-

erate a skeptical and cynical response
in its listeners than this one. There
are many companies, executives, and
managers who do truly believe in the
people who work for them and, as far
as they can, do look out for the inter-
ests of their employees. But we have
probably all experienced the inflated
rhetoric that sometimes passes for
statements of worth and concern
from executives. Its cliché-ness is not
so much in the statement as in the
sometimes transparent attempt at
control it communicates. Most of us
are quite sensitive to being manipu-
lated like this, especially if it is done
in a way that is so obvious that it also
insults our intelligence.

Inferences
You (the cliché-ees) unforgivably sus-
pect us (the cliché-ers) of wanting to
manipulate you into something against
your best interests. We are hurt by this
lack of trust. Therefore we hope that
by assuring you of our true concern for
your well-being, our genuine respect
for you as individuals, and our earnest
desire to not have you think that we are
trying to manipulate you, you will be-
come easier to manipulate.

Defense
If people really are the most im-˲˲

portant resource, does the company
actually provide them with what they
need to do the job?

In the business of software, people ˲˲

are not the most important resource,
they are the only resource. Software de-

velopment is a knowledge acquisition
activity and the only thing that can ac-
quire knowledge is a person. Optimiz-
ing this resource requires dealing with
people honestly.

Rules of Engagement
As clear as this is, sometimes it needs
to be restated. A company I once
worked with adopted a set of “Rules of
Engagement” intended to govern the
behavior of all employees. Heading
the list was “the customer is the most
important thing.” One visionary com-
pany executive turned this around. He
restated the imperatives as:

The most important thing is to 1. 
build our employees’ capability.

The second most important thing 2. 
is to build our capability to repeatedly
do imperative 1.

The next most important thing is 3. 
to deliver value to the customer.

I remember the alarm this caused,
since it reversed the published order
of the Rules of Engagement, but the
executive was correct.

People Are the Most
Important Thing
The company executive reasoned that
unless you have good people work-
ing well, you simply cannot provide
value to the customer. Unless you can
repeatedly build and maintain your
peoples’ capability, you may provide
value to the customer once, but won’t
be able to repeat it. And if you cannot
repeat your success, you will fail your
customer anyway.

This executive knew you won’t work
smarter or do it right even the second
or third time unless the people working
in development have what they need.
And you cannot act as if quality is the
most important thing or the customer
is the most important thing unless you
first act as if your people are the most
important thing. In articulating and
enacting this visionary paradigm shift
in their core competencies, this execu-
tive was walking the walk, going the ex-
tra mile, giving it 110%, and thinking
outside of the box.

But in this case it wasn’t a cliché
and that made all the difference.	

Phillip G. Armour (armour@corvusintl.com) is a senior
consultant at Corvus International Inc,. Deer Park, IL.

Copyright held by author.

The real value in
software is on the
road less traveled,
but we cannot
travel this road
without some
exploration, and
that means diverging
from the path.

mailto:armour@corvusintl.com

july 2009 | vol. 52 | no. 7 | communications of the acm 37

V
viewpoints

doi:10.1145/1538788.1538803		 Matthias Felleisen and Shriram Krishnamurthi

Viewpoint
Why Computer Science
Doesn’t Matter
Aligning computer science with high school mathematics can help turn it into an
essential subject for all students.

I
n March 20 08, the College
Board (which administers
the Advanced Placement (AP)
exam) did the unthinkable by
reducing a vibrant technology

discipline, computer science, to the
same level of unpopularity as a dead
language, Latin. It achieved this by
canceling an AP exam2 in each area.
Although ACM and other organiza-
tions provided data on the sustained
levels of the other AP computer sci-
ence exam, these statements mask
the relative unpopularity of computer
science compared to more traditional
mathematical disciplines. Concrete-
ly, in 2007, a total of 19,392 students
took one of the computer science AP
exams, in contrast to 267,160 who
took calculus and 96,282 who took
statistics.1

Perhaps this isn’t surprising. The
three Rs—reading, ’riting, ’ritmetic—
symbolize what matters in U.S. primary
and secondary education. Teaching
these three essential skills dominates
the scholastic agenda in the minds of
parents, educators, and legislators.
Any new material competes with these
core elements; if it isn’t competitive, it
is marginalized.

Computer science plays such a mar-
ginal role. A large part of the problem
is due to how computing is portrayed
to schools, parents, the people who al-
locate the education budgets, and the
students. The high school curriculum
is mired in teaching fashionable pro-
gramming languages and currently

popular programming paradigms.
There is great churn in how to teach
this complex content to people for
whom its complexity is likely to be in-
appropriate. Never mind that the lan-
guages and perhaps even paradigms of
today will have evaporated by the time
the students graduate.

This trend is not limited to high
schools; it is repeated in the introduc-
tory college curriculum. Indeed, many
high schools are merely reflecting the
curricular confusion at the college
level. Colleges, in turn, have a problem
of their own: declining enrollments in
computer science.

When enrollments decline, the
leaders of the computer science educa-
tion community routinely look for sav-
iors: graphics, animation, multimedia,
robotics, and games have all been cast
in this role. Not that integrating such
topics into a course on computing is
necessarily bad; but such ideas are
frosting, not essentials. This search for
saviors pervades thinking about intro-
ductory college curricula, and much of
it percolates to thinking at the second-
ary school level in the form of AP and
pre-AP curricula. Others, wanting to of-
fer alternatives, act embarrassed about
programming, which is our field’s
single most valuable skill, and seek
to marginalize it (for example, see the
November 2005 Communications col-
umn titled “Recentering Computer Sci-
ence”). Meanwhile, ACM’s own press
releases attempt to downplay the grav-
ity of the situation.3

What our community should really
aim for is the development of a cur-
riculum that turns our subject into the
fourth R—as in ’rogramming—of our
education systems. This can not only
address high school curricular con-
cerns but can also become an integral
part of general education and distribu-
tion requirements in college. One way
of achieving this goal is to align com-
puting through programming with
one of the three Rs and to make it in-
dispensable. An alignment with math-
ematics is obvious, promising, and
may even help solve some problems in
mathematics education.

Mathematics and Programming
All students must enroll in mathemat-
ics for most of their school years. Many
of them already struggle with it. Does
hitching programming to mathemat-
ics make any sense? Consider high
school algebra. Bewildering exercises
about flies flitting between trains do
nothing to help students understand
that algebra can actually be put to
work. Algebra textbooks try hard to
enliven their content with high-gloss
color photographs, which we can im-
mediately recognize as symptoms of
failure, not a reprieve from it. In part,
school algebra appears fundamentally
dull to students because it appears to
be all about numbers, which play at
best a small role in the media-rich, in-
teractive lives of students. We propose
the paradigm of imaginative program-
ming, which weds programming to al-

38 communications of the acm | july 2009 | vol. 52 | no. 7

viewpoints

gebra through the use of rich media.
By embracing these media, we can
engage students while synergistically
meeting the needs of math teach-
ers. Indeed, we have already seen our
curricular approach, described be-
low, help students raise their algebra
scores.

How Would This Work?
Let’s make this vision concrete. Alge-
bra textbooks contain exercises that ask
students to determine the next entry in
a table, such as Table 1, or to create a
general “variable expression” that com-
putes any arbitrary entry of the table. In
Table 1, students are expected to say that
5 comes with 25 and x comes with x · x.
We might even hope to teach the student
the notation f(x) = x · x, but why would
they care? This function means nothing
to them outside their homework.

We can, however, show these stu-
dents that modern arithmetic and al-
gebra do not have to be about numbers
alone. They can just as well involve

images, strings, symbols, Cartesian
points, and other forms of “objects.”
For example, Figure 1 is an arithme-
tic expression involving images in
addition to numbers. The operator
placeImage takes four arguments: an
image (the rocket), two coordinates,
and a background scene (the empty
square). The value of such an expres-
sion is just another image, as shown in
Figure 2. That is, algebraic expressions
can both consume and compute picto-
rial values, enabling students to ma-
nipulate images using algebra.

Imagine asking students to deter-
mine a rising rocket’s altitude after a
given period of time. We could start
with a table and the simplifying as-
sumption that rockets lift off at con-
stant speeds, as shown in Table 2.
Because students understand that
functions can produce images, not
only numbers, we could even express
this exercise as a problem involving a
series of images and asking students
to determine the next entry in Table 3.

By asking the student to define the
function rocket, we are asking for a
“variable expression” that computes
any arbitrary entry of the table—just
as we asked in the case of numbers.
We would hope to get an answer like
the one shown in Figure 3. A teacher
may even point out here the possibil-
ity of reusing the results of one math-
ematical exercise in another, as shown
in Figure 4. Students thus see the
composition of functions and expres-
sions, all while using mathematics as
a programming language. In addition,
students are motivated to learn more
about mathematics and physics to im-
prove these little programs.

With one more step, students can
visualize this mathematical series of
images and get the idea that construct-
ing such mathematical series can be an
aesthetically pleasing activity:

	 showImages(rocket, 28)
This expression demands that rocket
be applied to 0, 1, 2, 3, 4, 5, etc., and
that the result be displayed at a rate of
28 images per second. (Note how show-
Images furtively introduces the idea of
functions consuming functions, be-
cause its first parameter—rocket—is
itself a function.) Now we can tell stu-
dents that making animated movies is
all about using the “arithmetic of im-
ages” and its algebra.

Does It Really Work?
Readers shouldn’t be surprised to
find out that what we’ve described
and illustrated here isn’t just imagi-
nation or a simple software applica-
tion for scripting scenes. A form of
mathematics can be used as a full-
fledged programming language, just
like Turing Machines. In such a lan-
guage, even the design and implemen-
tation of interactive, event-driven video
games doesn’t take much more than
algebra and geometry. As students de-
velop such programs they “discover”
many concepts on their own simply
because they want to add luster to
their games—and, to formulate their
improvements, they learn new math-
ematics and physics.

We have field-tested the beginnings
of such a curriculum in the context
of our TeachScheme! project for the
past five years with a family of teach-
ing languages that support images
as first-class values. These languages illustration

 ©

 istoc

k

p
h

oto

.com

/B
lamb

 (

B
rett

 L

amb

)

Table 1.

	 1 	 2 	 3 	 4 	 5 … x

	 1 	 4 	 9 	 16 	 ? … ?

Figure 1.

placeImage (, 25, 0,)

Table 2.

	 0 	 1 	 2 	 3 … t

	 0 	 10 	 20 	 30 … height(t) = ?

Figure 2.

placeImage (, 25, 0,) =

viewpoints

july 2009 | vol. 52 | no. 7 | communications of the acm 39

are all based on Scheme, but restrict
the full language to protect students
from its dark corners; the languages
grow in sophistication with the stu-
dents’ understanding. The languag-
es are implemented in DrScheme, a
pedagogic integrated development
environment (IDE). The rocket simu-
lator example described in this View-
point is our “Hello World” program.
Students at all levels—college, high
school, and middle school—react fa-
vorably to this curriculum. We also
have numerous reports that students
improve their performance in math-
ematics. In addition, formal evalua-
tion shows the extremely positive im-
pact this curriculum (see http://www.
teach-scheme.org/ and http://www.
bootstrapworld.org/) has on the way
educators perceive computing and
programming.

At the college level, this course
follows a natural progression of pro-
gramming on lists, trees, documents,
graphs; abstraction; programming
with first-class functions and accumu-
lators; generative recursion; stateful
objects; and many more computer sci-
ence concepts. We have also worked
out the transition to a second course,
in Java, that builds on this knowledge.
Preliminary field tests validate our
conjecture that the transitions are rea-
sonably smooth and never demand a
fresh start. a

a	 This material is being used in inner-city pro-
grams at several urban middle schools. It is in
use at dozens of high schools. It has also been
deployed at several universities of all sizes and
styles in the U.S. and other countries. Repre-
sentative institutions include Adelphi, Brown,
Chicago, Rice, Northeastern, and Waterloo.
Two German textbooks based on our mate-
rial have appeared over the past two years. In
India, a major corporation uses the material
for its “bootcamp” for new employees. Our
primary textbook has been translated into
Spanish, Polish, Chinese, and (partially) German.

What Makes It Work
(and What Doesn’t Work)
Any attempt to align programming
with mathematics will fail unless the
programming language is as close to
school mathematics as possible. The
goal of an alignment is to transfer skills
from programming to mathematics
and vice versa. While students quickly
grasp small differences in syntax, they
will mentally block if the notion of, say,
“function” in programming signifi-
cantly differs from the notion of “func-
tion” in algebra. Of course, some at-
tributes of our approach are essential
and others are accidental. We conjec-
ture that, in addition to a language in
harmony with mathematics, imagina-
tive programming demands two more
ingredients: the algebraic manipula-
tion of images and symbolic data; and
minimal overhead in the IDE for using
these features.

As computer science educators,
we must also demand a smooth, con-
tinuous path from imaginative pro-
gramming to the engineering of large
programs; otherwise beginning pro-

gramming won’t create skills that
transfer to our discipline. Our decade-
long curricular effort has been build-
ing one such path; others may produce
different transitions.

Conversely, our community must
realize that minor tweaks of currently
dominant approaches to program-
ming won’t suffice. Even masking the
public static void main of Java
hides little when the body of the cor-
responding method has little to do
with the mathematical formulation of
a function. The complexity of object-
oriented programming bears little fruit
here: it makes no sense to teach stu-
dents how to engineer the structure of
large systems when they are yet to write
any programs with a complexity worth
structuring.

Functional programming languag-
es, such as Haskell, ML, and Scheme,
suffer from different, but equally bad
problems. These languages are far
too complex for novices; except for
DrScheme, none support images as
first-class forms of data or provide ped-
agogical IDEs. Their type systems are

Table 3.

0 1 2 3 … t

… rocket(t) = ?

Figure 3.

rocket(t) = placeImage (, 25, 10 • t,)

Figure 4.

rocket(t) = placeImage (, 25, height(t),)

http://www.teach-scheme.org/
http://www.bootstrapworld.org/
http://www.teach-scheme.org/
http://www.bootstrapworld.org/

40 communications of the acm | july 2009 | vol. 52 | no. 7

viewpoints

fascinating mazes suitable for explo-
ration by researchers and hackers, but
dispatch the average student in horror
after just a few interactions.

The ideal language and the IDE for
imaginative programming are still to
be designed. If we develop them, edu-
cational stakeholders will see how pro-
gramming provides students with an
interactive, engaging medium for study-
ing and exploring mathematics. Thus,
it may just turn computing into an in-
dispensable subject for all students,
right up there with the other three Rs.

Crossroads
Our community is at a crossroads when
it comes to tackling our educational
needs. We can continue to search for
more saviors and hope that somehow,
somewhere computing will receive the
respect it deserves. Or we can try to
help ourselves and others by turning
a piece of the core school curriculum
into something that students find ap-
pealing and even exciting. Our propos-
al is just one way of moving in this di-
rection. We don’t know whether it will
succeed at large scales; and we can’t
know yet what else our community
will discover once we start the search.
What we do know is that the savior-
driven ways have had their chance for
many years, and they have failed.

Acknowledgments
We thank Robby Findler and Matthew
Flatt for their partnership over these
dozen years. Kathi Fisler helped hone
our thoughts in this essay. Emmanuel
Schanzer turned our ideas into the
Bootstrap middle school curriculum,
and his efforts have greatly influenced
our thinking. 

References
1.	 College Board. AP: Exam Grades: Summary Reports:

2007; http://www.collegeboard.com/student/testing/
ap/exgrd_sum/2007.html.

2.	 College Board. Important Announcement about
AP Computer Science AB: Important Change for
the 2009–2010 Academic Year; http://apcentral.
collegeboard.com/apc/public/courses/teachers_
corner/195948.html.

3.	 USACM. AP Computer Science is NOT Going
Away; http://usacm.acm.org/usacm/weblog/index.
php?p=593.

Matthias Felleisen (matthias@ccs.neu.edu) is Trustee
Professor in the College of Computer Science at
Northeastern University in Boston, MA.

Shriram Krishnamurthi (sk@cs.brown.edu) is an
associate professor of computer science at Brown
University in Providence, RI.

Copyright held by author.

www.acm.org/dl

ACM Digital Library

The UltimateOnline
INFORMATIONTECHNOLOGY

Resource!
• Over 40 ACM publications, plus conference
proceedings
• 50+ years of archives
• Advanced searching capabilities
• Over 2 million pages of downloadable text

Plus over one million bibliographic
citations are available in the

ACM Guide to Computing Literature

To join ACM and/or subscribe to the Digital Library, contact ACM:

Phone: 1.800.342.6626 (U.S. and Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., Eastern Time

Email: acmhelp@acm.org
Join URL: www.acm.org/joinacm

Mail: ACMMember Services
General Post Office
PO Box 30777
NewYork, NY 10087-0777 USA

http://www.acm.org/dl
mailto:acmhelp@acm.org
http://www.acm.org/joinacm
http://www.collegeboard.com/student/testing/ap/exgrd_sum/2007.html
http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/195948.html
http://usacm.acm.org/usacm/weblog/index.php?p=593
mailto:matthias@ccs.neu.edu
mailto:sk@cs.brown.edu
http://www.collegeboard.com/student/testing/ap/exgrd_sum/2007.html
http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/195948.html
http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/195948.html
http://usacm.acm.org/usacm/weblog/index.php?p=593

july 2009 | vol. 52 | no. 7 | communications of the acm 41

V
viewpoints

Point: Robert Dewar

L
a st y e a r , E dmond Schonberg
and I published an article in
CrossTalk (a U.S. Department
of Defense software engineer-
ing journal) titled “Computer

Science Education: Where Are the
Software Engineers of Tomorrow?” in
which we criticized the state of com-
puter science education in U.S. univer-
sities.4 The article caused quite a mini-
storm of discussion and was picked up
by Slashdot and also by Datamation in
an article titled “Who Killed the Soft-
ware Engineer? (Hint: It Happened in
College).”7

In our CrossTalk article, we ex-
pressed the general concern that the
computer science curriculum was
being “dumbed down” at many uni-
versities, partly in an effort to bolster
declining enrollments. The enroll-
ment decline at many universities has
been dramatic, and still has not shown
much sign of recovery. The twin effects
of the dot-com crash and the concern
of outsourcing of IT jobs seem to have
convinced many parents and students
that IT is not a field with a future, de-
spite studies that project a shortage
of software engineers in the near fu-
ture.6 Perhaps the global economic
meltdown will slow this cycle a bit, but
I tend to agree that we will be facing a
real shortage of well-trained software
engineers in the future.

So obviously the question is what

do I mean by a well-trained software
engineer? To me, the critical need is
the knowledge required to build large
complex reliable systems. It is unde-
niable that our society depends in a
critical manner on complex software.
This is not only in the familiar areas
of safety-critical software like avionics
systems, but also in everyday financial
systems. For example, consider the re-
port from Moody stating a bug in the
Moody computer system caused an in-
correct AAA rating to be assigned to $1

billion worth of “constant proportion
debt obligations.”5 Now I do not know
exactly what this means but it is surely
one of the variety of peculiar economic
instruments that have been factors in
the current financial crisis: the credit
ratings provided by agencies such as
Moody are a critical element.

I frequently give talks on safety-
and security-critical software, and
whenever I give such a talk, I peruse
the news the week before for stories
on computer security failures. Prior

Point/Counterpoint
CS Education in the U.S.:
Heading in the Wrong Direction?
Considering the most effective methods for teaching students
the fundamental principles of software engineering.

doi:10.1145/1538788.1538804	 Robert Dewar	 Owen Astrachan

I
llustration

 by

 J
o

h
n

 Hersey

42 communications of the acm | july 2009 | vol. 52 | no. 7

viewpoints

viewpoint and skills to construct the
complex reliable software systems of
tomorrow, and to maintain, extend,
and fix the systems in use today? In my
experience, undergraduate computer
science curricula simply do not regard
complex software construction as a
central skill to be taught. Introductory
courses are dumbed down in an effort
to make them fun and attractive, and
have sacrificed rigor in designing and
testing complex algorithms in favor of
fiddling around with fun stuff such as
fancy graphics. Most of these courses
at this stage are using Java as a first lan-
guage, and all too often Java is the only
language that computer science gradu-
ates know well.

The original CrossTalk article was
widely regarded as an anti-Java rant
(one follow-up article was titled “Bof-
fins Deride Java”).9 It is indeed the case
that the use of Java complicates basic
education of programmers. It’s not
impossible to teach the fundamental
principles using Java, but it’s a difficult
task. The trouble with Java is twofold.
First it hides far too much, and there
is far too much magic. Students using
fancy visual integrated development
environments working with Java end
up with no idea of the fundamental
structures that underlie what they are
doing. Second, the gigantic libraries of
Java are a seductive distraction at this
level. You can indeed put together im-
pressive fun programs just by string-
ing together library calls, but this is
an exercise with dubious educational
value. It has even been argued that it is
useless to teach algorithms these days.
It’s as though we decided that since no
one needs to know anything about how
cars work, there is no point in teach-
ing anyone the underlying engineer-
ing principles. It is vitally important
that students end up knowing a variety
of programming languages well and
knowledge of Java libraries is not in it-
self sufficient.

Although the article was regarded
as being anti-Java that misses the main
point, which is that the curriculum
lacks fundamental components that
are essential in the construction of
large systems. The notions of formal
specification, requirements engineer-
ing, systematic testing, formal proofs
of correctness, structural modeling,
and so forth are typically barely pres-

to a talk last year, the high-profile
stories receiving the most media at-
tention included the break-in to vice
presidential candidate Sarah Palin’s
email account and the successful
hacking of the Large Hadron Collider
Web site. Recently, one of my credit
card companies reissued a card to
me because a third-party database
had been hacked (the credit card
company would not identify the da-
tabase).

I often encounter CS faculty mem-
bers who take it for granted that all
large computer systems are full of bugs
and unreliable, and of course our ex-
perience with popular software such
as Microsoft Windows reinforces this
notion. The very use of the word “virus”
is annoyingly misleading because it
implies that really such infections are
expected and impossible to eliminate,
when in fact it is perfectly possible
to design reliable operating systems
that are immune to casual attacks.
Early in the history of eBay, its auction
software failed for nearly a week, and
the company lost billions of dollars
in capitalization. At the time I wrote
to the founders of eBay that they had
a company with a huge value depend-
ing on one relatively simple software
application, and that there was no ex-
cuse for this application being other
than entirely reliable. I commented
that if their software people were tell-
ing them that such failures were inevi-
table, they should all be fired and re-
placed; I never received a reply.

So just what do we need to teach our
students if they are to have the right

ent in most curricula, and indeed most
faculty members are not familiar with
these topics, which are not seen as
mainstream. For an interesting take on
the importance of a practical view, see
Jeff Atwood’s column discussing the
need to teach deployment and related
practical subjects.1

Another area of concern is that the
mathematics requirements for many
CS degrees have been reduced to a bare
minimum. An interesting data point
can be found in the construction of the
iFacts system,8 a ground-based air-traf-
fic control system for the U.K. that is
being programmed from scratch using
SPARK-Ada2 and formal specification
and proof of correctness techniques. It
has not been easy to find programmers
with the kind of mathematical skills
needed to deal with formal reasoning.
And yet, such formal reasoning will be-
come an increasingly important part of
software construction. As an example,
consider that of the seven EAL levels
of the Common Criteria for security-
critical software, the top three require
some level of formal reasoning to be
employed.3

It is true that a lot of software de-
velopment is done under conditions
where reliability is not seen as critical,
and the software is relatively simple
and not considered as safety- or secu-
rity-critical. However, if this is all we
train students for then we won’t have
the people we need to build large com-
plex critical systems, and furthermore
this kind of simple programming is
exactly the kind of job that can be suc-
cessfully transferred to countries with
less expensive labor costs. We are fall-
ing into a trap of training our students
for outsourceable jobs.

The original article in CrossTalk

Undergraduate
computer science
curriculums simply
do not regard
complex software
construction as
a central skill to
be taught.

It’s not impossible
to teach the
fundamental
principles using
Java, but it’s a
difficult task.

july 2009 | vol. 52 | no. 7 | communications of the acm 43

viewpoints

was based on our observations as fac-
ulty members and as software com-
pany entrepreneurs, rather than on a
carefully researched study. When sev-
eral people asked us for data to back
up our claims, we had none to offer.
Since then, however, it has been very
interesting to read the flood of email
we received in response to this article.
In hundreds of messages, we did not
get anyone saying “what are you talk-
ing about? We have no trouble hiring
knowledgeable students!” On the con-
trary, we got hundreds of messages
that said “Thank you for pointing out
this problem, we find it impossible to
hire competent students.” One person
related an experience where he had a
dump from a customer for a program
that had blown up and was sifting
through it trying to determine what
was causing the problem. A newly
hired student asked him what he was
doing, and he said that he was disas-
sembling the hex into assembly lan-
guage to figure out the problem. The

student, who had always considered
himself superior because of his com-
puter science degree, replied “Oh yes,
assembly language, I’ve heard of that,”
and was amazed that the senior pro-
grammer (whose degree was in music)
could in fact figure out the problem
this way.

Another company noted that it had
found it a complete waste of time to
even interview graduates from U.S. uni-
versities, so they added at the end of
the job description the sentence “This
work will not involve Web applications
or the use of Java,” and that had served
to almost completely eliminate U.S. ap-
plicants. Here was a case of domestic
outsourcing where they were looking
for people in the U.S. who had been
trained in Europe and elsewhere and
were better educated in the fundamen-
tals of software engineering. These are
just two examples of many similar re-
sponses, so it is clear that we have hit
on a problem here that is perceived by
many to be a serious one.	

References
1.	 Atwood, J. How should we teach computer

science? Coding Horror (Jan. 12, 2008); http://www.
codinghorror.com/blog/archives/001035.html.

2.	 Barnes, J. High Integrity Software—The SPARK
Approach to Safety and Security. Addison-Wesley,
2003.

3.	 Common Criteria for Information Technology Security
Evaluation, Version 3.1; September 2006; www.
commoncriteriaportal.org.

4.	 Computer science education: Where are the software
engineers of tomorrow? CrossTalk (Jan. 2008); http://
www.stsc.hill.af.mil/CrossTalk/2008/01/0801DewarS
chonberg.html.

5.	 Farrell, N. Boffins deride Java. The Inquirer (Jan.
8, 2008); http://www.theinquirer.net/gb/inquirer/
news/2008/01/08/boffins-deride-java.

6.	 Maloney, P. and Leon, M. The state of the national
security space workforce (Apr. 2007); www.aero.org/
publications/crosslink/spring2007/01.html.

7.	 McGuire, J. Who killed the software engineer? (Hint:
It happened in college.) Datamation (Jan. 21, 2008);
http://itmanagement.earthweb.com/career/article.
php/3722876.

8.	 National Air Traffic Services. NATS pioneers biggest
ATC advance since radar; http://www.nats.co.uk/
article/218/62/nats_pioneers_biggest_atc_advance_
since_radar.html.

9.	 Oates, J. Moody’s to fix sub-prime computer error.
The Register (July 3, 2008); http://www.theregister.
co.uk/2008/07/03/moodys_computer_bug.

Robert Dewar (dewar@adacore.com) is a professor
emeritus of computer science at the Courant Institute of
New York University and is co-founder, president, and CEO
of AdaCore.

Copyright held by author.

Counterpoint: Owen Astrachan

R
o b e r t D e wa r h a s gracious-
ly shouldered the task of
castigating the language
commonly used in intro-
ductory programming

courses. Dewar, like Edsger Dijkstra4
and others before him, holds the lan-
guage at least partially responsible
for, and decries the state of, computer
science curricula; he then attempts
to use the programming language as
a lever to move curricula in a particu-
lar direction. However, the lever of the
introductory programming language
is neither long enough nor strong
enough to move or be responsible
for our curricula. Attempts to use it
as such can generate discussion, but
often more heat than light. The dis-
cussion is often embroiled in fear, un-
certainty, and doubt (aka FUD) rather
than focused on more profound is-
sues.

There are definite elements of FUD
in the arguments offered by Dewar
just as there have been by his prede-
cessors in making similar arguments.

Whereas Dijkstra lamented “the col-
lege pretending that learning BASIC
suffices or at least helps, whereas the
teaching of BASIC should be rated as a
criminal offense: it mutilates the mind
beyond recovery” we see Dewar noting
that “It’s not impossible to teach the
fundamental principles using Java,
but it’s a difficult task.” Dewar and Di-
jkstra perhaps would like us to return
to the glorious days of text editors and
punch cards rather than “fancy visual
IDEs.” However, the slippery slope
of assumption that the new genera-
tion just doesn’t get it leads to the Si-
syphean task of pushing the pebble of
language, be it BASIC or Java, uphill
against the landslide of boulders that
represents the reality of computer sci-
ence. This is the case regardless of
whether we’re in Dijkstra’s world of
25 years ago, the world of 2009, or the
Skynet world of tomorrow—which is
probably closer than we think.

I don’t mean to suggest that De-
war and Dijkstra are arguing for the
same thing. Dewar would like com-
puter science programs to produce
well-trained software engineers who

can build large complex reliable sys-
tems. Dijkstra excoriated software
engineering at every opportunity fix-
ing as its charter the phrase “how to
program if you cannot.” Both miss
part of the bigger picture in the same
way that Stephen Andriole missed it in
the July 2008 Communications Point/
Counterpoint “Technology Curricu-
lum for the Early 21st Century.”1 In his
Counterpoint, Eric Roberts points out
the flaw of “generalizing observations
derived from one part of the field to
the entire discipline.” Computer sci-
ence programs must embrace a far
wider audience than software engi-
neers building secure systems. Many
top programs are housed in schools
of Arts and Sciences rather than in
Engineering, many have chosen not
to be accredited by CSAB/ABET. Stu-
dents may choose computer science
as a stepping-stone to law, medicine,
philosophy, or teaching rather than as
a foundation for becoming a program-
mer or software engineer.

Schools like Georgia Tech are devel-
oping innovative programs to address
the different needs of diverse audi-

http://www.codinghorror.com/blog/archives/001035.html
http://www.commoncriteriaportal.org
http://www.theinquirer.net/gb/inquirer/news/2008/01/08/boffins-deride-java
http://www.aero.org/publications/crosslink/spring2007/01.html
http://itmanagement.earthweb.com/career/article.php/3722876
http://www.nats.co.uk/article/218/62/nats_pioneers_biggest_atc_advance_since_radar.html
http://www.theregister.co.uk/2008/07/03/moodys_computer_bug
mailto:dewar@adacore.com
http://www.codinghorror.com/blog/archives/001035.html
http://www.commoncriteriaportal.org
http://www.stsc.hill.af.mil/CrossTalk/2008/01/0801DewarSchonberg.html
http://www.stsc.hill.af.mil/CrossTalk/2008/01/0801DewarSchonberg.html
http://www.stsc.hill.af.mil/CrossTalk/2008/01/0801DewarSchonberg.html
http://www.theinquirer.net/gb/inquirer/news/2008/01/08/boffins-deride-java
http://www.aero.org/publications/crosslink/spring2007/01.html
http://itmanagement.earthweb.com/career/article.php/3722876
http://www.nats.co.uk/article/218/62/nats_pioneers_biggest_atc_advance_since_radar.html
http://www.nats.co.uk/article/218/62/nats_pioneers_biggest_atc_advance_since_radar.html
http://www.theregister.co.uk/2008/07/03/moodys_computer_bug

44 communications of the acm | july 2009 | vol. 52 | no. 7

viewpoints

fects that transcend computers. It was
not a simple bug in Moody’s computer
system that caused constant propor-
tion debt obligations to be incorrectly
assigned the AAA rating. The model
that Moody used was likely incorrectly
parameterized. Even if the flaw was re-
lated to code, rather than to a model,
Moody’s correction of the model did
not lead to a change in the AAA rat-
ing as it should have because of larger
and more deeply entrenched financial
and political concerns. Standard and
Poor’s model also assigned the AAA
rating to the same constant proportion
debt obligations. Both services eventu-
ally lowered their ratings, but arguably
these actions were insufficient.

Blaming the current economic
crisis even in part on software errors
is more than a stretch. Similarly, De-
war notes that U.S. vice presidential
nominee Sarah Palin’s email account
was compromised and that a Web site
was hacked, implying these are secu-
rity failures that might be fixed if only
we didn’t use Java in our introduc-
tory courses. Because Governor Palin
used Yahoo mail for what appears to
be at least semiofficial business, her
password recovery mechanisms were
based on publicly available informa-
tion such as her birthday, and her
hacked email was posted on 4chan
and Wikileaks: this is a case study in
social engineering rather than one in
secure systems.

Dewar’s claim that Java is part of
a “dumbing down” of our curricula
has been echoed in other venues,
notably by Joel Spolsky6 and Bjarne
Stroustrup.5 However, Stroustrup
notes that it isn’t the language that’s a
problem—it is attitude. He says, and I
agree that: “Education should prepare
people to face new challenges; that’s
what makes education different from
training. In computing, that means
knowing your basic algorithms, data
structures, system issues, etc., and the
languages needed to apply that knowl-
edge. It also means having the high-
level skills to analyze a system and
to experiment with alternative solu-
tions to problems. Going beyond the
simple library-user level of program-
ming is especially important when we
consider the need to build new indus-
tries, rather than just improving older
ones.”

ences: students looking to computer
science as the basis for visual studies
or biology rather than preparing them
for a software-oriented career. There is
no one-size-fits-all solution to address-
ing the skills and knowledge needed
to succeed in these areas. Should we
expect Craig Venter or Gene Myers to
ask computer science programs to
include more computational biology
because the demand for bioinformati-
cians exceeds supply? Will we be sur-
prised if Ken Perlin asks for programs
to embrace games and graphics more
than they do to ensure a steady supply
of people interested in animation or
computer-generated imagery? We are
discussing the requirements and cur-
ricula of an undergraduate degree! Our
programs can certainly build a superb
foundation on which students can
continue to gain knowledge and skills
as they work and study in different ar-
eas, but we should no more expect stu-
dents to be expert or even journeymen
than we expect our premed students
to be able to remove an appendix after
four years of undergraduate study.

As Fred Brooks reminded us more
than 20 years ago, there is no silver
bullet that will solve the problems en-
demic to software development nor
is there a panacea to cure the ills that
may plague computer science curri-
cula and programs.2 Studying more
mathematics will not make software
bugs disappear, although both Dijk-
stra and Dewar seem to think so. De-
war points out the need for “formal
specification and proof of correctness
techniques” as foundational for soft-
ware development using Ada. Dijkstra
tells us “where to locate computing sci-
ence on the world map of intellectual
disciplines: in the direction of formal
mathematics and applied logic,” but
pines for Algol rather than Ada. Both
miss Brooks’ point about the essen-
tial complexity of building software,
the essence in the nature of software.
In a wonderful treatise that has more
than stood the passage of 20 years and
in which he presciently anticipated
the tenets of Agile software method-
ologies, Brooks claims that “building
software will always be hard,” and that
this essence will not yield dramatic
improvements to new languages,
methodologies, or techniques.

Brooks has hopes that the essential

aspects and difficulties of software
may be improved by growing soft-
ware rather than building it, by buy-
ing software rather than constructing
it, and by identifying and developing
great designers. He differentiates
between essential and accidental as-
pects of software where accidental is
akin to incidental rather than hap-
penstance. Changing programming
languages, using MapReduce or mul-
ticore chips, and employing a visual
IDE in introductory courses address
these accidental or incidental parts
of software development, but these
don’t mitigate the essential problems
in developing software nor in educat-
ing our students. As Brooks notes,
addressing these accidental aspects
is important—high-level languages
offer dramatic improvements over as-
sembly-language programming both
for software design and for introduc-
tory programming courses. Brooks’
view, which I share, calls for “Hitching
our research to someone else’s driving
problems, and solving those problems
on the owners’ terms, [which] leads us
to richer computer science research.”3
I will return to problem-driven ap-
proaches later.

It would seem from the juxtaposi-
tion of amusing anecdotes regarding
flawed software systems that Dewar
would like to make the academic com-
munity and the larger computer sci-
ence and software communities aware
that a simple change in attitude and
programming language in our col-
leges and curricula will help make the
world more secure and safe with re-
spect to the reliable systems on which
it depends. Although software runs on
computers it produces outputs and ef-

Although software
runs on computers
it produces
outputs and effects
that transcend
computers.

viewpoints

july 2009 | vol. 52 | no. 7 | communications of the acm 45

These articles, like Dewar’s, associ-
ate Java with a “dumbing down” of cur-
ricula. Spolsky specifically mentions
the school at which I teach as one of
the new JavaSchools. He laments that
our students are lucky in that: “The
lucky kids of JavaSchools are never
going to get weird segfaults trying to
implement pointer-based hash tables.
They’re never going to go stark, raving
mad trying to pack things into bits.”

We didn’t become a JavaSchool be-
cause we wanted to avoid segfaults,
pointers, and bits. We use the same
assignments and have the same at-
titude we did when we used C++. We
switched from C++ for well-founded
pedagogical reasons: Java is a better
teaching language for the approach
we were using than C++. Note that
I’m not claiming Java is the best lan-
guage for every program, but we spend
much more time in our courses deal-
ing with the Brooksian essence of pro-
gramming, algorithms, and software
using Java rather than with the acci-
dental aspects symbolized by the kind
of cryptic error messages that result
from misusing the STL in C++. Our
switch to Java was grounded neither
in perceived demands from industry
nor in an attempt to attract majors
to our program, but in working to en-
sure that our beginning courses were
grounded in the essence of software
and algorithms.

We must work to ensure we attract
motivated and capable students, not
because it is incumbent on us as fac-
ulty to train the next generation of
software engineers, but because it is
our responsibility as educators and
faculty to encourage passion and to
nurture and increase the amazing op-
portunities that computing is bring-
ing to our world. It is highly likely that
some programming languages are
better for teaching, others are better
for Ajax applications, and the right
flavor of Linux makes a difference.
But we shortchange our students and
ourselves if we live at the level of what
brand of brace and bit or drill is best
for a carpenter. Instead, we should
look for problems that motivate the
study of computing, problems that re-
quire computation in their solution.

Just as we cannot escape the essen-
tial complexity and difficulty of devel-
oping software we cannot escape the

essence of undergraduate education.
We each bear the burden of our past
experiences in constructing models
for education. In my case this is the
grounding of computer science as a
liberal art, since my education began
in that realm. For others, computer
science is clearly an engineering dis-
cipline and to others still it is a sci-
ence akin to biology or physics. We
don’t need to look for which of these
is the correct view; they are all part of
our discipline. The sooner we accept
differing views as part of the whole,
rather than insisting that our person-
ally grounded view is the way to look
at the world, the sooner we will make
progress in crafting our curricula to
meet the demands and dreams of our
students.	

References
1.	 Andriole, S.J. and Roberts, E. Technology curriculum

for the early 21st century. Commun. ACM 51, 7 (July
2008), 27–32.

2.	 Brooks, F. No silver bullet: Essence and accidents
of software engineering. IEEE Computer 20, 4 (Apr.
1987), 10–19. Reprinted in The Mythical Man-Month:
Essays on Software Engineering, Anniversary Edition,
Addison-Wesley, 1995.

3.	 Brooks, F. The computer scientist as toolsmith II.
Commun. ACM 39, 3 (Mar. 1996), 61–68.

4.	 Dijkstra, E. Keynote address at ACM South Central
Regional Conference, Nov 16, 1984; http://www.
cs.utexas.edu/users/EWD/transcriptions/EWD08xx/
EWD898.html.

5.	 Maguire, J. Bjarne Stroustrup on educating software
developers. Datamation (Dec. 9, 2008); http://
itmanagement.earthweb.com/features/article.
php/3789981/.

6.	 Spolsky, J. The perils of JavaSchools. Joel on
Software (Dec. 29, 2005); http://www.joelonsoftware.
com/articles/ThePerilsofJavaSchools.html.

Owen Astrachan (ola@cs.duke.edu) is Professor of the
Practice of Computer Science at Duke University and
the department’s Director of Undergraduate Studies for
Teaching and Learning.

Copyright held by author.

We should look
for problems that
motivate the study
of computing,
problems that
require computation
in their solution.

Calendar
of Events
July 15–17
Engineering Interactive
Computing Systems,
Pittsburgh, PA,
Sponsored: SIGCHI,
Contact: Nicholas Graham,
Phone: 613-533-6526,
Email: graham@cs.queensu.ca

July 15–17
Symposium on Usable Privacy
and Security,
Sponsored: SIGCHI,
Contact: Lorrie Faith Cranor,
Phone: 412-268-7534,
Email: lorrie@cmu.edu

July 19–23
International Symposium on
Software Testing and Analysis,
Chicago, IL,
Contact: Gregg E Rothermel,,
Email: grother@cs.orst.edu

July 19–23
The 32nd International
ACM SIGIR Conference on
Research and Development in
Information Retrieval,
Boston, MA,
Contact: James Allan,,
Email: allan@cs.umass.edu

July 20–22
International Conference on
Advances in Social Networks
Analysis and Mining,
Athens, Greece,
Contact: Nicholas Harkiolakis,,
Email: nharkiolakis@hau.gr

July 23–31
Oregon Programming
Languages Summer School,
Eugene, OR,
Contact: Matthew T. Fluet,
Email: matthew.fluet@gmail.com

July 24–27
22nd International Conference
on Industrial Engineering &
Other Applications of Applied
Intelligent Systems, Taiwan,
Contact: Moonis Ali,
Phone: 512-245-8050,
Email: ma04@txstate.edu

July 26–31
The 46th Annual Design
Automation Conference 2009,
San Francisco, CA,
Contact: Andrew B Kahng,
Phone: 858-353-0550,
Email: abk@ucsd.edu

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD898.html
http://itmanagement.earthweb.com/features/article.php/3789981
http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html
mailto:ola@cs.duke.edu
mailto:graham@cs.queensu.ca
mailto:lorrie@cmu.edu
mailto:grother@cs.orst.edu
mailto:allan@cs.umass.edu
mailto:nharkiolakis@hau.gr
mailto:matthew.fluet@gmail.com
mailto:ma04@txstate.edu
mailto:abk@ucsd.edu
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD898.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD898.html
http://itmanagement.earthweb.com/features/article.php/3789981
http://itmanagement.earthweb.com/features/article.php/3789981
http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html

ACM, Uniting the World’s Computing Professionals,
Researchers, Educators, and Students

Advancing Computing as a Science & Profession

Dear Colleague,

At a time when computing is at the center of the growing demand for technology jobs world-
wide, ACM is continuing its work on initiatives to help computing professionals stay competitive in

the global community. ACM’s increasing involvement in activities aimed at ensuring the health of the
computing discipline and profession serve to help ACM reach its full potential as a global and

diverse society which continues to serve new and unique opportunities for its members.

As part of ACM’s overall mission to advance computing as a science and a profession, our invaluable member
benefits are designed to help you achieve success by providing you with the resources you need to advance

your career and stay at the forefront of the latest technologies.

I would also like to take this opportunity to mention ACM-W, the membership group within ACM. ACM-W’s purpose is
to elevate the issue of gender diversity within the association and the broader computing community. You can join the
ACM-W email distribution list at http://women.acm.org/joinlist.

ACM MEMBER BENEFITS:

• A subscription to ACM’s newly redesigned monthly magazine, Communications of the ACM
• Access to ACM’s Career & Job Center offering a host of exclusive career-enhancing benefits
• Free e-mentoring services provided by MentorNet®
• Full access to over 2,500 online courses in multiple languages, and 1,000 virtual labs
• Full access to 600 online books from Safari® Books Online, featuring leading publishers,

including O’Reilly (Professional Members only)
• Full access to 500 online books from Books24x7®
• Full access to the new acmqueue website featuring blogs, online discussions and debates,

plus multimedia content
• The option to subscribe to the complete ACM Digital Library
• The Guide to Computing Literature, with over one million searchable bibliographic citations
• The option to connect with the best thinkers in computing by joining 34 Special Interest Groups

or hundreds of local chapters
• ACM’s 40+ journals and magazines at special member-only rates
• TechNews, ACM’s tri-weekly email digest delivering stories on the latest IT news
• CareerNews, ACM’s bi-monthly email digest providing career-related topics
• MemberNet, ACM’s e-newsletter, covering ACM people and activities
• Email forwarding service & filtering service, providing members with a free acm.org email address

and Postini spam filtering
• And much, much more

ACM’s worldwide network of over 92,000 members range from students to seasoned professionals and includes many
of the leaders in the field. ACM members get access to this network and the advantages that come from their expertise
to keep you at the forefront of the technology world.

Please take a moment to consider the value of an ACM membership for your career and your future in the dynamic
computing profession.

Sincerely,

Wendy Hall

President
Association for Computing Machinery

CACM app_revised_03_18_09:Layout 1 4/9/09 11:46 AM Page 1

http://women.acm.org/joinlist
http://acm.org

Priority Code: ACACM10

Online
http://www.acm.org/join

Phone
+1-800-342-6626 (US & Canada)

+1-212-626-0500 (Global)

Fax
+1-212-944-1318

membership application &
digital library order form

PROFESSIONALMEMBERSHIP:

� ACM Professional Membership: $99 USD

� ACM Professional Membership plus the ACMDigital Library:

$198 USD ($99 dues + $99 DL)

� ACMDigital Library: $99 USD (must be an ACMmember)

STUDENTMEMBERSHIP:

� ACM Student Membership: $19 USD

� ACM StudentMembershipplus theACMDigital Library: $42USD

� ACM StudentMembership PLUSPrintCACMMagazine: $42USD

� ACM Student Membership w/Digital Library PLUS Print

CACMMagazine: $62 USD

choose onemembership option:

Name

Address

City State/Province Postal code/Zip

Country E-mail address

Area code & Daytime phone Fax Member number, if applicable

Payment must accompany application. If paying by check or
money order, make payable to ACM, Inc. in US dollars or foreign
currency at current exchange rate.

� Visa/MasterCard � American Express � Check/money order

� Professional Member Dues ($99 or $198) $ ______________________

� ACM Digital Library ($99) $ ______________________

� Student Member Dues ($19, $42, or $62) $ ______________________

Total Amount Due $ ______________________

Card # Expiration date

Signature

Professional membership dues include $40 toward a subscription
to Communications of the ACM. Member dues, subscriptions,
and optional contributions are tax-deductible under certain
circumstances. Please consult with your tax advisor.

payment:

RETURN COMPLETED APPLICATIONTO:

All new ACMmembers will receive an
ACMmembership card.

For more information, please visit us at www.acm.org

Association for Computing Machinery, Inc.
General Post Office
P.O. Box 30777
NewYork, NY 10087-0777

Questions? E-mail us at acmhelp@acm.org
Or call +1-800-342-6626 to speak to a live representative

Satisfaction Guaranteed!

Purposes of ACM
ACM is dedicated to:
1) advancing the art, science, engineering,
and application of information technology
2) fostering the open interchange of
information to serve both professionals and
the public
3) promoting the highest professional and
ethics standards

I agree with the Purposes of ACM:

Signature

ACM Code of Ethics:
http://www.acm.org/serving/ethics.html

You can join ACM in several easy ways:

Or, complete this application and return with payment via postal mail

Special rates for residents of developing countries:
http://www.acm.org/membership/L2-3/

Special rates for members of sister societies:
http://www.acm.org/membership/dues.html

Advancing Computing as a Science & Profession

Please print clearly

http://www.acm.org/join
http://www.acm.org/membership/L2-3/
http://www.acm.org/membership/dues.html
http://www.acm.org/serving/ethics.html
http://www.acm.org
mailto:acmhelp@acm.org

48 communications of the acm | july 2009 | vol. 52 | no. 7

practice

was about equal to the (fractional)
price of a disk drive required to access
such a record every 400 seconds, which
they rounded to five minutes. The
break-even interval is about inversely
proportional to the record size. Gray and
Putzolu reported one hour for 100-byte
records and two minutes for 4KB pages.

The five-minute rule was reviewed
and renewed 10 years later.14 Lots of
prices and performance parameters
had changed (for example, the price of
RAM had tumbled from $5,000 to $15
per megabyte). Nonetheless, the break-
even interval for 4KB pages was still
around five minutes. The first goal of
this article is to review the five-minute
rule after another 10 years.

Of course, both previous articles
acknowledged that prices and
performance vary among technolo-
gies and devices at any point in time
(RAM for mainframes versus mini-
computers, SCSI versus IDE disks, and
so on). Interested readers are invited to
reevaluate the appropriate formulas
for their environments and equipment.
The values used here (in Table 1) are
meant to be typical for 2007 technolo-
gies rather than universally accurate.

In addition to quantitative
changes in prices and performance,
qualitative changes already under
way will affect the software and
hardware architectures of servers
and, in particular, database systems.
Database software will change
radically with the advent of new
technologies: virtualization with
hardware and software support, as well
as higher utilization goals for physical
machines; many-core processors and
transactional memory supported both
in programming environments and
hardware;20 deployment in containers
housing thousands of processors and
many terabytes of data;17 and flash
memory that fills the gap between
traditional RAM and traditional
rotating disks.

Flash memory falls between
traditional RAM and persistent mass
storage based on rotating disks in
terms of acquisition cost, access

In 1 987, Jim Gray and Gianfranco Putzolu published
their now-famous five-minute rule15 for trading off
memory and I/O capacity. Their calculation compares
the cost of holding a record (or page) permanently
in memory with the cost of performing disk I/O
each time the record (or page) is accessed, using
appropriate fractional prices of RAM chips and
disk drives. The name of their rule refers to the
break-even interval between accesses. If a record
(or page) is accessed more often, it should be kept in
memory; otherwise, it should remain on disk and
be read when needed.

Based on then-current prices and performance
characteristics of Tandem equipment, Gray and
Putzolu found the price of RAM to hold a 1KB record

doi:10.1145/1538788.1538805

 Article development led by
 queue.acm.org

Revisiting Gray and Putzolu’s
famous rule in the age of Flash.

by Goetz Graefe

The Five-
Minute Rule
20 Years Later
(and How Flash Memory
Changes the Rules)

http://queue.acm.org

july 2009 | vol. 52 | no. 7 | communications of the acm 49

I
llustration

 by

 R
afael

 R

icoy

50 communications of the acm | july 2009 | vol. 52 | no. 7

practice

latency, transfer bandwidth, spatial
density, power consumption, and
cooling costs.13 Table 1 and some
derived metrics in Table 2 illustrate
this point (all metrics derived on
4/11/2007 from dramexchange.com,
dvnation.com, buy.com, seagate.com,
and samsung.com).

Given the number of CPU
instructions possible during the time
required for one disk I/O has steadily
increased, an intermediate memory in
the storage hierarchy is desirable. Flash
memory seems to be a highly probable
candidate, as has been observed many
times by now.

Many architecture details remain
to be worked out. For example, in
the hardware architecture, will flash
memory be accessible via a DIMM slot,
a SATA (serial ATA) disk interface, or
yet another hardware interface? Given
the effort and delay in defining a new
hardware interface, adaptations of
existing interfaces are likely.

A major question is whether flash
memory is considered a special part
of either main memory or persistent
storage. Asked differently: if a system
includes 1GB traditional RAM, 8GB
flash memory, and 250GB traditional
disk, does the software treat it as

250GB of persistent storage and a 9GB
buffer pool, or as 258GB of persistent
storage and a 1GB buffer pool? The
second goal of this article is to answer
this question and, in fact, to argue for
different answers in file systems and
database systems.

Many design decisions depend
on the answer to this question. For
example, if flash memory is part of the
buffer pool, pages must be considered
“dirty” if their contents differ from
the equivalent page in persistent
storage. Synchronizing the file system
or checkpointing a database must
force disk writes in those cases. If
flash memory is part of persistent
storage, these write operations are not
required.

Designers of operating systems
and file systems will want to use flash
memory as an extended buffer pool
(extended RAM), whereas database
systems will benefit from flash
memory as an extended disk (extended
persistent storage). Multiple aspects
of file systems and database systems
consistently favor these two designs.
Presenting the case for these designs is
the third goal of this article.

Finally, the characteristics of flash
memory suggest some substantial

differences in the management of
B-tree pages and their allocation.
Beyond optimization of page sizes,
B-trees can use different units of I/O for
flash memory and disks. These page
sizes lead to two new five-minute rules.
Introducing these two new rules is the
fourth goal of this article.

Assumptions
Forward-looking research relies on
many assumptions. This section
lists the assumptions that led to the
conclusions put forth in this article.
Some of these assumptions are
fairly basic, whereas others are more
speculative.

One assumption is that file systems
and database systems assign the same
data to the flash memory between
RAM and the disk drive. Both software
systems favor pages with some
probability that they will be touched
in the future but not with sufficient
probability to warrant keeping
them in RAM. The estimation and
administration of such probabilities
follows the usual lines, such as LRU
(least recently used).

We assume that the administration
of such information uses data structures
in RAM, even for pages whose contents
have been removed from RAM to flash
memory. For example, the LRU chain in
a file system’s buffer pool might cover
both RAM and flash memory, or there
might be two separate LRU chains. A
page is loaded into RAM and inserted
at the head of the first chain when it
is needed by an application. When it
reaches the tail of the first chain, the
page is moved to flash memory and its
descriptor to the head of the second
LRU chain. When it reaches the tail of
the second chain, the page is moved to
disk and removed from the LRU chain.
Other replacement algorithms would
work mutatis mutandis.

Such fine-grained LRU replacement
of individual pages is in contrast to
assigning entire files, directories,
tables, or databases to different storage
units. It seems that page replacement
is the appropriate granularity in buffer
pools. Moreover, proven methods exist
for loading and replacing buffer-pool
contents entirely automatically, with
no assistance from tuning tools or
directives by users or administrators
needed. An extended buffer pool in

Table 1: Prices and performance of flash and disks.

RAM Flash disk SATA disk

Price and capacity $3 for 8×64Mbit $999 for 32GB $80 for 250GB

Access latency 0.1ms 12ms average

Transfer bandwidth 66MB/s API 300MB/s API

Active power 1W 10W

Idle power 0.1W 8W

Sleep power 0.1W 1W

Table 2: Relative costs for flash memory and disks.

NAND Flash SATA disk

Price and capacity $999 for 32GB $80 for 250GB

Price per GB $31.20 $0.32

Time to read a 4KB page 0.16ms 12.01ms

4KB reads per second 6,200 83

Price per 4KB read per second $0.16 $0.96

Time to read a 256KB page 3.98ms 12.85ms

256KB reads per second 250 78

Price per 256KB read per second $3.99 $1.03

http://dramexchange.com
http://dvnation.com
http://buy.com
http://seagate.com
http://samsung.com

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 51

Variations such as “second-chance”
or fuzzy checkpoints fit within our
assumptions. In addition, nonlogged
(allocation-only logged) execution is
permitted for some operations such
as index creation. These operations
require appropriate write ordering and
a “force” buffer pool policy.18

Flash memory. Hardware and device
drivers are assumed to hide many
implementation details such as the
specific hardware interface to flash
memory. For example, flash memory
might be mounted on the computer’s
motherboard, a DIMM slot, a PCI
board, or within a standard disk
enclosure. In all cases, DMA transfers
(or something better) are assumed
between RAM and flash memory.
Moreover, we assume there is either
efficient DMA data transfer between
flash and disk or a transfer buffer in
RAM. The size of such a transfer buffer
should be, in a first approximation,
about equal to the product of transfer
bandwidth and disk latency. If it is
desirable that disk writes should never
delay disk reads, the increased write-
behind latency must be included in
the calculation.

Another assumption is that transfer
bandwidths of flash memory and disk
are comparable. While flash write
bandwidth has lagged behind read
bandwidth, some products claim a
difference of less than a factor of two

flash memory should exploit the same
methods as a traditional buffer pool.
For truly comparable and competitive
performance and administration costs,
a similar approach seems advisable
when flash memory is used as an
extended disk.

File systems. Our research assumed a
fairly traditional file system. Although
many file systems differ from this
model, most still generally follow it.

In our traditional system, each file
is a large byte stream. Files are often
read in their entirety, their contents
manipulated in memory, and the entire
file replaced if it is updated. Archiving,
version retention, hierarchical storage
management, data movement using
removable media, among others, all
seem to follow this model as well.

Based on this model, space allocation
on disk attempts to use contiguous disk
blocks for each file. Metadata is limited
to directories, a few standard tags such
as a creation time, and data structures
for space management.

Consistency of these on-disk data
structures is achieved by careful write
ordering, fairly quick write-back of
updated data blocks, and expensive
file-system checks after any less-than-
perfect shutdown or media removal.
In other words, we assume the
absence of transactional guarantees
and transactional logging, at least for
file contents. If log-based recovery is
supported for file contents such as
individual pages or records within
pages, then a number of the arguments
presented here need to be revisited.

Database systems. We assume fairly
traditional database systems with
B-tree indexes as the workhorse storage
structure. Similar tree structures
capture not only traditional clustered
and nonclustered indexes, but also
bitmap indexes, columnar storage,
contents indexes, XML indexes,
catalogs (metadata), and allocation
data structures.

With respect to transactional
guarantees, we assume traditional
write-ahead logging of both contents
changes (such as inserting or deleting
a record) and structural changes (such
as splitting B-tree nodes). Efficient
log-based recovery after failures is
enabled by checkpoints that force
dirty data from the buffer pool to
persistent storage.

(for example, Samsung’s Flash-based
solid-state disk used in Table 1). If
necessary, the transfer bandwidth
can be increased by using array
arrangements, as is well known for disk
drives; even redundant arrangement of
flash memory may prove advantageous
in some cases.6

Since the reliability of current NAND
flash suffers after 100,000–1,000,000
erase-and-write cycles, we assume that
some mechanisms for wear leveling are
provided. These mechanisms ensure
that all pages or blocks of pages are
written similarly often. It is important to
recognize the similarity between wear-
leveling algorithms and log-structured
file systems,22, 27 although the former
also move stable, unchanged data such
that their locations can absorb some of
the erase-and-write cycles.

Note that traditional disk drives do
not support more write operations,
albeit for different reasons. For
example, six years of continuous
and sustained writing at 100Mbps
overwrites an entire 250GB disk fewer
than 80,000 times. In other words,
assuming that a log-structured file
system is appropriate for RAID-5
or RAID-6 arrays, the reliability of
current flash seems comparable.
Similarly, overwriting a 32GB flash
disk 100,000 times with a sustained
average bandwidth of 30Mbps takes
about 3.5 years.

Figure 1: Caching and indexing page locations.

Cached

Index

Buffer

RAM

Flash
memory

Cached
tracking
information

Tracking
information

52 communications of the acm | july 2009 | vol. 52 | no. 7

practice

In addition to wear leveling, we
assume that an asynchronous agent
moves stale data from flash memory
to disk and immediately erases the
freed-up space in flash memory to
prepare it for write operations without
further delay. This activity also has
an immediate equivalence in log-
structured file systems—namely, the
cleanup activity that prepares space
for future log writing. The difference
is that disk contents must merely be
moved, whereas flash contents must
also be erased before the next write
operation at that location.

In either file systems or database
systems, we assume separate
mechanisms for page tracking and
page replacement. A traditional buffer
pool, for example, provides both, but
it uses two different data structures
for these two purposes. The standard
design relies on an LRU list for page
replacement and on a hash table for
tracking pages (that is, which pages
are present in the buffer pool and
in which buffer frames). Alternative
algorithms and data structures
also separate page tracking and
replacement management.

The data structures for the
replacement algorithm are assumed
to be small and have high traffic and
are therefore kept in RAM. We also
assume that page tracking must be
as persistent as the data, including
free-space information. Thus, a buffer
pool’s hash table is reinitialized
during a system reboot, but tracking
information for pages on a persistent
store such as a disk must be stored with
the data. The tracking information may
well be cached in RAM while a volume
is active, but any changes must be
logged and written back to permanent
storage. The index required to find the
current location of a page may exist
only in RAM, being reconstructed
every time a volume is opened and the
tracking information loaded into the
cache in RAM.

As previously mentioned, we
assume page replacement on demand.
In addition, automatic policies and
mechanisms may exist for prefetch,
read-ahead, and write-behind.

Based on these considerations, we
assume the contents of flash memory
are pretty much the same, whether the
flash memory extends the buffer pool

or the disk. The central question is
therefore not what to keep in cache but
how to manage flash-memory contents
and its lifetime.

In database systems, flash memory
can also be used for recovery logs,
because its short access times permit
very fast transaction commit. However,
limitations in write bandwidth
discourage such use. Perhaps systems
with dual logs can combine low
latency and high bandwidth, one
log on a traditional disk and one
log on an array of flash chips, with a
slightly optimistic policy to consider a
transaction committed as soon as the
write operation on flash is complete.

Other hardware. In all cases, RAM
is assumed to be a substantial size,
although probably less than flash
memory or disk. The relative sizes
should be governed by the five-minute
rule.15 Note that, despite similar
transfer bandwidth, the short access
latency of flash memory compared with
disk results in surprising retention
times for data in RAM.

Finally, we assume sufficient
processing bandwidth as provided
by modern many-core processors.
Moreover, forthcoming transactional
memory (in hardware and in the
software runtime system) is expected to
permit highly concurrent maintenance
of complex data structures. For
example, page replacement heuristics
might use priority queues rather than
bitmaps or linked lists. Similarly,
advanced lock management might
benefit from more complex data
structures. Nonetheless, we neither
assume nor require data structures
more complex than those already in
common use for page replacement and
location tracking.

The Five-Minute Rule
If flash memory is introduced as an

intermediate level in the memory
hierarchy, relative sizing of memory
levels demands renewed consideration.

Tuning can be based on purchasing
cost, total cost of ownership, power,
mean time to failure, mean time to
data loss, or a combination of metrics.
Following Gray and Putzolu,15 this article
focuses on purchasing cost. Other
metrics and appropriate formulas to
determine relative sizes can be derived
similarly (for example, by replacing
dollar costs with energy use for caching
and moving data).

Gray and Putzolu introduced the
following formula:14, 15

BreakEvenIntervalinSeconds =
(PagesPerMBofRAM / AccessesPerSec-
ondPerDisk) × (Price-PerDiskDrive /
PricePerMBofRAM).

It is derived using formulas for the
cost of RAM to hold a page in the buffer
pool and the cost of a (fractional) disk
to perform I/O every time a page is
needed, equating these two costs, and
solving the equation for the interval
between accesses.

Assuming modern RAM, a disk drive
using 4KB pages, and the values from
Table 1 and Table 2, this produces

(256 / 83) × ($80 / $0.047) = 5,248 seconds
 ≈ 90 minutes = 1½ hours

(The “=” sign often indicates rounding
in this article.)

This compares with two minutes
(for 4KB pages) 20 years ago. If there
is a surprise in this change, it is that
the break-even interval has grown by
less than two orders of magnitude.
Recall that RAM was estimated in
1987 at about $5,000 per megabyte,
whereas the 2007 cost is about $0.05
per megabyte, a difference of five
orders of magnitude. On the other

Table 3: Break-even intervals [seconds].

Page size 1KB 4KB 16KB 65KB 256KB

RAM-SATA 20,978 5,248 1,316 334 88

RAM-flash 2,513 876 467 365 339

Flash-SATA 32,253 8,070 2,024 513 135

RAM-$400 1,006 351 187 146 136

$400-SATA 80,553 20,155 5,056 1,281 337

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 53

Flash memory falls
between traditional
RAM and persistent
mass storage
based on rotating
disks in terms
of acquisition
cost, access
latency, transfer
bandwidth, spatial
density, power
consumption, and
cooling costs.

hand, disk prices have also tumbled
($15,000 per disk in 1987), and disk
latency and bandwidth have improved
considerably (from 15 accesses per
second to about 100 on consumer
disks and 200 on high-performance
enterprise disks).

For RAM and flash disks of 32GB,
the break-even interval is

(256 / 6,200) × ($999 / $0.047) = 876 sec-
onds ≈ 15 minutes

If the 2007 price for flash disks
includes a “novelty premium” and
comes down closer to the price of raw
flash memory—say, to $400 (a price also
anticipated by Gray and Fitzgerald13)—
then the break-even interval is 351
seconds ≈ 6 minutes.

An important consequence is that
in systems tuned using economic
considerations, turnover in RAM is
about 15 times faster (90 minutes / 6
minutes) if flash memory rather than
a traditional disk is the next level in
the storage hierarchy. Much less RAM
is required, resulting in lower costs for
purchase, power, and cooling.

Perhaps most interesting, applying
the same formula to flash and disk
results in the following:

(256 / 83) × ($80 / $0.03) = 8,070 seconds
≈ 2¼ hours

Thus, all active data will remain in
RAM and flash memory.

Without a doubt, two hours is
longer than any common checkpoint
interval, which implies that dirty pages
in flash are forced to disk not by page
replacement but by checkpoints. Pages
that are updated frequently must be
written much more frequently (because
of checkpoints) than is optimal based
on Gray and Putzolu’s formula.

In 1987, Gray and Putzolu
speculated 20 years into the future
and anticipated a “five-hour rule”
for RAM and disks. For 1KB records,
prices and specifications typical in
2007 suggest 20,978 seconds, or just
under six hours. Their prediction was
amazingly accurate.

All break-even intervals are
different for larger page sizes (64KB or
even 256KB). Table 3 shows the break-
even intervals, including those just
cited, for a variety of page sizes and

combinations of storage technologies.
(“$400” stands for a 32GB NAND flash
drive available in the future rather
than for $999 in 2007; in fact, 32GB
SLC SATA drives are available at retail
for $400 in 2009.)

The old five-minute rule for RAM
and disk now applies to 64KB page
sizes (334 seconds). Five minutes had
been the approximate break-even
interval for 1KB in 198715 and for 8KB in
1997.14 This trend reflects the different
rates of improvement in disk-access
latency and transfer bandwidth.

The five-minute break-even interval
also applies to RAM and the expensive
flash memory of 2007 for page sizes of
64KB and above (365 seconds and 339
seconds). As the price premium for
flash memory decreases, so does the
break-even interval (146 seconds and
136 seconds).

Two new five-minute rules are
indicated with values in bold italics
in Table 3. We will come back to this
table and these rules in the discussion
on optimal node sizes for B-tree
indexes.

Page Movement
In addition to I/O to and from RAM, a
three-level memory hierarchy also re-
quires data movement between flash
memory and disk storage.

The pure mechanism for moving
pages can be realized in hardware
(for example, by DMA transfer), or it
might require an indirect transfer via
RAM. The former case promises better
performance, whereas the latter design
can be realized entirely in software
without novel hardware. On the other
hand, hybrid disk manufacturers
might have cost-effective hardware
implementations already available.

The policy for page movement is
governed or derived from demand-
paging and LRU replacement. As
mentioned earlier, replacement
policies in both file systems and
database systems may rely on LRU and
can be implemented with appropriate
data structures in RAM. As with buffer
management in RAM, there may be
differences resulting from prefetch,
read-ahead, and write-behind. In
database systems these may be
directed by hints from the query
execution layer, whereas file systems
must detect page-access patterns

54 communications of the acm | july 2009 | vol. 52 | no. 7

practice

and worthwhile read-ahead actions
without the benefit of such hints.

If flash memory is part of the
persistent storage, page movement
between flash memory and disk is
similar to page movement during
defragmentation, both in file systems
and database systems. The most
significant difference is how page
movement and current page locations
are tracked in these two kinds of systems.

Tracking Page Locations
The mechanisms for tracking page
locations are quite different in file
systems and database systems. In file
systems, pointer pages keep track of
data pages or runs of contiguous data
pages. Moving an individual page may
require breaking up a run. It always
requires updating and then writing a
pointer page.

In database systems, most data is
stored in B-tree indexes, including
clustered (primary, nonredundant) and
nonclustered (secondary, redundant)
indexes on tables, materialized views,
and database catalogs. Bitmap indexes,
columnar storage, and master-detail
clustering can be readily and efficiently
represented in B-trees.12 Tree structures
derived from B-trees are also used for
blobs (binary large objects) and are
similar to the storage structures of
some file systems.5, 25

For B-trees, moving an individual
page can be very expensive or very
cheap. The most efficient mechanisms
are usually found in utilities for
defragmentation or reorganization.
Cost or efficiency results from two
aspects of B-tree implementation—
namely, maintenance of neighbor
pointers, and logging for recovery.

First, if physical neighbor pointers
are maintained in each B-tree page,
moving a single page requires updating
two neighbors in addition to the

parent node. If the neighbor pointers
are logical using fence keys, only the
parent page requires an update during
a page movement.10 Figure 2 shows
such a B-tree, with neighbor pointers
replaced by copies of the separator
keys propagated to the parent node
during leaf splits. If the parent page
is in memory, perhaps even pinned
in the buffer pool, recording the new
location is rather like updating an in-
memory indirection array. The pointer
change in the parent page is logged in
the recovery log, but there is no need
to force the log immediately to stable
storage because this change is merely
a structural change, not a database
contents change.

Second, database systems log
changes in the physical database, and
in the extreme case both the deleted
page image and the newly created
page image are logged. Thus, an
inefficient implementation fills two
log pages whenever a single data page
moves from one location to another.
A more efficient implementation logs
only allocation actions and delays de-
allocation of the old page image until
the new image is safely written in its
intended location.10 In other words,
moving a page from one location (for
example, on persistent flash memory)
to another (for example, on disk)
requires only a few bytes in the database
recovery log.

The difference between traditional
file systems and database systems
is the efficiency of updates enabled
by the recovery log. In a file system,
the new page location must be saved
as soon as possible by writing a
new image of the pointer page. In a
database system, only a single log
record or a few short log records must
be added to the log buffer. Thus, the
overhead for a page movement in a
file system is writing an entire pointer

page using a random access, whereas
a database system adds a log record
of a few dozen bytes to the log buffer
that will eventually be written using
large sequential write operations.

If a file system uses flash memory
as persistent storage, moving a page
between a flash memory location and
an on-disk location adds substantial
overhead. Thus, most file-system
designers will probably prefer flash
memory as an extension to the buffer
pool rather than as an extension of the
disk, thus avoiding this overhead.

A database system, however, has
built-in mechanisms that can easily
track page movements. These mecha-
nisms are inherent in the “workhorse”
data structure, B-tree indexes. Com-
pared with file systems, these mecha-
nisms permit efficient page movement,
each one requiring only a fraction of
a sequential write (in the recovery log)
rather than a full random write.

Moreover, the database mecha-
nisms are reliable. Should a failure
occur during a page movement, data-
base recovery is driven by the recovery
log, whereas a traditional file system
requires checking the entire volume
during reboot.

Checkpoint Processing
To ensure fast recovery after a system
failure, database systems use check-
points. Their effect is that recovery
needs to consider database activity only
from the most recent checkpoint, plus
some limited activity explicitly indicat-
ed in the checkpoint information. The
main effort is writing dirty pages from
the buffer pool to persistent storage.

If pages in flash memory are part
of the buffer pool, dirty pages must
be written to disk during database
checkpoints. Common checkpoint
intervals are measured in seconds or
minutes. Alternatively, if checkpoints
are not truly points but intervals, it is
reasonable to flush pages and perform
checkpoint activities continuously,
starting the next checkpoint as soon
as one finishes. With flash memory as
part of the buffer pool, many writes to
flash memory require a write to disk
soon thereafter as part of checkpoint
processing, and flash memory as the
intermediate level in the memory
hierarchy fails to absorb write activity.
Recall, this effect may be exacerbated

Figure 2: A write-optimized B-tree with fence keys instead of neighbor pointers.

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 55

is 351 seconds. This is the second new
five-minute rule.

The implication of two different
optimal page sizes is that any uniform
node size for B-trees on flash memory
and traditional rotating hard disks is
suboptimal. Optimizing page sizes for
both media requires a change in buffer
management, space allocation, and
some of the B-tree logic.

Fortunately, Patrick O’Neil of the
University of Massachusetts already
designed a space allocation scheme
for B-trees in which neighboring leaf
nodes usually reside within the same
contiguous extent of pages.23 When
a new page is needed for a node split,
another page within the same extent is
allocated. When an extent overflows,
half its pages are moved to a newly
allocated extent. In other words, the

if RAM is kept small because of the
presence of flash memory.

If, on the other hand, flash memory
is considered persistent storage,
writing to flash memory is sufficient.
Write-through to disk is required only
as part of page replacement (such
as, when a page’s usage suggests
placement on disk rather than in flash
memory). Thus, checkpoints do not
incur the cost of moving data from
flash memory to disk.

Checkpoints might even be faster
in systems with flash memory because
dirty pages in RAM need to be written
merely to flash memory, not to disk.
Given the very fast random access in
flash memory relative to disk drives,
this difference might speed up
checkpoints significantly.

To summarize, database systems
benefit if flash memory is treated as
part of the system’s persistent storage.
In contrast, traditional file systems do
not have systemwide checkpoints that
flush the recovery log and any dirty
data from the buffer pool. Instead,
they rely on carefully writing modified
file-system pages because of the lack of
a recovery log protecting file contents.

Page Sizes
In addition to tuning based on the
five-minute rule, another optimiza-
tion based on access performance is
sizing of B-tree nodes. The optimal
page size minimizes the time spent
on I/O during a root-to-leaf search. It
balances a short I/O (that is, the desire
for small pages) with a high reduction
in remaining search space (that is, the
desire for large pages).

Assuming binary search within
each B-tree node, the reduction in
remaining search space is measured by
the logarithm of the number of records
within each node. This measure was
called a node’s utility in our earlier
work.14 This optimization is essentially
equivalent to one described in the
original research on B-trees.3

Table 4 illustrates this optimization
for 20-byte records (typical with prefix
and suffix truncation4) and for nodes
filled at about 70%.

Not surprisingly, the optimal node
size for B-tree indexes on modern
high-bandwidth disks is much larger
than the page sizes in traditional
database systems. With those disks,

the access time dominates for all small
page sizes, such that additional byte
transfer and thus additional utility are
almost free.

B-tree nodes of 256KB are near
optimal. For those, Table 3 indicates
a break-even time for RAM and disk of
88 seconds. For a $400 flash disk and
a traditional rotating hard disk, Table
4 indicates 337 seconds or just over
five minutes. This is the first of the two
new five-minute rules.

Table 5 illustrates the same cal–
culations for B-trees on flash memory.
Because there is no mechanical seeking
or rotation, transfer time dominates
access time even for small pages. The
optimal page size for B-trees on flash
memory is 2KB, much smaller than
for traditional disk drives. In Table 3,
the break-even interval for 4KB pages

Table 4: Page utility for B-tree nodes on disk.

Page size Records per page Node utility Access time Utility/time

	 4KB 	 140 	 7 	 12.0ms 	 0.58

	 16KB 	 560 	 0 	 12.1ms 	 0.75

	 64KB 	 2,240 	 11 	 12.2ms 	 0.90

	 128KB 	 4,480 	 12 	 12.4ms 	 0.97

	 256KB 	 8,960 	 13 	 12.9ms 	 1.01

	 512KB 	 17,920 	 14 	 13.7ms 	 1.02

	 1MB 	 35,840 	 15 	 15.4ms 	 0.97

Table 5: Page utility for B-tree nodes on flash memory.

Page size Records per page Node utility Access time Utility/time

	 1KB 	 35 	 5 	 0.11ms 	 43.4

	 2KB 	 70 	 6 	 0.13ms 	 46.1

	 4KB 	 140 	 7 	 0.16ms 	 43.6

	 8KB 	 280 	 8 	 0.22ms 	 36.2

	 16KB 	 560 	 9 	 0.34ms 	 26.3

	 64KB 	 2,240 	 11 	 1.07ms 	 10.3

Figure 3: Pages and extents in an SB-tree.

Page 75.0

Extent 75

Extent 93

Page 93.0 Page 93.1

Page 75.2

Page 93.2

Page 75.3

Page 93.3

Page 75.4

Page 93.4

Page 75.5Page 75.1

56 communications of the acm | july 2009 | vol. 52 | no. 7

practice

“split in half when full” logic of B-trees
is applied not only to pages containing
records, but also to contiguous disk
extents containing pages.

Using O’Neil’s SB-trees (S meaning
sequential), 256KB extents can be the
units of transfer between flash memory
and disk, whereas 4KB pages can be the
unit of transfer between RAM and flash
memory. Figure 3 shows pages within
two extents. Child pointers in a B-tree
(also shown) refer to individual pages.
If multiple neighboring child pointers
refer to neighboring pages (as shown),
the pointer values can be represented
compactly with run-length encoding
applied not to a set of duplicate key
values but to a series of values with
constant increments. For example,
the five child pointers in extent 75.1 in
Figure 3 can be represented by the page
identifier 93.0 and the counter 5.

Similar notions of self-similar B-trees
have also been proposed for higher
levels in the memory hierarchy, for
example, in the form of B-trees of cache
lines for the indirection vector within a
large page.19 Given that there are at least
three levels of B-trees and three node
sizes now (cache lines, flash memory
pages, and disk pages), research into
cache-oblivious B-trees2 might be
promising.

Database-Query Processing
Self-similar designs apply both to data
structures such as B-trees and to algo-
rithms. For example, sort algorithms
already use algorithms similar to tradi-
tional external merge sorts in multiple
ways—to merge runs not only on disk
but also in memory, where the initial
runs are sized to limit run creation to
the CPU cache.11, 21

The same technique might be
applied three times instead of twice:
first, cache-size runs in memory are
merged into memory-size runs in
memory; second, in larger sort operations,
memory-size runs in flash memory are
merged into runs on disk; and third,
runs on disk are merged to form
the final sorted result. Read-ahead,
forecasting, write-behind, and page sizes
all deserve a new look in a multilevel
memory hierarchy consisting of cache,
RAM, flash memory, and traditional
disk drives. These page sizes can then
inform the break-even calculation for
page retention versus I/O and thus

guide the optimal capacities at each
level of the memory hierarchy.

We can surmise that a variation of
this sort algorithm will be not only
fast but also energy efficient. While
energy efficiency has always been
crucial for battery-powered devices,
research into energy-efficient query
processing on server machines is only
now beginning.24 For example, for
both flash memory and disks, energy-
optimal page sizes might well differ
from performance-optimal page sizes.

The I/O pattern of an external
merge sort is similar (albeit in the
opposite direction) to the I/O pattern
of an external distribution sort. Figure
4 illustrates how merging combines
many small files into a large file, with
many seek operations in the small files
as demanded by the merge logic, and
how partitioning divides a single large
file into many small files, with many
seek operations in the small files as
demanded by the partitioning function.
The I/O pattern of a distribution sort
is equal to that of partitioning during
hash join and hash aggregation.8 All of
these algorithms require reevaluation
and redesign in a three-level memory
hierarchy, or even a four-level hierarchy
if CPU caches are also considered.26

Flash memory with its very fast
access times may well revive interest in
index-based query execution.7, 9 Instead
of large scans and memory-intensive
operations such as sorting and hash
join, fast accesses to index pages shift
the break-even point toward index-to-
index navigation. For example, assume
a table with 100 million rows of 100
bytes and table scans at 100MB per
second. A table scan takes 100 seconds.
Searching a secondary index requires
fetching individual rows from the table.
If the table is stored on a traditional
disk, then a period of 100 seconds
permits fetching about 10,000 records.
If more than 10,000 rows satisfy the
query predicate, then the table scan is
faster. If, however, the table is stored
on a flash device, 100 seconds will
permit fetching about 500,000 records.
Thus, flash storage shifts the break-
even point between table scan and
index search from 10,000 to 500,000
rows satisfying the query predicate,
and many more query execution plans
will rely on index-to-index navigation
rather than large scans and hash joins.

The 20-year-old
five-minute rule for
RAM and disks still
holds, but for ever-
larger disk pages.
Moreover, it should
be augmented by
two new five-minute
rules: one for small
pages moving
between RAM and
flash memory and
one for large pages
moving between
flash memory and
traditional disks.

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 57

Figure 5: Graceful degradation with multiple levels in the memory hierarchy.

Run retained in memory Sort output

Runs on disk

Runs on flash

Multiple secondary indexes for
a single table can be exploited into
index intersection, index joins, among
others. Fast access to individual
pages and records also benefits
those query execution plans. Like
secondary indexes, column stores or
more generally vertical partitioning
also require fetching records from
multiple places to assemble complete
rows. Thus, as seen in the example
of database query processing, using
flash memory in addition to or even as
replacement of traditional disks not
only forces reevaluation of optimal use
of the hardware but also means some
substantial software changes.

Record and Object Caches
Page sizes in database systems have
grown over the years, although not as
fast as disk-transfer bandwidth. On the
other hand, small pages require less
buffer-pool space for each root-to-leaf
search. For example, consider an index
with 20 million entries. With index pag-
es of 128KB and 4,500 records, a root-
to-leaf search requires two nodes and
thus 256KB in the buffer pool, although
half of that (the root node) can prob-
ably be shared with other transactions.
With 8KB index pages and 280 records
per page, a root-to-leaf search requires
three nodes or 24KB in the buffer pool,
or one order of magnitude less.

In traditional database architecture,
the default page size is a compromise
between efficient index search (using
large B-tree nodes as previously
discussed here and in the original B-tree
papers3) and moderate buffer-pool
requirements for each index search.
Nonetheless, the previous example
requires 24KB in the buffer pool for
finding a record of perhaps only 20 bytes,

ware techniques with the highest im-
pact on energy consumption. Note that
traditional database-query processing
relies on asynchronous I/O to reduce
response times; if the primary cost
metric for query processing is energy
consumption, asynchronous I/O has
no advantage over synchronous I/O.

Second, the five-minute rule applies
to permanent data and its management
in a buffer pool. The optimal retention
time for temporary data such as run
files in sorting and overflow files
in hash join and hash aggregation
may be different. For sorting, as for
B-tree searches, the goal should be to
maximize the number of comparisons
per unit of I/O time or per unit of energy
spent on I/O. Our initial research
and algorithm design has focused on
algorithms with graceful degradation
in sorting and for hybrid hash join
(that is, spilling memory contents to
flash only when and as much as truly
required, and similarly spilling flash
contents to disk only when and as
much as truly required). The different
optimal page sizes can be exploited to
achieve very high effective merge fan-in
and partitioning fan-out with relatively
little main memory. Figure 5 shows the
final merge step—very large runs on
disk use large pages that are buffered in
flash memory (shown as vertical boxes),
a few small runs have remained in flash

and it requires 8KB of the buffer pool for
retaining these 20 bytes in memory. An
alternative design uses large on-disk
pages and a record cache that serves
applications, because record caches
minimize memory needs yet provide
the desired data retention. In-memory
databases represent a specific form of
record caches when used as front ends
for traditional disk-based databases.

The introduction of flash memory
with its fast access latency and its small
optimal page size may render record
caches obsolete. With the large on-disk
pages in flash memory and only small
pages in the in-memory buffer pool, the
desired compromise can be achieved
without the need for two separate data
structures (such as, a transacted B-tree
and a separate record cache).

Future Work
Several directions for future research
suggest themselves. First, while the
analyses in this article focused on
purchasing costs, a consideration of
other costs could capture the total cost
of ownership. A focus on energy con-
sumption, for example, could lead to
different break-even points or even en-
tirely different conclusions. Along with
CPU scheduling, algorithms for stag-
ing data in the memory hierarchy—in-
cluding buffer-pool replacement and
asynchronous I/O—may be the soft-

Figure 4: Merging and partitioning files.

Merging

Partitioning

58 communications of the acm | july 2009 | vol. 52 | no. 7

practice

and never were merged to form very
large runs on disk (shown as horizontal
boxes), and the available RAM is used
to merge a very large number of runs
exploiting the small page size optimal
for flash devices.

Third, Gray and Putzolu offered
further rules of thumb, such as the
10-byte rule for trading memory
and CPU power. These rules also
warrant revisiting for both costs and
energy. Compared with 1987, the
most fundamental change may be
that CPU power should be measured
not in instructions but in cache line
replacements. Trading off space and
time seems like a new problem in
an environment with multiple levels
in the memory hierarchy. A modern
memory hierarchy might be very deep:
multiple levels of CPU caches, main
memory (possibly in a NUMA design),
flash devices, and finally performance-
optimized “enterprise” disks and
capacity-optimized “consumer” disks.
The lower levels may rely on various
software techniques with different
trade-offs between performance and
reliability, such as striping, mirroring,
single-redundancy RAID-5, dual-
redundancy RAID-6, log-structured file
systems, and write-optimized B-trees.

Fourth, what are the best data
movement policies? One extreme is
a database administrator explicitly
moving entire files, tables, or indexes
between flash memory and traditional
disk. Another extreme is automatic
movement of individual pages,
controlled by a replacement policy
such as LRU. Intermediate policies may
focus on the roles of individual pages
within a database or on the current
query-processing activity. For example,
all catalog pages may be moved as a

affordable, and popular based on
memory inexpensively extended with
flash memory rather than RAM? Will
they become less popular as a result of
very fast traditional database systems
using flash memory instead of (or in
addition to) disks? Can a traditional
code base using flash memory instead
of traditional disks compete with
a specialized in-memory database
system in terms of performance, total
cost of ownership, development and
maintenance costs, or time to market of
features and releases? What techniques
in the buffer pool are required to
achieve performance competitive with
in-memory databases? For example,
the upper levels of B-tree indexes
can be pinned in the buffer pool and
augmented with memory addresses
of all child pages (or their buffer
descriptors) also pinned in the buffer
pool, and auxiliary structures may
enable efficient interpolation search
instead of binary search.

Finally, techniques similar to
generational garbage collection may
benefit storage hierarchies.22 Selective
reclamation applies not only to
unreachable in-memory objects but
also to buffer-pool pages and favored
locations on permanent storage. Such
research also may provide guidance
for log-structured file systems, wear
leveling for flash memory, and write-
optimized B-trees on RAID storage.

Conclusion
The 20-year-old five-minute rule for
RAM and disks still holds, but for
ever-larger disk pages. Moreover, it
should be augmented by two new
five-minute rules: one for small pag-
es moving between RAM and flash
memory and one for large pages mov-
ing between flash memory and tradi-
tional disks. For small pages moving
between RAM and disk, Gray and Put-
zolu were amazingly accurate in pre-
dicting a five-hour break-even point
two decades into the future.

Research into flash memory and
its place in system architectures is
urgent and important. Within a few
years, flash memory will be used to
fill the gap between traditional RAM
and traditional disk drives in many
operating systems, file systems, and
database systems.

Flash memory can be used to extend

Figure 6: Local flash drives versus hybrid
drives in network-attached storage.

CPU + RAM

CPU + RAM

Flash disk Traditional disk

Traditional disk

Flash disk

unit after schema changes to facilitate
fast recompilation of all cached query
execution plans, and all relevant upper
B-tree levels may be prefetched and
cached in RAM or in flash memory
during execution of query plans relying
on index-to-index navigation. The
variety of possibilities may overwhelm
automatic policies and may require
hints or directives from applications or
database software.

Fifth, what are the secondary and
tertiary effects of introducing flash
memory into the memory hierarchy of
a database server? For example, short
access times permit a lower multi-
programming level, because only
short I/O operations must be hidden
by asynchronous I/O and context
switching. A lower multi-programming
level in turn may reduce contention for
memory in sort and hash operations,
locks (concurrency control for database
contents), and latches (concurrency
control for in-memory data structures).
Should this effect prove significant, the
effort and complexity of using a fine
granularity of locking may be reduced.
Page-level concurrency control may
also be sufficient simply as a result
of small page sizes. Similarly, in-
page data structures may require
less optimization, although some
techniques may apply to small pages
(optimized for flash) within large pages
(optimized for disks)—for example,
clustering records versus clustering
fields.1

Sixth, will hardware architecture
considerations invalidate some of
the findings and conclusions of this
article? For example, disks are currently
separated from the main processors
(for example, in network-attached
storage or storage-area networks). Will
flash devices be placed with the main
processors? If so, is it still a good idea
to use flash devices as extended disk
rather than extended buffer pool?
Figure 6 shows two of these alternatives.
In the top arrangement, questions arise
about the scope and effectiveness of
centralized storage management, the
granularity of failures and replacement,
and so on, whereas many of these
questions have much more obvious
answers in the bottom arrangement.

Seventh, how will flash memory
affect in-memory database systems?
Will they become more scalable,

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 59

RAM or persistent storage. These
models are called extended buffer pool
and extended disk here. Both models
may seem viable in operating systems,
file systems, and in database systems.
The different characteristics of each
of these systems, however, will require
different usage models.

In both models, contents of RAM
and flash will be governed by LRU-like
replacement algorithms that attempt
to keep the most valuable pages in
RAM and the least valuable pages on
traditional disks. The linked list or
other data structure implementing the
replacement policy for flash memory
will be maintained in RAM.

Operating systems and traditional
file systems will use flash memory
mostly as transient memory (for
example, as a fast backup store for
virtual memory and as a secondary
file-system cache). Both of these
applications fall into the extended
buffer-pool model. During an orderly
system shutdown, the flash memory
contents must be written to persistent
storage. During a system crash,
however, the RAM-based description of
flash-memory contents will be lost and
must be reconstructed by a contents
analysis similar to a traditional file-
system check. Alternatively, flash-
memory contents can be voided and
reloaded on demand.

Database systems, on the other
hand, will employ flash memory as
persistent storage, using the extended
disk model. The current contents
will be described in persistent data
structures, such as parent pages in
B-tree indexes. Traditional durability
mechanisms—in particular, logging
and checkpoints—ensure consistency
and efficient recovery after system
crashes. Checkpoints and orderly
system shutdowns have no need to
write flash memory contents to disk,
and the pre-shutdown of flash contents
is required for a complete restart.

There are two reasons for these
different usage models for flash
memory. First, database systems rely
on regular checkpoints during which
dirty pages are flushed from the buffer
pool to persistent storage. If a dirty page
is moved from RAM to the extended
buffer pool in flash memory, it creates
substantial overhead during the next
checkpoint. A free buffer must be found

in RAM, the page contents must be
read from flash memory into RAM, and
then the page must be written to disk.
Adding such overhead to checkpoints
is not attractive in database systems
with frequent checkpoints. Operating
systems and traditional file systems,
on the other hand, do not rely on
checkpoints and thus can exploit flash
memory as an extended buffer pool.

Second, the principal persistent
data structures of databases, B-tree
indexes, provide precisely the mapping
and location-tracking mechanisms
needed to complement frequent page
movement and replacement. Thus,
tracking a data page when it moves
between disk and flash relies on the
same data structure maintained for
efficient database search. In addition,
avoiding indirection in locating a
page also makes database searches as
efficient as possible.

Finally, as the ratio of access
latencies and transfer bandwidth is
very different for flash memory and
disks, different B-tree node sizes are
optimal. O’Neil’s SB-tree exploits
two different node sizes as needed in
a multilevel storage hierarchy. The
required inexpensive mechanisms for
moving individual pages are the same
as those required when moving pages
between flash memory and disk.

Acknowledgments
This article is dedicated to Jim Gray,
who suggested this research and
helped the author and many others
many times in many ways. Barb Peters,
Lily Jow, Harumi Kuno, José Blakeley,
Mehul Shah, the DaMoN 2007 review-
ers, and particularly Harumi Kuno sug-
gested multiple improvements after
reading earlier versions of this work.	

References
1.	 Ailamaki, A., DeWitt, D.J. and Hill, M.D. Data page

layouts for relational databases on deep memory
hierarchies. VLDB Journal 11, 3 (2002), 198–215.

2.	 Bender, M.A. Demaine, E.D. and Farach-Colton, M.
Cache-oblivious B-trees. SIAM Journal on Computing
35, 2 (2005), 341–358.

3.	 Bayer, R. and McCreight, E.M. Organization and
maintenance of large ordered indexes. SIGFI-DET
Workshop (1970), 107–141.

4.	 Bayer, R. and Unterauer, K. Prefix B-trees. ACM
Transactions on Database Systems 2, 1 (1977), 11–26.

5.	 Carey, M.J., DeWitt, D.J., Richardson, J.E. and Shekita,
E.J. Storage management in EXODUS. In Object-
Oriented Concepts, Databases, and Applications. W.
Kim and F. Lochovsky, Eds. ACM, N.Y., 1989, 341–369.

6.	 Chen, P.M., Lee, E.L. Gibson, G.A., Katz, R.H. and Patterson,
D.A. 1994. RAID: high-performance, reliable secondary
storage. ACM Computing Surveys 26(2): 145–185.

7.	 DeWitt, D.J., Naughton, J.F. and Burger, J. Nested
loops revisited. Parallel and Distributed Information

Systems (1993), 230–242.
8.	 Graefe, G. Query evaluation techniques for large

databases. ACM Computing Surveys 25, 2 (1993), 73–170.
9.	 Graefe, G. Executing nested queries. Database Systems

for Business, Technology and Web (2003), 58–77.
10.	 Graefe, G. Write-optimized B-trees. VLDB Journal

(2004), 672–683.
11.	 Graefe, G. Implementing sorting in database systems.

ACM Computing Surveys 38, 3 (2006), 69–106.
12.	 Graefe, G. Master-detail clustering using merged

indexes. Informatik–Forschung und Entwicklun, 2007.
13.	 Gray, J. and Fitzgerald, B. 2007. Flash disk opportunity

for server-applications; http://research.microsoft.
com/~gray/papers/FlashDiskPublic.doc.

14.	 Gray, J., Graefe, G. 1997. The five-minute rule ten
years later, and other computer storage rules of
thumb. SIGMOD Record 26, 4 (1997), 63–68.

15.	 Gray, J. and Putzolu, G.R. The 5-minute rule for
trading memory for disk accesses and the 10-byte
rule for trading memory for CPU time. SIGMOD
Journal (1987), 395–398.

16.	H ärder, T. Implementing a generalized access path
structure for a relational database system. ACM
Transactions on Database Systems 3, 3 (1978), 285–298.

17.	H amilton, J. An architecture for modular data centers.
In Proceedings of the Conference on Innovative Data
Systems Research, 2007.

18.	H ärder, T. and Reuter, A. Principles of transaction-
oriented database recovery. ACM Computing Surveys
15, 4 (1983), 287–317.

19.	 Lomet, D.B. The evolution of effective B-tree page
organization and techniques: a personal account.
SIGMOD Record 30, 3, 64–69.

20.	 Larus, J.R. and Rajwar, R. Transactional Memory.
Synthesis Lectures on Computer Architecture. Morgan
& Claypool, 2007.

21.	 Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J. and
Lomet, D.B. AlphaSort: A cache-sensitive parallel
external sort. VLDB Journal (1995), 603–627.

22.	 Ousterhout, J.K. and Douglis, F. Beating the I/O
bottleneck: A case for log-structured file systems.
Operating Systems Review 23, 1 (1989), 11–28.

23.	 O’Neil, P.W. The SB-tree: An index-sequential structure
for high-performance sequential access. Acta
Informatica 29, 3 (1992), 241–265.

24.	 Rivoire, S., Shah, M., Ranganathan, P. and Kozyrakis, C.
JouleSort: A balanced energy-efficiency benchmark.
SIGMOD Record, 2007.

25.	 Stonebraker, M. Operating system support for database
management. Commun. ACM 24, 7 (July 1981), 412–418.

26.	 Shatdal, A., Kant, C. and Naughton, J.F. Cache-
conscious algorithms for relational query processing.
VLDB Journal (1994), 510–521.

27.	 Woodhouse, D. JFFS: The Journaling Flash File
System. Ottawa Linux Symposium, Red Hat Inc., 2001.

 Related articles
 on queue.acm.org

Flash Storage Today

Adam Leventhal
http://queue.acm.org/detail.cfm?id=1413262

Flash Disk Opportunity
for Server Applications

Jim Gray, Bob Fitzgerald
http://queue.acm.org/detail.cfm?id=1413261

Enterprise SSDs
Mark Moshayedi, Patrick Wilkison
http://queue.acm.org/detail.cfm?id=1413263

Goetz Graefe (Goetz.Graefe@HP.com) joined Hewlett-
Packard Laboratories after seven years as an academic
researcher and teacher followed by 12 years as a product
architect and developer at Microsoft. He was recently
named an HP Fellow. His Volcano research project
was awarded the 10-year Test-of-Time Award at ACM
SIGMOD 2000 for work on query execution.

An earlier version of this article was originally published
in Proceedings of the Third International Workshop on
Data Management on New Hardware (June 15, 2007),
Beijing, China.

© 2009 ACM 0001-0782/09/0700 $10.00

http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1413262
http://queue.acm.org/detail.cfm?id=1413261
http://queue.acm.org/detail.cfm?id=1413263
mailto:Goetz.Graefe@HP.com
http://research.microsoft.com/~gray/papers/FlashDiskPublic.doc
http://research.microsoft.com/~gray/papers/FlashDiskPublic.doc

60 communications of the acm | july 2009 | vol. 52 | no. 7

practice
doi:10.1145/1538788.1538806

 Article development led by
 queue.acm.org

The laws of physics and the Internet’s routing
infrastructure affect performance in a big way.

By Jonathan M. Smith

Over the past several years, software-as-a-service
(SaaS) has become an attractive option for companies
looking to save money and simplify their computing
infrastructures. SaaS is an interesting group of
techniques for moving computing from the desktop to
the cloud. However, as it grows in popularity, engineers
should be aware of some of the fundamental limitations
they face when developing these kinds of distributed
applications—in particular, the finite speed of light.

Consider a company that wants to build a
distributed application that does interprocess
communication (IPC) over the long haul. The obvious
advice is “just say no”—don’t do it. If you’re going
far outside your local networking environment, the
physics of distance and the speed of light, combined
with the delays that come from the Internet’s routing
infrastructure, tell us that it will be much too slow.

These concepts are not generally un-
derstood, however, and even when they
are, they’re sometimes forgotten.

So, what are the basic principles re-
lated to speed of light and network hops
that all software developers should be
acquainted with? This article answers
that question by first working out some
quantitative preliminaries with an ex-
ample, then moving on to the network-
ing implications, and then covering
applications. Finally, it provides some
rules of thumb to keep in mind as ap-
plications and architectures evolve in
reaction to new network capabilities
and unchanging physics.

The Physics
The speed of light in a vacuum is exact-
ly 299,792,458m/sec.2 This is as fast as
you can move a bit of data, and accord-
ing to our current understanding of
physics, it is a fundamental constraint
of the universe in which we live. In fi-
ber, the speed of light is 2.14 × 108 m/
sec or about 70% of the speed of light
in a vacuum. If a fiber were stretched
in a straight line from New York to San
Francisco, it would be about 4,125km
long, and it would take about 19ms
(4,125 ÷ 214) for light to make the one-
way trip. Assuming an 8,250km length
of fiber was used, you can just double
this time to get an estimate for mini-
mum round-trip time.

At first glance, 19ms might seem
like a short time, certainly on a human
scale. As computer scientists, however,
we are usually concerned with a differ-
ent time scale, that of the computer.
Here we can calculate the 19ms in terms
of instructions, the fundamental units
of work for computers. As an example,
we can use a 2003-vintage single-core
machine: the Intel Pentium 4 Extreme
Edition, which at a 3.2GHz clock rate
was rated at 9,726MIPS: 9,726 × 0.019
is 184 million instructions—sufficient,
for example, to search through or sort
millions of names.

It is always important to keep in
mind the purpose of computer net-
working is to interconnect computers,
and that computers operate on very

Fighting
Physics:
A Tough
Battle

http://queue.acm.org

july 2009 | vol. 52 | no. 7 | communications of the acm 61

I
llustration

 by

 A
ndy

 G
ilmore

short timescales. Also, a single hu-
man operation sometimes translates
to many computer operations (that is,
round-trips). For example, opening a
single Web page usually requires many
round-trips, even if you are getting only
a single large object (for example, a
large picture).

Propagation, Bandwidth,
Latencies, and Hops
The traversal of the fiber loop between
New York and San Francisco pre-
sumes a data-transfer unit of a single

encoded binary digit of information.
The lower bound for that traversal
would be 2 × 19, or 38ms (or 368 mil-
lion instructions). The time for this bit
to travel from its source to its destina-
tion and back again is called its propa-
gation delay.

Propagation delay is important, but
compared with the much more com-
mon metric of bandwidth—measured
in bits per second—it is rarely quoted
as a figure of merit. At least partially,
this is because the observed propaga-
tion delay depends on context, whereas

bandwidth (say of a fiber-optic trans-
mission system) can be measured in
isolation. Bandwidth can also be in-
creased through engineering (for ex-
ample, through encoding schemes for
transmission systems that encode mul-
tiple bits per symbol) and thus is more
attractive as a figure of merit to those
who build transmission systems. Fi-
nally, bandwidth is a measure of work,
which is attractive to purchasers.

Bandwidth can also affect latency,
which is distinct, in my view, from
propagation delay; the propagation

62 communications of the acm | july 2009 | vol. 52 | no. 7

practice

delay is a metric for the first bit, while
latency is a metric for the entire data
unit, which may contain more than
one bit. In general:

latency = propagation delay + data unit
size ÷ bandwidth

What this says is the propagation
delay is only part of the picture and
that bandwidth affects performance as
well. A look at the impact of the band-
width in an example system shows why
propagation delay is so important.
Consider a 10Gbps transmission sys-
tem and a 1,250-byte (or equivalently,
10Kbit, chosen both to reflect a reason-
able maximum transmission unit with
Ethernets and to make arithmetic easi-
er!) data unit. The propagation time for
the first bit in the NY–SF loop is 38ms,

and the last bit arrives a microsecond
(10K/10G) later, making the total laten-
cy 38.001ms.

The majority of the latency is propa-
gation delay. An interesting arithmetic
exercise is to compute the distance at
which a transmission system’s latency
is double the propagation delay. For
a 10Gbps transmission system and
10Kbit data unit size, this is about
214 meters, or a few city blocks. For
smaller data units or longer distances,
propagation delay is the majority of
the latency. (More detail on propaga-
tion delay versus latency can be found
in Shaffer.4)

It is instructive to take a few mea-
surements to see what is what. Using
the ping utility to send ICMP ECHO
packets, I measured the round-trip la-
tency between the University of Penn-

sylvania (klondike.cis.upenn.edu)
and Stanford University (cs.stanford.
edu)—two well-connected sites—as
being about 87.5ms. Rounding this to
88ms and subtracting the fiber propa-
gation time of 38ms leaves a difference
of 50ms. (Note that the NY–SF numbers
are assumed to be roughly equivalent to
those from Philadelphia to Palo Alto.)
Since these data units are only about
500 bits long, bandwidth between Penn
and Stanford would have to be pretty
bad (500 bits in 50ms would be about
10Kbps) to be the explanation. So what
could it be?

There are at least two possible fac-
tors, both of which can be explained
with the notion of hops. To understand
hops, it helps to understand how a net-
work differs from our 8,250km loop of
fiber. A real network is constructed of
many interconnected pieces—for ex-
ample, local area networks and wide
area networks. Figure 1 represents a
real physical network topology, with
many types of networks and multiple
devices. Hosts are labeled with H,
routers with R, and network types are
shown to be multiple in nature.

Many different packet formats and
data units are in use, and the genius
of the Internet is that it has a solu-
tion to make them all work together.
This interoperability layer consists of
a packet format and an address that
is interpreted by IP routers. The sub-
nets interconnecting the routers can
use whatever technology they choose
as long as they can carry encapsulat-
ed IP packets between routers. Each
router-router path is called a hop. As
before with ping, it is instructive to
obtain a measurement, whic I did us-
ing traceroute between the two hosts
I had used previously. Traceroute re-
peatedly sends out datagrams with a
limited maximum hop count to stim-
ulate a failure indication that can be
used to determine the router. Iterating
through 1 hop, 2 hops, 3 hops, and so
on, gives at least an indication of the
route taken by the datagrams. Inac-
curacies can occur for many reasons
including route changes and noncom-
pliant router software, but it usually
provides a good approximation. Table
1 illustrates data obtained from such a
measurement. Using the router names
output by traceroute in my sample
measurement, I attempted to infer the

Table 1: Traceroute results from Klondike.cis.upenn.edu to cs.stanford.edu.

Hop Time 1 (ms) Time 2 (ms) Time 3 (ms) State

1 0.284 0.197 0.189 PA

2 0.985 0.870 0.725 PA

3 0.279 0.257 0.292 PA

4 5.065 4.856 0.544 PA

5 0.795 0.752 0.753 PA

6 2.736 2.799 2.703 PA?

7 8.329 7.810 7.795 DC

8 21.681 21.360 21.350 GA

9 44.804 44.882 44.886 TX

10 81.997 80.295 80.260 CA

11 77.328 79.228 * CA

12 90.434 86.616 * CA

13 86.419 86.453 * CA

14 87.524 87.481 87.481 CA

15 87.955 87.787 87.941 CA

16 * * * CA?

17 88.352 87.947 87.981 CA

Adapted from Computer Networks: A Systems Approach by Larry L. Peterson
and Bruce S. Davie, Morgan Kauffmann, 1996.

Figure 1: Disparate network types are overcome by Internetworking technology.

H1

H1

H2

R3

H4 R2

H3

H3R1

H5
H5

FDDI Ring
Point-to-Point Link

(e.g., ISDN)

http://Klondike.cis.upenn.edu
http://cs.stanford.edu
http://klondike.cis.upenn.edu
http://cs.stanford.edu
http://cs.stanford.edu

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 63

location of each hop, for example that
atla.net.internet2.edu was in Georgia,
that hous.net.internet2.edu was in
Texas, and losa.net.internet2.edu was
in California.

There are 17 hops reported. Our
analysis of an unobstructed fiber did
not account for these routers, nor for
the possibility that packets did not
travel “as the crow flies” between the
source and destination. The total prop-
agation delay through this network,
then, is equal to the sum of the propa-
gation time across each subnet, plus
the time required to pass through the
routers. This time includes both the
time to switch from an input subnet
to an output subnet and the additional
time spent waiting in queues of pack-
ets held in memory associated with
line cards. If these queues are filled
with packets because an output sub-
net is too busy, congestion occurs, and
packets that cannot be buffered are
dropped.

Modern routers such as the Cisco
CRS-1 exhibit average latencies of
about 100 microseconds1 when there
is no queuing. Our Philadelphia–Palo
Alto example would include approxi-
mately 30 of them in the round-trip
path, making the total switching time
latency about 3ms. The other causes
of delay are more difficult to measure,
but we can see that hop 8 (Atlanta) to
hop 9 (Houston) takes about 23.5ms
and is about 1129km. To estimate the
speed, we calculate 1129000 / .0235,
which is 48042553m/sec or about 16%
of the speed of light. Hop 9 (Houston)
to hop 10 (Los Angeles) takes about
35.5ms to travel 2211km, which works
out to a little less than 21% of the speed
of light. So each hop is slowing things
down quite a bit. An additional factor
is routing, and the possibility of poor
route selection. Routers attempt to op-
timize a path between two points, but
that may be difficult, so in addition to
the delay through the routers we can
expect a certain delay caused by path
selections that deviate from a straight
line. An example of this can be found
in Table 2, where hop 9 is in New York,
hop 10 is in Massachusetts (Boston)
and hop 11 (the one that takes 19ms) is
in Rhode Island (Providence). Table 2
is interesting also in that it shows that
about 15ms is lost in the NJ/NY area
and 10ms in the California area, both

vices can be accessed. It resembles
input/output, supporting a read/write
style of interface. The impact of the IPC
software on a single message’s latency
is typically low; ping measurements of
a local loopback interface on klondike.
cis.upenn.edu show times of about 20
microseconds of latency. The largest
cause of propagation delays in IPC is
protocols.

Protocols are rules for communicat-
ing intended to provide desired proper-
ties, such as high application through-
put, reliability, or ordering. Reliable
message delivery is a common applica-
tion requirement and usually requires
confirmation from the receiver to the
sender, thus implying a round-trip.
Communications requiring more data
than a single packet must use multiple
packets, implying multiple round-trip
times. To see the impact of the phys-
ics on a naïve protocol, imagine an
IPC system that uses 10Kbit packets
and must move 100Kbits (10-packets
worth of data) across the U.S., which
as we have seen (for a single transcon-
tinental piece of fiber) should require
about 19ms. If a new packet is sent
only when a previous one has been ac-
knowledged, one packet will be sent
every 38ms, and the communication
will require 380ms, or almost one half
second, independent of the bandwidth
of the network. Yet, it’s clear that with

areas where not much actual distance
is traveled. Other possible sources of
delay include slower routers (the CRS-1
is a very high performance router) and
other intervening appliances (such as
firewalls) and slow links. Nonetheless,
it is impressive that the IP routing in-
frastructure is only about a factor of
two “slower” than the speed of light in
fiber: 88ms vs. 38ms.

This observation of the difference
between pencil and paper and mea-
sured results leads to the definition of
the throughput of a system, which is
how many bits per second you can send
after taking all the real-world limita-
tions—propagation delays, bandwidth,
latency, and hops—into account.

Interprocess Communication
and Protocols
In a distributed system, processes that
need to communicate do so via one
or more schemes for IPC.3 Example
schemes include messages, reliable
streams, and remote procedure calls.
It is easiest to think of IPC in terms
of messages, sometimes called appli-
cation data units (ADUs), as they are
the building blocks on which other
IPC mechanisms, including reliable
bytestreams, are built. Messages may
require multiple IP packets. The socket
API is one example of a way in which
message and reliable bytestream ser-

Table 2: Traceroute results from home network (in N.J.) to cs.stanford.edu.

Hop Time 1 (ms) Time 2 (ms) Time 3 (ms) State

1 1.835 0.594 0.461 NJ

2 5.336 3.634 5.076 NJ

3 5.043 4.093 4.975 NJ

4 10.043 9.408 9.656 NJ

5 14.687 14.319 14.902 NY

6 15.025 14.309 18.432 NY

7 14.004 14.254 15.001 NY

8 14.914 13.945 14.916 NY

9 14.985 14.031 16.568 NY

10 19.003 18.738 18.890 MA

11 19.986 39.004 41.033 RI

12 59.984 58.776 58.969 ?

13 41.168 90.035 88.657 IL?

14 60.013 89.862 88.904 CA?

15 89.992 89.749 91.322 CA

16 90.302 97.151 96.555 CA

17 * 92.022 * CA

18 97.272 98.329 99.830 CA

http://atla.net.internet2.edu
http://hous.net.internet2.edu
http://losa.net.internet2.edu
http://cs.stanford.edu
http://klondike.cis.upenn.edu/
http://klondike.cis.upenn.edu/

64 communications of the acm | july 2009 | vol. 52 | no. 7

practice

a high-throughput network, one could
have sent all 10 of the packets in a row
and waited for a confirmation that all
10 arrived, and this could be done in
38ms.

This example along with Figure
2 illustrates what is often called the
bandwidth-delay product, which is a
measure of the capacity of a path in
bits between a source and a destina-
tion. Figure 2 shows there may be
usable capacity not being used, il-
lustrated here by the spaces between
packets. If the network were fully uti-
lized, then all of the capacity would
be fully occupied by packets in flight.
When the network is fully occupied
with packets, a bandwidth-delay prod-
uct of bits will be in flight between a
source and destination. The challenge
is estimating the available capacity at
any given time, as network dynamics
could make this estimate highly vari-
able. If we overestimate the capacity,
too many packets will be pushed into
the network, resulting in congestion.
If we underestimate the capacity, too
few packets will be in flight and per-
formance will suffer.

Optimizing protocols to the avail-
able bandwidth-delay product has
been a long-standing problem of in-
terest to the networking community,
resulting in many algorithms for flow
control and congestion control. TCP/
IP, for example, uses acknowledgments
from the receiver to pace the sender,
opening and closing a window of unac-
knowledged packets that is a measure
of the bandwidth-delay product. If a
packet loss occurs, TCP/IP assumes it
is congestion and closes the window.
Otherwise, it continues trying to open
the window to discover new bandwidth
as it becomes available.

Figure 3 shows how TCP/IP attempts
to discover the correct window size
for a path through the network. The
line indicates what is available, and
this changes significantly with time,
as competing connections come and
go, and capacities change with route
changes. When new capacity becomes
available, the protocol tries to discover
it by pushing more packets into the
network until losses indicate that too
much capacity is used; in that case
the protocol quickly reduces the win-
dow size to protect the network from
overuse. Over time, the “sawtooth” re-

flected in this figure results as the al-
gorithm attempts to learn the network
capacity.

A major physics challenge for TCP/
IP is that it is learning on a round-trip
timescale and is thus affected by dis-
tance. Some new approaches based on
periodic router estimates of available
capacity are not subject to round-trip
time variation and may be better in
achieving high throughputs with high
bandwidth-delay paths.

Implications for
Distributed Systems
Many modern distributed systems
are built as if all network locations
are roughly equivalent. As we have
seen, even if there is connectivity, de-
lay can affect some applications and
protocols more than others. In a re-
quest/response type of IPC, such as a
remote procedure call, remote copies
of data can greatly delay application
execution, since the procedure call is
blocked waiting on the response. Early
Web applications were slow because
the original HTTP opened a new TCP/
IP connection for each fetched object,
meaning that the new connection’s es-
timate of the bandwidth-delay was al-
most always an underestimate. Newer
HTTPs exhibit persistent learning of
bandwidth-delay estimates and per-
form much better.

The implication for distributed
systems is that one size does not fit
all. For example, use of a centralized
data store will create large numbers
of hosts that cannot possibly perform
well if they are distant from the data
store. In some cases, where replicas of
data or services are viable, data can be
cached and made local to applications.
This, for example, is the logical role of
a Web-caching system. In other cases,
however, such as stock exchanges, the
data is live and latency characteristics
in such circumstances have significant
financial implications, so caching is
not effective for applications such as
computerized trading. While in princi-
ple, distributed systems might be built
that take this latency into account, in
practice, it has proven easier to move
the processing close to the market.

Rules of Thumb to Hold
Your Own with Physics
Here are a few suggestions that may

Many different
packet formats and
data units are in
use, and the genius
of the Internet is
that it has a solution
to make them all
work together.
This interoperability
layer consists
of a packet format
and an address
that is interpreted
by IP routers.

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 65

bandwidth-delay capacities shows how
a wide range of latencies can be accom-
modated. For distributed applications,
this might be accomplished by dynam-
ically relocating elements of a system
(for example, via process migration or
remote evaluation).

None of these suggestions will al-
low you to overcome physics, although
prefetching in the best of circumstanc-
es might provide this illusion. With
careful design, however, responsive
distributed applications can be archi-
tected and implemented to operate
over long distances.

Summary
Propagation delay is an important
physical limit. This measure is often
given short shrift in system design as
application architectures evolve, but
may have more performance impact
on real distributed applications than
bandwidth, the most commonly used
figure of merit for networks. Modern
distributed applications require adher-
ence to some rules of thumb to main-
tain their responsiveness over a wide
range of propagation delays. 	

References
1.	 Light Reading. 40-gig router test results; http://

www.lightreading.com/document.asp?doc_
id=63606&page_number=4&image_number=9.

2.	 Mohr, P.J., and Taylor, B.N. CODATA recommended
values of the fundamental physical constants.
Reviews of Modern Physics 77, 1 (2005), 1–107.

3.	 Partridge, C. Gigabit Networking. Addison-Wesley
Professional, 1994.

4.	 Shaffer, J.H., and Smith, J.M. A new look at bandwidth
latency tradeoffs. University of Pennsylvania, CIS
TR MS-CIS-96-10; http://repository.upenn.edu/cgi/
viewcontent.cgi?article=1192&context=cis_reports.

 Related articles
 on queue.acm.org

You Don’t Know Jack
about Network Performance

Kevin Fall and Steve McCanne
http://queue.acm.org/detail.cfm?id=1066069

Latency and Livelocks

Kode Vicious
http://queue.acm.org/detail.cfm?id=1365494

DNS Complexity
Paul Vixie
http://queue.acm.org/detail.cfm?id=1242499

Jonathan M. Smith is the Olga and Alberico Pompa
Professor of Engineering and Applied Science and a
professor of computer and information science at the
University of Pennsylvania. He served as a program
manager at DARPA from 2004 to 2006 and was
awarded the Office of the Secretary of Defense Medal for
Exceptional Public Service in 2006.

© 2009 ACM 0001-0782/09/0700 $10.00

help software developers adapt to the
laws of physics.

Bandwidth helps latency, but not
propagation delay. If a distributed ap-
plication can move fewer, larger mes-
sages, this can help the application as
the total cost in delay is reduced since
fewer round-trip delays are introduced.
The effects of bandwidth are quickly
lost for large distances and small data
objects. Noise can also be a big issue
for increasingly more common wire-
less links, where shorter packets suf-
fer a lower per-packet risk of bit errors.
The lesson for the application software
designer is to think carefully about a
design’s assumptions about latency.
Assume large latencies, make it work
under those circumstances, and take
advantage of lower latencies when they
are available. For example, use a Web-
embedded caching scheme to ensure
the application is responsive when la-
tencies are long, but no cache when it’s
not necessary.

Spend available resources (such as
throughput and storage capacity) to save
precious ones, such as response time.
This may be the most important of
these rules. An example is the use of
caches, including preemptive caching
of data. In principle, caches can be rep-
licated locally to applications, causing

some cost in storage and throughput
(to maintain the cache) to be incurred.
In practice, this is almost always a
good bet when replicas can be made,
because growth in storage capacities
and network throughputs appears to
be increasing at a steady exponential
rate. Prefilling the cache with data like-
ly to be used means that some capacity
will be wasted (what is fetched but not
needed) but that the effects of some de-
lays will be mitigated when predictions
of what is needed are good.

Think relentlessly about the architec-
ture of the distributed application. One
key observation is that a distributed
system can be distributed based on
function. To return to the design of a
system with a live data store (such as
a stock market), we might place the
program trading of stocks near the
relevant exchanges, while placing the
user interaction functionality, account
management, compliance logging, etc.
remotely in less exchange-local real es-
tate. Part of such a functional decom-
position exercise is identifying where
latency makes a difference and where
the delay must be addressed directly
rather than via caching techniques.

Where possible adapt to varying
latencies. The example of protocols
maximizing throughput by adapting to

Figure 3: TCP/IP attempts to discover the available network capacity.

Time

Bottleneck

Bandwidth

W
in

d
ow

Figure 2: Packets in flight between a sender and a receiver.

Sender Receiver

http://www.lightreading.com/document.asp?doc_id=63606&page_number=4&image_number=9
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1192&context=cis_reports
http://queue.acm.org
http://queue.acm.org/detail.cfm?id=1066069
http://queue.acm.org/detail.cfm?id=1365494
http://queue.acm.org/detail.cfm?id=1242499
http://www.lightreading.com/document.asp?doc_id=63606&page_number=4&image_number=9
http://www.lightreading.com/document.asp?doc_id=63606&page_number=4&image_number=9
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1192&context=cis_reports

66 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles
doi:10.1145/1538788.1538809

Network software adapts to user needs and
load variations and failures to provide reliable
communications in largely unknown networks.

by Erol Gelenbe

are more frequent in larger networks,
increasing the overhead and delay due
to updates throughout the network.
Consequently, information about the
network state, including connectivity,
condition of nodes, traffic conditions,
and quality of service (QoS), propa-
gates more slowly than rate changes
occur. The need to convey time-sen-
sitive information (such as voice and
media) also motivates investigation of
routing techniques based on user re-
quirements and the network’s instan-
taneous state. Thus it is preferable that
nodes discover the network state au-
tonomously, without having to rely on
an overall scheme that updates routing
tables systematically throughout the
network. Information updates can be
initiated by the nodes that need this
information at the time it is needed,
rather than throughout the network
and when changes occur.

We use the term “self-aware net-
work,” or SAN,11 for a system consisting
of nodes that can join and leave the net-
work autonomously and discover paths
when the need to communicate arises.
The nodes in a SAN should sense the
status of other nodes, links, and paths,
including traffic level and congestion,
so as to update their own relevant in-
formation about the paths they need to
use, based on criteria specific to their
own needs. Each connection may then
use paths that optimize the connec-
tion’s own QoS criteria, rather than a
common criterion (such as the shortest
path) for all connections. These needs
might include user QoS requirements,
or performance, reliability, security,
defense against attacks,9,24 and power
utilization.12 A SAN can be a wired, wire-
less, or a peer-to-peer system. A wireless
ad hoc network is a practical example
of a SAN that responds to time-varying
conditions related to the mobility of
nodes and changes in the conditions of
wireless links (such as noise and physi-
cal obstructions). Networks that must
operate autonomously and remotely
(such as sensor networks) also benefit
from self-aware capabilities.

Research on effective SAN architec-

The infor mation needed to route packets in large
networks and in networks in which nodes join and
leave the network frequently or move in and out
of wireless range of each other can change more
frequently than the rate routing information is
updated throughout the network. In such a system
it becomes necessary to allow individual nodes to
proactively discover the presence of other nodes,
links, and paths (as needed and on demand), leading
to the design of self-aware networks. Here, I focus on
experimental and theoretical research concerning the
technical steps leading to these networks.

The Internet Protocol offers an orderly update of
its status based on the shortest-path algorithm,18
Distance Vector,22 and Link State23 techniques so
routing algorithms operate seamlessly, despite
changes in network topology and conditions.
However, as computer networks become extremely
large, the information available concerning the
network state becomes uncertain. Link state changes

Steps Toward
Self-Aware
Networks

drawing

 by

 E

mma

 M

c
nally

july 2009 | vol. 52 | no. 7 | communications of the acm 67

68 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles

tures also motivates work on autonom-
ic communications5 and bio-inspired
techniques for networking. Ideally,
self-awareness is a desirable property
of most networked systems. However,
for SANs to be widely accepted, many
fundamental questions must be an-
swered affirmatively, including:

Assuming that in the worst case a a.	
node knows only its immediate neigh-
bors (though the network is fully con-
nected), can a node forward a packet
successfully to any other node in the
SAN in finite time without routing ta-
bles at each node?

What are practical means for b.	
gathering information about commu-
nication paths without flooding the
network with requests for information

and with replies to these requests? Is it
possible to constantly improve the ac-
curacy of the information being gath-
ered (in the presence of time-varying
network conditions) in a way that fo-
cuses on the information that is actual-
ly needed, rather than trying to gather
information about all possible paths?

Can self-awareness be exploited for c.	
timely decision making without risking
the consequences of constant “changes
of mind”? For instance, distinct nodes
could select the same path in an unco-
ordinated manner due to the fact it is
momentary, then have to renege when
all use it and hence overload it. What are
the risks, costs, and mitigating factors
associated with frequent “oscillations”
regarding such decisions?

Other relevant questions involve
scaling, security, reliability, and mobil-
ity. Our work at Imperial College has
shown that security9,24 and reliability
(discussed later) can also be enhanced
in a SAN. However, the effect of mali-
cious nodes and users and node mobil-
ity (often studied in mobile ad hoc net-
works12) need further work. Scalability
of SANs can be improved through re-
cursive routing21 and hierarchical rout-
ing techniques that have long been
used in the Internet.

Reliable Communication
in Unreliable Networks
Travel time in unknown environments
is of interest in networks and robotics;
algorithms that minimize worst-case
travel times in finite graphs were cov-
ered by Papadimitriou and Yannaka-
kis.25 The first question (a) raised ear-
lier is answered by our result showing
that average travel time is finite under
worst-case conditions in an infinite
graph,8 as long as packet forwarding
can be aborted when the packet is un-
able to reach the destination after a
predetermined length of time, and the
forwarding process is then restarted
at the source, provided that the rout-
ing process is randomized. This proves
that packets can be reliably forwarded
to destinations with probability one,
even when routing information is not
available, provided that a randomized
algorithm is used.

Consider some node U that wishes
to forward a packet to a destination V
to which there exists at least one valid
path. However, we admit the possibil-
ity of errors in the routing information
about how to reach V, allowing for ap-
proximate or erroneous routing. Since
the network is infinite and nodes may
not know the direction a packet needs
to be forwarded, a packet can get lost
and meander indefinitely from node to
node without ever reaching its destina-
tion. Let us make things worse by also
allowing packets to be dropped inadver-
tently. The system uses a time-out, so if
a packet does not reach its destination
before the time-out elapses, the packet
is destroyed and retransmitted by the
source. Since there is at least one path
from U to V, the shortest path length
D (expressed in number of hops) is fi-
nite. The mathematical model for such
a system is a random walk, where the

Figure 1: A testbed.

CPN NODE
202

CPN NODE
208

CPN NODE
214

CPN NODE
203

CPN NODE
209

CPN NODE
215

CPN NODE
204

CPN NODE
210

CPN NODE
216

CPN NODE
205

CPN NODE
211

CPN NODE
217

CPN NODE
206

CPN NODE
212

CPN NODE
218

CPN NODE
201

CPN NODE
219

Source

Destination

Figure 2: Path length compared.

×
× × × × ×

× × × ×

× × ×
×

× × × ×

×
ᐃ ᐃ ᐃ ᐃ ᐃ

ᐃ
ᐃ ᐃ ᐃ ᐃ

ᐃ ᐃ ᐃ ᐃ ᐃ ᐃ
ᐃ ᐃ ᐃ

11

10

9

8

7

6

5

4

3

2

1

0

11

10

9

8

7

6

5

4

3

2

1

0
2 24 4

Rate (Mbps) Rate (Mbps)

3.2Mbps background traffic 6.4Mbps background traffic

P
at

h
 L

en
g

th
 (

h
op

s)

P
at

h
 L

en
g

th
 (

h
op

s)

6 68 8

ᐃ×delay hops hops + delay ᐃ×delay hops hops + delay

contributed articles

july 2009 | vol. 52 | no. 7 | communications of the acm 69

“walker” is a packet being forwarded
from U to V, starting at U at time t = 0.
The packet’s remaining distance Xt at
time t is the length of the shortest path
to the destination, and the travel time
is the first instant T when XT = 0. The
key question—whether there exists a
finite T such that XT = 0—is answered
by Gelenbe8 showing that:

E[T] = 2D
1 +

λ
r

–b + b2 + 2c(λ + r)

Here b is the “drift” parameter, so
if b < 0 then the packet is on the aver-
age making progress toward the desti-
nation, while if b > 0 then it is moving
away from it, and c is the variance per
unit time or fluctuation related to the
packet’s motion toward or away from
the destination, so c > 0. 1/r is the aver-
age value of the time-out, and λ is the
probability per unit time that the pack-
et is lost. The expression above tells us,
as expected, that if there is no time-out,
that is, r = 0, and losses are possible,
that is, λ > 0, then E[T] = + ∞, that is, a
packet will never make it to its destina-
tion. If there are no packet losses, that
is, λ = 0, and there is also no time-out,
that is, r = 0, then E[T] < ∞ if b < 0, while
if b > 0 then, as expected, E[T] = + ∞.
The time-out is also thus a protection
against packets that “lose their way” by
traveling on and on through the infinite
network without ever reaching their
destination. Most interestingly, when c
> 0, that is, there is randomness in the
path, we have E[T] < ∞ as long as there
are losses or a finite time-out. However,
if the path is deterministic, that is, c = 0,
then the travel time is infinite unless b
< 0. Thus we establish that, even in the
worst case of an infinitely large network
in which individual nodes may lose
packets and packets may lose their way
by meandering indefinitely in the net-
work, as long as there is randomness in
the routing (c > 0) and a finite time-out is
available (r > 0), the packet will reach its
destination in finite time, even though
no correct routing information is avail-
able at the nodes of the network. This
model also covers the case of “wrong”
routing information with b > 0, where
packets are probabilistically sent away
from the destination, and with uncer-
tain or “partially correct” routing infor-
mation with b < 0 where (on average)

packets get closer to the destination
at each step. The “ideal” case b = −1 is
when the packet makes the fastest pos-
sible progress to the destination.

Self-Aware Routing
The second question (b) concerns
the routing algorithms. Most routing
techniques attempt to optimize one
or more criteria in addition to the ba-
sic requirement of forwarding traffic
from any source to any destination.
The shortest-path routing algorithm is
based on the premise that if a packet
visits the smallest possible number of
hops toward its destination, then the
network overhead is minimized, as is
most of the other criteria of interest
(such as packet loss and packet delay).
A SAN will attempt to optimize network
performance through exploration,
measurement, and adaptation, rather
than through an a priori choice (such
as the shortest path).

Much of the published work on SAN
routing follows two approaches using
reinforcement learning (RL), first pro-
posed for packet routing by Boyan and
Littman.2 The Cognitive Packet Net-
work (CPN) approach11,13 uses “smart
packets” (SP) for path discovery, to-
gether with RL and neural networks in-
stalled in each network node, adaptive-
ly selecting paths so as to offer “best
effort” QoS to end users. SPs are sent
out by nodes that are actively involved
in forwarding packets to discover and
assess paths that lead to destination
nodes. The “Ant Colony”3,4,19 paradigm
searches for paths from source nodes
to specific destination nodes by emu-
lating the pheromone-based technique
used by biological ants to mark their
paths and communicate with fellow
members of the same colony. Both CPN
and Ant Colony algorithms include ran-
dom search when information about
suitable paths is unavailable, reinforc-
ing the importance attributed to paths
that appear to be best and using alter-
nate paths when previously selected
paths prove less desirable.

In CPN, SPs discover routes for con-
nections to specific destinations. They
are routed using RL based on a QoS
“goal.” We use the term “goal” to in-
dicate that there is no guaranteed QoS
and that CPN provides a best effort
to satisfy the desired QoS. SPs do not
carry payload, finding routes and col-

Interesting is that
the criterion that
combines delay
with number of
hops leads to
the best results,
though they are
comparable to the
results based on
using just the delay
as the QoS goal.

70 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles

its destination after a predetermined
number of hops (typically set as a multi-
ple of the network’s diameter, here 30)
is destroyed. The ACK being returned
as a result of an SP will travel along the
“reverse route” obtained from the SP’s
route, examining it from right (desti-
nation) to left (source), removing any
sequences of nodes that begin and end
in the same node. For instance, the path
< a, b, c, d, a, f, g, h, c, l, m > will result in
the reverse route < m, l, c, b, a >. Note that
the reverse route is not necessarily the
shortest reverse path nor the one result-
ing in the best QoS. Also ACKs deposit
QoS measurement data in mailboxes
(MBs) at the nodes they visit as they
move toward the SP’s source node. On
the other hand, DPs carry payload and
use dynamic source routing. The route
brought back by an ACK is used as a
source route by subsequent DPs of the
same QoS class with the same destina-
tion until a new route is brought back
by another ACK. An MB in each node
stores QoS information.

Each MB is organized as a least-re-
cently-used (LRU) stack. The entries in
an MB are identified with the QoS class
and the destination. Since SPs are rout-
ed at each node using RL, they concen-
trate their search on the most promis-
ing paths for a given destination. Each
node contains one or more random
neural networks (RNNs),15 where each
RNN corresponds to a QoS class and a
destination. In the RNN, the choice of
the output link of a node is represented
by a neuron, and the link correspond-
ing to the “most excited” neuron is
used to forward a given SP. The RL al-
gorithm operates as follows:

A “goal function” G is used to char-
acterize the objective one wishes to op-
timize for a given source to destination
connection; this objective may be hop
count (if one wants to minimize path
length), delay, packet loss rate, energy
utilization, and more, or a combination
of these factors. The reward R, which is
defined as R = 1 ÷ G, and successive val-
ues of R obtained from measurements
carried back by the ACK packets, are
denoted by Rl, l = 1, 2, · · · , and used to
compute a “historical value” of R:

Tl = ∝Tl –1 + (1 – ∝) Rl

where ∝ is some constant (0 < ∝ < 1)
that determines the algorithm’s mem-

lecting measurements based on three
complementary elements:

Each node engaged in forward-˲˲

ing packets to some destination sends
out SPs that search for paths to the
destination(s) and gather measure-
ment data about these paths. This data
is not limited to delay and packet loss
but may also include measurable in-
formation about power utilization by
nodes on those paths, the volume of
traffic on the paths, and the security of
the nodes and links on the paths. SPs
do not carry the actual traffic payload
but are used just for measurement and
exploration;

Each node maintains a neural net-˲˲

work to compute the next node an SP
from this node must go to. The weights
of the neural network are updated us-
ing an RL algorithm that uses data col-
lected by the SPs. In CPN, the role of the

neural network is just to route the SPs,
and the “dumb packets” (DP) that carry
the payload are routed differently; and

Each source node maintains an or-˲˲

dered list of paths to the destination(s)
they are concerned with. This list in-
cludes paths that are discovered by
the SPs and is updated using the QoS
information collected by the SPs. The
list is ordered with the best paths at the
top, so the payload or DB is forwarded
along the complete path (that is, they
are source-routed), and intermediate
nodes do not normally interfere with
them other than providing a store-and-
forward capability.

When (and if) an SP arrives at its
destination, the destination generates
an acknowledgment (ACK) packet, and
the ACK stores the “reverse route,” as
well as the measurement data collected
by the SP. An SP that does not reach

Figure 3: Total packet delay with 6.4Mbps background traffic carried out for SPs, that is,
for a small fraction of the traffic, resulting in reduced router computation overhead.

× ×
×

×

×

×
×

×

×

×

ᐃ ᐃ
ᐃ

ᐃ

ᐃ

ᐃ

ᐃ

ᐃ
ᐃ

ᐃ

102

101

1 2

Rate (Mbps)

6.4Mbps background traffic

D
u

m
b

 P
ac

ke
t

D
el

ay
 (

m
s)

3 4 5 6 7 8

ᐃ×CPN Algorithm QoS Goal hops hops + delay

Figure 4: Total average delay for SPs (top) and DPs (bottom) and average delay
for all packets (center) as a function of the percentage of SPs.

22

20

18

16

14

12

10

8

6

4

2
10 20 30 40 50 60 70 80 90 1000

Percentage of SP

Round trip delay

D
el

ay
 (

m
s)

DP avg SP

contributed articles

july 2009 | vol. 52 | no. 7 | communications of the acm 71

ory, and Rl is the most recently mea-
sured value of the reward. Suppose we
have made the lth decision that choos-
es the output link (neuron) j, where
the lth reward calculated for the QoS
information received from the network
is Rl. We first determine whether Rl is
larger than or equal to the threshold
Tl−1. If it is, then to reward this success,
we increase (significantly) the excit-
atory weights going into neuron j and
make a small increase in the inhibi-
tory weights leading to other neurons.
If the Rl is less than Tl−1, then we mod-
erately increase the excitatory weights
leading to all neurons other than j to
open up different decision options and
increase significantly the inhibitory
weight leading to neuron j in order to
punish it for not having provided a use-
ful prediction.

Finally, the excitation probabilities
of each neuron in the RNN are comput-
ed, and the SP is forwarded to the out-
put link corresponding to the neuron
that is the most “excited.” The arrival
of an ACK to a node triggers the up-
date of the weights of the RNN, while
the arrival of an SP to the node triggers
the execution of the RNN algorithm to
make the routing decision. Thus sev-
eral weight updates can occur between
two successive updates of a routing de-
cision. Similarly, if no ACKs arrive at a
given node between two successive ar-
rivals of an SP, the successive SPs will
use the same routing decision.

Numerous experiments have been
run with CPN with both simulation
and actual network testbeds;11,13,14
here, we report on three with real net-
works with 17, 25, and 46 nodes and
different topologies. All measure-
ments we report used testbeds built
with off-the-shelf components run-
ning CPN. The routers were Pentium
IV-class machines with four-port Eth-
ernet interfaces running Linux 2.6.15,
where CPN was implemented as a
loadable kernel module. All links were
full-duplex at 10MB/sec or 100MB/sec,
depending on the experiment.

We start with measurements made
in a wired testbed consisting of 17
nodes (see Figure 1) chosen because
it offers a large number of alternate
paths within a relatively small network;
adjacent nodes are connected with
10Mbps Ethernet links. All tests use a
flow of UDP packets entering the CPN

network with constant bit rate (CBR)
traffic and packet size of 1,024KB. For
each experiment, 10,000 packets were
sent out from source to the destination,
and each measurement point provided
averages or statistics for the 10,000
packets when background traffic is in-

troduced to each link. The average hop
count, forward delay, and packets loss
rate under different background traf-
fic were reported. We used Algorithm-
H, Algorithm-D, and Algorithm-HD to
denote the RNN routing algorithms
using hop, delay, and the combination

Figure 6: Use of routes with high traffic rate; delay is the QoS goal.

15

10

5

0

14

12

10

8

6

4

2

0

200

21

400

3 4

600

5 6

800

7

1000

8 9

1200

10 11 12

1400

13

1600

14

1800 2000

15

Packet Number

Route Number

R
ou

te
 L

en
g

th
P

er
ce

n
ta

g
e

U
se

d
 (

%
)

Figure 5: Use of routes with low traffic rate; delay is the QoS goal.

15

10

5

0

15

10

5

0

200

50

400

10

600

15

800

20

1000

25

1200

30

1400

35

1600

40

1800 2000

45

Packet Number

Route Number

R
ou

te
 L

en
g

th
P

er
ce

n
ta

g
e

U
se

d
 (

%
)

72 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles

of hop count and delay as the QoS goal,
respectively. The length of the shortest
path between the source (201) to the
destination (219) was seven hops; there
were five different shortest paths.

Figure 2 shows that CPN indeed pro-
vides the “self-aware” capability being
sought since its measured behavior
corresponds to the stated QoS goal. The
curves give the average number of hops
of the routes CPN selects when differ-
ent QoS goals are used with different
levels of background traffic (distinct
figures), while end-to-end traffic is var-
ied along the x-axis. When hop count is

used as the QoS goal (cross or “hop” in
the figure), the average number of hops
under different background traffic
rates are close to the minimum value
of seven hops. When delay is used as
the QoS goal (circle or “delay” in the fig-
ure), the average path length is longer,
so CPN adapts to the guidelines it has
received and chooses shortest-delay
paths rather than shorter hop paths.
Note that when the source-to-desti-
nation traffic is high (right-hand side
of the figure) there is little difference
in path lengths for the different QoS
goals, due to the fact that performance

is equally poor for all possible criteria
in heavy traffic.

The average packet-forwarding de-
lay for each of the goal functions (see
Figure 3) is also measured as a function
of the amount of traffic from source to
destination for different levels of back-
ground traffic; the results confirm those
in Figure 2. The blue curve in Figure 3
corresponds to using the number of
hops as the QoS goal to be minimized;
as expected, it leads to the longest de-
lay. Interesting is that the criterion that
combines delay with number of hops
leads to the best results, though they
are comparable to the results based
on using just the delay as the QoS goal.
Confirming the results in Figure 2,
these results show that the CPN algo-
rithm is indeed self-aware in that it is
able to translate its overall objectives
into effective adaptive decisions taken
in real time.

Measuring total delay, including
queueing and forwarding delay, ex-
perienced by SPs and DPs, one sees
that (see Figure 4) when the SPs are
increased (expressed as a percentage
of the DPs being forwarded), the over-
all QoS improves, but most of the im-
provement is achieved at a relatively
low 20% of SPs with respect to DPs. As
one would hope, the DPs experience
better QoS; the SPs “pay the price” of
the search activity by experiencing less-
favorable QoS. Since SPs and ACKs are
each approximately 10% of the length
of a full Ethernet packet, for 20% of
SPs over DPs, the total additional traf-
fic generated by CPN over and above
the payload traffic is 0.04%. Note that
route computations in CPN are carried
out only for SPs, that is, for a small frac-
tion of the traffic, resulting in reduced
router-computation overhead.

To measure whether CPN spreads
traffic among many paths as the traffic
rate increases from 100 packets/sec in
Figure 5 to 1,000 packets/sec in Figure
6, there is a more even distribution of
traffic over a smaller number of paths
having better QoS.

Adverse effect of slower decisions.
One obvious trade-off in any decision
process is whether it is better to “opti-
mize more and decide later” or provide
decisions as soon as they can be formu-
lated and hope for the best. Thus the
experiments described earlier refer to
a situation where decisions were taken

Figure 7: CPN 46-node testbed subject to failures.

16

32

33

41

24

6

44

29 5

3530

9
11

19

20

13

12
15

14
43

36
7 40 42

8

2

38 1

39

39 Destination 2Source 1

Source 2

Source 3

Destination 1

3717

45

34

46

31

22

27

3
26

25

28

2318

21

10

Figure 8: Adaptation reduces loss when failures occur.

▲

▲

▲

▲

▲

▲
▲

▲

▲ ▲ ▲

60

50

40

30

20

10

0
100 20 30 5040 60 70 80 90 100 110 120

Time (s)

Average Packet Loss for User 1
Scanning rate = 0.04

P
ac

ke
t

L
os

s
(%

)

Failure-Aware CPN

▲ nonAdaptive CPN
Rollback Recovery with
Failure-Aware CPN

Current CPN

▲

contributed articles

july 2009 | vol. 52 | no. 7 | communications of the acm 73

in real time based on either the current
state of the RNN in each node or on the
most recent RL updates that have been
made. A more sophisticated way of se-
lecting paths could use the underlying
RNN and RL but also make a further op-
timization decision based on the fact
that at each source node, CPN main-
tains a set of paths with the most recent
measured QoS metric for each path, as
well as for each of the destinations with
which the source communicates. Now
suppose that two distinct paths SxIyD
and SuIvD connect source S to destina-
tion D through the same intermediate
node I, and these paths have been dis-
covered by SPs and provide QoS met-
rics G(SxIyD) and G(SuIvD). Obviously
SuIyD and SxIvD are also valid paths.
If they were not previously discovered
by SPs, one can still infer their esti-
mated (not measured) QoS assuming
the QoS data is additive. We denote
the inferred QoS values by g(SuIyD) and
g(SxIvD). Now suppose that one of the
two inferred QoS values, say, g(SuIyD)
is the “best” one (such as smallest de-
lay, smallest loss, or best value of some
other metric of interest). One can then
use the hitherto untested path SuIyD to
forward DPs, rather than the best of the
two paths actually tested. Note that this
operation of selecting new paths by
combining prefixes and suffixes of pre-
viously discovered paths resembles the
“crossover operation” in a genetic algo-
rithm.10 Experiments run with 1,024B
DPs and varying the DP rate of 100 to
800 packets/sec showed that this ad-
ditional optimization provided a small
improvement in both packet loss rate
and average packet delay.

However, when a significant amount
of background traffic was added to each
link, even with relatively low DP rate ex-
ceeding a certain value (300 packets/
sec), the original CPN algorithm per-
formed significantly better, showing
that the slower optimization process us-
ing older data introduced on top of CPN
by the genetic algorithm-like approach
is unable to respond quickly enough to
changing network conditions.

Self-aware adaptation to failures.
During experiments conducted in
a 46-node testbed (see Figure 7), we
observed that CPN can also protect a
network against worm-like failures. In
these experiments, failures begin at a
given node that then randomly causes

other nodes to fail. A node that fails
is unable to forward traffic, causing
neighbors to fail. Node failure is fol-
lowed by recovery, representing clean-
ing and patching, at a constant rate of
1 node/sec. Figures 8 and 9 report the
measured average packet loss and de-
lay for 10 experiments where User 1
sent 7MB/sec CBR traffic from Node
6 to Node 24. When CPN is operating,
the QoS is significantly better than
when CPN is stopped after paths are
established (top curves). Moreover, as
further adaptive measures are taken
(other curves),27 performance and QoS
improve further.

Ant colony routing. Ant colony rout-
ing algorithms3,4,19 differ from CPN in
the way they use RL, as well as in other
respects. Inspired by the way ants use
pheromones to mark their paths and
communicate about sources of food,
packets represent ants, nodes and
links represent locations, and packets
move toward their destinations based
on paths with strong markings. When
a packet reaches its destination, a cor-
responding “marking” packet heads
back to the source by following the
path in reverse or quasi-reverse order
(or following the “strongly marked
trail” and strengthening the marking
at each link and node it visits). The
markings degrade over time (“forget-
fulness”) if not reinforced by the pas-
sage of other packets. The algorithm is
initiated by a random search until the
destination node is found and the dis-
covered path(s) is reinforced by the re-

turning packets. The returning packet
from the destination is like the ACK
packet in CPN, but ant colony routing
algorithms use payload packets for
both search and data delivery, while
CPN separates the search role via SPs
from the payload role via DPs; the re-
sulting QoS is better when DPs special-
ize in payload conveyance and SPs are
restricted to search. Thus CPN uses
more packets, since SPs are constant-
ly being sent forward to accomplish
the search function, representing a
constant fraction (such as 10%) of to-
tal traffic. Moreover, ant colony algo-
rithms do not use a neural network (as
in CPN) to store RL information inside
a given node. CPN routers carry out
route computation only for SPs and
represent a small fraction of total traf-
fic, but ACKs and DPs are source-rout-
ed, while ant colony algorithms typi-
cally require route computation for all
packets. Clearly, ant colony algorithms
are better adapted to networks that ex-
perience frequent disruption, since all
packets are in a sense autonomous.
In CPN, if a DP’s path is disrupted,
the packet must be retransmitted at
the source, with information brought
back by a subsequent SP that finds an-
other path. Thus CPN will be better at
forwarding packets but slower in re-
sponding to changes in topology.

Route Oscillations
Since the days of the ARPANET, it has
been observed that route oscillations18
can cause performance to suffer under

Figure 9: Adaptation reduces delay in the presence of failures.

▲ ▲
▲

▲

▲
▲

▲

▲
▲ ▲ ▲

100

90

80

70

60

50

40

30

20

10

0
100 20 30 5040 60 70 80 90 100 110 120

Time (s)

Average End to End Delay for User 1
Scanning rate = 0.04

P
ac

ke
t

D
el

ay
 [

m
s]

Failure-Aware CPN

▲ nonAdaptive CPN
Rollback Recovery with
Failure-Aware CPN

Current CPN

▲

74 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles

medium to high load conditions. Oscil-
lations occur if load-sensitive metrics
are used to select routes, becoming
more frequent at higher loads28 due to
the transfer of flows to lightly loaded
paths that then become overloaded;
the result is that flows are transferred
to other paths that in turn get over-
loaded. The overlap of different rout-
ers’ measurement windows also lead to
oscillations when flows interfere and

prevent the network from stabilizing.
Frequent route switching can reduce
performance by slowing the network’s
convergence to best paths,6 increas-
ing node overhead. Route oscillations
also affect TCP26 due to TCP response
to asymmetric paths (when a data
packet’s path is different from that of
its ACKs) and to out-of-order packet
delivery when packets take different
paths and reach their destinations in a
different order. The output node must
then reassemble packets into the right
order,1 causing additional delay and
loss of packets due to the finite capac-
ity of the buffers used for reassembly;
QoS is thus degraded for real-time ap-
plications (such as voice and media).
Routing oscillations are also studied in
overlay networks.17

One must therefore examine wheth-
er (i) frequent oscillations can occur in
a SAN, (ii) whether they can be easily
mitigated or reduced, and (iii) whether
they are necessarily detrimental to per-
formance. Concerning (iii), each time
a path is selected, CPN forwards the
traffic along that path until the path is
changed, and as long as the path is be-
ing used, useful work is done and pack-
ets are delivered to the destination.
When a path switch occurs, packets
already engaged in the path continue
flowing to the destination along the
previous path, since each DP stores the
path it is following, and the change in
path decided at the source affects only
subsequent packets, not those already
engaged in the path. Thus CPN does
limit the effect of path switching in a
SAN.

Concerning (ii), various ways are
available to mitigate or reduce oscil-
lations. For instance, the source node
can allow switching only if the QoS gain
exceeds a significant threshold. Anoth-
er approach is to require that each time
a path is used, that usage must exceed
a certain number of packets before
switching can be considered again.

Here, we report on a testbed with
full-duplex links at 10Mb/sec running
CPN (see Figure 10) that emulates the
topology of the Swiss Education and
Research Network (as of 2007)16; it in-
cluded 24 constant bit-rate flows at
1.66Mb/sec generated to create DP
traffic of just over 40Mb/sec. Com-
bined with SP and DP traffic, the result
was a slightly overloaded system. SP

traffic was set at 10% of DPs, and each
source that sent traffic to the same
destination had four inputs for a total
of 40Mb/s of available incoming band-
width. The QoS goal used was the mini-
mization of delay. All the experimental
curves we report include 95% bars for
the measurement values.

Figure 11 shows the effect of intro-
ducing a simple rule that limits the fre-
quency of path switching; each time a
source selects a new path identified as
causing the smallest delay, the decision
is accepted only with probability P (the

Figure 12: Average packet delay
vs. switching probability.

0
.0

0
1

0
.0

1
0

.0
5

0
.1

0
.2

0
.3

0
.4 0
.5

0
.6 0
.7

0
.8

0
.9 1.
00

Switching Probability

1500
1400
1300
1200
1100
1000

900
800
700
600
500

B
u

ff
er

 D
ro

p
 F

re
q

u
en

cy
Figure 13: Average packet delay
vs. threshold.

6.
25

11
.1

12
.5

14
.3

16
.7 20 25

33
.3 50 10
00

Reward Threshold (%)

850

800

750

700

650

600

550

500

450

D
el

ay
 (

m
s)

Figure 14: Rate of path oscillations
vs. threshold.

6.
25

11
.1

12
.5

14
.3

16
.7 20 25

33
.3 50 10
00

Reward Threshold (%)

10

1

0.1

0.01

D
el

ay
 (

m
s)

Figure 11: Oscillation frequency (top)
and packet-drop rate (bottom)
vs. switching probability.

0
.0

0
1

0
.0

0
1

0
.0

1
0

.0
1

0
.0

5
0

.0
5

0
.1

0
.1

0
.2

0
.2

0
.3

0
.3

0
.4

0
.4

0
.5

0
.5

0
.6

0
.6

0
.7

0
.7

0
.8

0
.8

0
.9

0
.9

1.
0

1.
0

0
0

Switching Probability

Switching Probability

1

0.1

0.01

0.001

1

0.1

0.01

0.001

O
sc

il
la

ti
on

 F
re

q
u

en
cy

 (
p

er
 s

ec
on

d
)

B
u

ff
er

 D
ro

p
 F

re
q

u
en

cy

Figure 10: CPN testbed emulating the
Swiss Education and Research Network.
The square node is the sink; the 24 round
nodes are sources.

contributed articles

july 2009 | vol. 52 | no. 7 | communications of the acm 75

switching probability). Thus if P = 1 all
recommended path switches occur;
when P = 0.001 only one of every 1,000
recommended path switches actually
takes place. Thus the top curve shows
how the switching probability affects
path oscillations, starting with a given
path and returning to it again; as the
switching probability increases so does
the rate at which paths oscillate. The ef-
fect of P on the packet drop rate at the
output resequencing buffer is shown
in the bottom chart in the figure.

Figure 12 indicates that improve-
ment in QoS (delay in this case) can be
achieved with a small switching prob-
ability (P = 0.01 or a little higher). Path
switching improves average delay (and
is why CPN attempts to switch paths),
though it comes at the cost of packet
loss. However, one can mitigate this
loss by probabilistically limiting the
switching while retaining the benefit of
improved QoS by lowering packet delay.

The SAN programmer can also limit
oscillations by setting a threshold that
allows a path switch only when the pro-
jected QoS improvement exceeds the
threshold. A small threshold allows
more frequent switches and hence po-
tentially more oscillations, but a large
threshold may hurt QoS. Figure 13
shows that if the threshold is small, the
observed packet delay is large, and as
the threshold increases delay improves,
but packet delay increases again for
larger thresholds. For small threshold
values, longer packet delays indicate
that switching occurs based on “noise”
rather than on real gain. Increasing
the threshold in Figure 14 would re-
duce the oscillations, though the effect
would level out quickly. The threshold
thus limits the negative effect of switch-
ing but preserves the advantages of self-
awareness and adaptation.

Conclusion
The approach to developing self-aware
networks presented here gives end us-
ers the means to explore the state of
the network so as to find the best ways
to meet their communication needs.
Focusing on the primary function of
packet routing, I have tried to answer
a number of questions concerning
the feasibility of such networks and
whether reliable communications
is possible in largely unknown net-
works. I have also addressed whether

9.	 Gelenbe, E. and Loukas, G. A self-aware approach
to denial-of-service defence. Computer Networks:
The International Journal of Computer and
Telecommunications Networking 51, 5 (Apr. 2007),
1299–1314.

10.	 Gelenbe, E., Liu, P., and Lainé, J. Genetic algorithms for
route discovery. IEEE Transactions on Systems, Man,
and Cybernetics B 36, 6 (Dec. 2006), 1247–1254.

11.	 Gelenbe, E., Lent, R., and Nunez, A. Self-aware
networks and QoS. Proceedings of the IEEE 92, 9
(Sept. 2004), 1478–1489.

12.	 Gelenbe, E. and Lent, R. Power-aware ad hoc cognitive
packet networks. Ad Hoc Networks 2, 3 (July 2004),
205–216.

13.	 Gelenbe, E., Gellman, M., Lent, R., Liu, P., and Su,
P. Autonomous smart routing for network QoS. In
Proceedings of the First International Conference on
Autonomous Computing (May 17–19). IEEE Computer
Society Press, New York, 2004, 232-239.

14.	 Gelenbe, E., Lent, R., and Xu, Z. Measurement
and performance of a cognitive packet network.
International Journal of Computer and
Telecommunications Networking 37 (2001), 691–791.

15.	 Gelenbe, E. Learning in the recurrent random neural
network. Neural Computation 5, 1 (1993), 154–164.

16.	 Gellman, M. Oscillations in self-aware networks.
Proceedings of the Royal Society A 464, 2096 (2008),
2169–2186.

17.	K eralapura, R., Chuah, C.N., Taft, N., and Iannaccone,
G. Can coexisting overlays inadvertently step on each
other? In Proceedings of the 13th IEEE International
Conference on Network Protocols (Boston, Nov. 6–9).
IEEE Computer Society, New York, 2005, 201–214.

18.	K hanna, A. and Zinky, J. The revised Arpanet routing
metric. SIGCOMM Review 19, 4 (1989), 45–56.

19.	K oenig, S., Szymanski, B.K., and Liu, Y. Efficient
and inefficient ant coverage methods. Annals of
Mathematics and Artificial Intelligence 31, 1–4 (2001),
41–76.

20.	 Labovitz, C., Malan, G.R., and Jahanian, F. Internet
routing instability. IEEE/ACM Transactions on
Networks 6, 5 (1998), 515–528.

21.	 Liu, P. and Gelenbe, E. Recursive routing in the
cognitive packet network. In Proceedings of the Third
International Conference on Testbeds and Research
Infrastructures for the Development of Networks and
Communities (May 21–23, 2007, Trento, Italy), 21–23.

22.	 Malkin, G. RIP Version 2. RFC 2453, 1998; http://www.
faqs.org/rfcs/rfc2453.html.

23.	 Moy, J. OSPF Version 2. RFC 2328, 1998; http://www.
ietf.org/rfc/rfc2328.txt.

24.	 Öke, G.G., Loukas, G., and Gelenbe, E. Detecting denial-
of-service attacks with Bayesian classifiers and the
random neural network. In Proceedings of the IEEE
International Conference on Fuzzy Systems (London,
2007), 964–1969.

25.	 Papadimitriou, C.H. and Yannakakis, M. Shortest paths
without a map. Theoretical Computer Science 84, 1
(1991), 127–150.

26.	 Ranadive, U. and Medhi, D. Some observations on the
effect of route fluctuation and network link failure
on TCP. In Proceedings of the 10th International
Conference on Computer Communications and
Networks (Oct. 15–17, 2001), 460–467.

27.	 Sakellari, G. and Gelenbe, E. Adaptive resilience of the
cognitive packet network in the presence of network
worms. In Proceedings of the NATO Symposium
on C3I for Crisis, Emergency and Consequence
Management (May 11–12, 2009, Bucharest, Romania).

28.	 Shaikh, A., Varma, A., Kalampoukas, L., and
Dube, R. Routing stability in congested networks:
Experimentation and analysis. In Proceedings of
SIGCOMM 2000, (Stockholm, Aug. 29–Sept. 2). ACM
Press, New York, 2000, 163–174.

29.	 Thorup, M. and Zwick, U. Compact routing schemes.
In Proceedings of the 13th Annual ACM Symposium
on Parallel Algorithms and Architectures (Heraklion,
Crete Island, Greece, July 4–6). ACM Press, New
York, 2001, 1–10.

Erol Gelenbe (e.gelenbe@imperial.ac.uk) is Head of
the Intelligent Systems and Networks Research Group
and Professor in the Dennis Gabor Chair, Electrical and
Electronic Engineering Department, Imperial College
London.

© 2009 ACM 0001-0782/09/0700 $10.00

there is a risk of unstable behavior in
such systems due to constant “chang-
es of mind” and oscillations as new in-
formation becomes available to users
and whether a user’s ability to adapt
to changing circumstances in the net-
work reduces the consequences of
network failure. The experiments re-
ported relate to small (up to 46-node)
networks; more results are available at
http://san.ee.ic.ac.uk.

The Internet consists of hierarchi-
cally organized autonomous systems of
relatively small size, and one can imag-
ine that routing inside and among them
would benefit from the techniques dis-
cussed here. Future research is likely to
investigate how these ideas can be inte-
grated into existing networks, how they
scale to large networks, how they might
be able to withstand the malicious be-
havior of users and network nodes, and
how they can support mobile users.

Acknowledgments
Research sponsored by the U.K. En-
gineering and Physical Sciences Re-
search Council Grant GR/S52360/01
on self-aware networks and quality of
service; and by E.U. FP6 Projects on
self-aware networks, performance,
and adaptivity and componentware
for autonomic situation-aware com-
munications and dynamically adapt-
able services.	

References
1.	 Bennett, J.C.R., Partridge, C., and Shectman, N.

Packet reordering is not pathological network
behavior. IEEE/ACM Transactions on Networks 7, 6
(1999), 789–798.

2.	 Boyan, J.A. and Littman, M.L. Packet routing in
dynamically changing networks: A reinforcement
learning approach. In Proceedings of the Advances in
Neural Information Processing Systems Conference
(Denver). Morgan Kaufmann, San Francisco, 1994.

3.	 Chen, G., Branch, J., and Szymanski, B.K. A self-
selection technique for flooding and routing in
wireless ad-hoc networks. Journal of Network and
Systems Management 14, 3 (2006), 359–380.

4.	 Di Caro, G. and Dorigo, M. Antnet: Distributed
stigmergetic control for communication networks.
Journal of AI Research 9 (1998), 317–365.

5.	 Dobson, S. Denazis, S., Fernández, A., Gaïti, D.,
Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt,
N., and Zambonelli, F. A survey of autonomic
communications. ACM Transactions on Autonomous
and Adaptive Systems 1, 2 (2006), 223–259.

6.	 Gao, R., Dovrolis, C. and Zegura, E. Avoiding
oscillations due to intelligent route control systems.
In Proceedings of the 25th IEEE International
Conference on Computer Communications
(Barcelona, Catalunya, Apr. 23–29). IEEE Press, New
York, 2006.

7.	 Gelenbe, E., Sakellari, G., and D’Arienzo, M. Admission
of QoS-aware users in a smart network. ACM
Transactions on Autonomous and Adaptive Systems 3,
1 (Mar. 2008), 1–28.

8.	 Gelenbe, E. A diffusion model for packet travel time
in a random multihop medium. ACM Transactions on
Sensor Networks 3, 2 (June 2007).

http://san.ee.ic.ac.uk
http://www.faqs.org/rfcs/rfc2453.html
http://www.ietf.org/rfc/rfc2328.txt
mailto:e.gelenbe@imperial.ac.uk
http://www.faqs.org/rfcs/rfc2453.html
http://www.ietf.org/rfc/rfc2328.txt

76 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles
doi:10.1145/1538788.1538808

It takes a city of developers to build
a big system that is never done.

by Rick Kazman and Hong-Mei Chen

cooperative efforts—peer production
of information, knowledge, and cul-
ture…We are beginning to see the ex-
pansion of this model not only to our
core software platforms, but beyond
them into every domain of informa-
tion and cultural production”4 Benkler
calls this phenomenon “commons-
based peer production,” attributing
its rise to the rise of “the network.”
The networked information environ-
ment has dramatically transformed
the marketplace, creating new modes
and opportunities for how we produce
and consume information. Crowd-
sourcing—the popular term for com-
mons-based peer production—is used
to create value in information technol-
ogy, the arts, basic research, and retail
business.13

A “commons” is the opposite of
property, referring rather to a set of
shared, accessible community resourc-
es. Peer production harnesses the cre-
ative energies of many self-selecting
participants with little or no financial
compensation or formal managerial
structure. The importance of this form
of production is undeniable; as of May
2009 five of the 10 most popular Web
sites—MySpace.com, YouTube.com,
Facebook.com, Wikipedia.org, and
Blogger.com—were produced this way,
according to Alexa.com1; with the ex-
ception of Wikipedia, all are for-profit
enterprises.

The second trend, coinciding with
and compounding the first, is that or-
ganizations are moving toward a ser-
vice orientation as part of the growing
worldwide service economy. Service
industries in 2007 accounted for 55%
of economic activity in the U.S. (http://
www.census.gov/econ/www/servmenu.
html). Meanwhile, businesses are shift-
ing from a “goods-dominant” view,
in which tangible output and discrete
transactions are central, to a service-
dominant view, in which intangibility,
exchange processes, and relationships
are central.27 In the old goods-dominant
logic, “services” (usually plural) were
viewed as either a type of (intangible)
good or an add-on that enhanced the

Two trends in business and society are reshaping
the world: the rise of the socio-technical network
and an emerging service orientation. Benkler4
offered a provocative argument about the networked
information economy: that we are in the midst
of a radical transformation in how we create our
information environment. This change is at the heart
of the open-source software movement, but OSS is
only one example of how society is restructuring
around new models of production and consumption
of services. The aspect of the restructuring that is
most startling “is the rise of effective, large-scale

The
Metropolis
Model
A New Logic for
Development of
Crowdsourced
Systems

http://MySpace.com
http://YouTube.com
http://Facebook.com
http://Wikipedia.org
http://Blogger.com
http://Alexa.com
http://www.census.gov/econ/www/servmenu.html
http://www.census.gov/econ/www/servmenu.html
http://www.census.gov/econ/www/servmenu.html

juLY 2009 | voL. 52 | No. 7 | CoMMuniCATions of The ACM 77

value of a good. In contrast, “service”
is now considered “a process of doing
something for another party.”27 This
service-dominant logic requires a shift
on the part of businesses to viewing
customers not as passive recipients of
goods but as co-creators of value. This
implies more than just a move from
goods to services but a reframing of the
purpose of the enterprise and its role in
value creation. The service-dominant
perspective has profoundly changed
how organizations think about their re-
lationships with their customers—“the
crowds”—and how they leverage them
and their resources. This shift in per-
spective greatly challenges traditional
methods of system development.

Traditionally, system analysts are
trained to focus on the “value propo-
sitions” of fi rms, not on “value co-cre-
ation.” At best, “co-production” with

customers has been used in such de-
sign methodologies as Joint Product
Design, Joint Application Design, Rap-
id Application Development, and, more
recently, agile methods in which cus-
tomer requirements are solicited and
modeled through an iterative process
that incorporates immediate customer
feedback. But this still refl ects a goods-
dominant logic. Product-focused and
goods-focused design treats custom-
ers as isolated entities—recipients of
value—neglecting the customers’ own
resources and networks for dynamic
collaborative value co-creation. Service-
dominant design, on the other hand,
considers resource integration from
various entities, including customers
and fi rms and their suppliers and net-
works, for value co-creation.6 Examples
of co-creation have emerged, from OSS
to Wikipedia, Facebook, Amazon’s Me-

chanical Turk, and many other commu-
nity-based service systems (CBSSs).15

Each is a complex software-intensive or
software-enabled system co-created by
its participants—the crowds.4

Our existing models of software
and system development are of little
help in understanding and manag-
ing this new form of value co-creation.
The older models all contain a “closed
world” assumption—that projects
have dedicated fi nite resources, man-
agement “manages” these resources,
requirements are known, and systems
are developed, tested, and released in
planned increments. However, these
assumptions all break down in a crowd-
sourced world.

Here, we offer a set of principles
on which a new system-development
model—more appropriate for the ser-
vice-dominant, crowdsourced world—

contributed articles

(C
u

stom
ers)

(P
rosu

m
ers)

Kernel

Periphery

Masses

(e
n

d
 u

sers)

(D
evelop

ers)

social social social social social social social social social social social social social
networking

open open open open open open open open open open open open open open open open open
sourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesource

Metropolis Model
roles and relationships

78 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles

Characteristics
The Metropolis Model is built on the
characteristics of crowdsourced sys-
tems, eight of which have been identi-
fied (in the ULS report20 and in our own
surveys of CBSS and OSS projects) that
challenge existing models of system
development. They provide the Mod-
el’s intellectual motivation. Software
and system engineering have long em-
braced a centralized production model
in which requirements are collected
and negotiated, projects managed,
architectures created, and correct-
ness determined through a controlled,
planned process. It is hierarchical and
rule-oriented, not commons-based or
egalitarian. Even agile methods are
centralized, stressing the importance
of face-to-face communication and the
advantages of the “bullpen,” or open–
office environment where workers in-
teract freely.

However, future crowdsourced sys-
tems will be community-driven and
decentralized, with little overall con-
trol, as is the case with CBSS and OSS.16
Consequently, we can no longer design
and implement such systems through
older models. Here are the eight char-
acteristics of crowdsourced systems:

Open teams. Assumptions of a closed
team of dedicated developers should
be abandoned. “Based on our usual
assumptions about volunteer projects
and decentralized production process-
es that have no managers, [Linux] was
a model that could not succeed. But it
did.”4 Similarly, the Apache project was
not “organized around a single person
or primary contributor”9 but resulted
from a number of Web masters work-
ing together, primarily via email. Jim-
my Wales, founder of Wikipedia, an
example of a CBSS, exercises virtually
no control over the community or the
ranks of its volunteers.

Mashability. Enormous effort goes
into making systems that are difficult
to tear apart for historical, intellectual-
property, and security reasons. How-
ever, “mashability” is a core charac-
teristic of crowdsourced systems. Web
browsers make it simple to view any
page’s source, and it is accepted prac-
tice to use parts of existing Web sites
in new creations. For example, Google
Maps, prior to making its APIs public,
was used in mashups. In Wikipedia, it is
accepted and encouraged that articles

should be based. We call them the
Metropolis Model; metropolis is the
Greek word for “city.” The analogy is
deliberate; this new form of producing
systems is more like constructing a city
than a single building, a perspective
called ultra-large-scale (ULS).20 ULS
systems are like cities in that they are
not conceived or built by a single orga-
nization, have no centralized control,
and are continuously evolving.

The Metropolis Model is our at-
tempt to describe and prescribe the
principles surrounding how such sys-
tems might be created and sustained.
It offers a unified logic for reasoning
about and managing system develop-
ment for the two major forms of crowd-
sourced systems: OSS development
and community-based service systems
(see the figure here). A CBSS, which
involves creation of content but typi-
cally not of software, includes social
networking and commercial service
systems. The crowds utilized by the
two types of systems are also different,
as we discuss later. These systems are
not new, though their rapid growth
and importance is unprecedented. For
example, OSS has become an increas-
ingly important sector of the software
market; according to a 2008 European
Union study of Free/Libre Open Source
Software, or FLOSS, the “notional value
of Europe’s investment in FLOSS soft-
ware [represented] 20.5% of total soft-
ware investment” in 2006.11 This model
does not apply to all forms of software
creation or system development; some
systems are too business-critical, secu-
rity-critical, or safety-critical to be en-
trusted to the crowds so will never be
produced by a group of peers. But the
Metropolis Model clearly applies to a
large and fast-growing set of software-
centric systems.

Software architects and project man-
agers find it worthwhile to embrace the
principles of the Metropolis Model for
developing this broad class of systems,
taking advantage of the collective wis-
dom, creativity, and productivity of the
crowds. The Model’s principles inevita-
bly lead businesses and project manag-
ers to reason differently about virtually
every aspect of system development,
including project management, re-
quirements elicitation, architecture,
implementation, testing, delivery,
maintenance, and operations.

One cannot
conceive of a
crowdsourced
system’s
functionality in
terms of “releases”
any more than
a city has a release.

contributed articles

july 2009 | vol. 52 | no. 7 | communications of the acm 79

do not stand alone, pointing instead
to many other articles. Similarly, OSS
projects make it easier to create soft-
ware by composition, as they are “non-
rival” (in the economic sense3,28)—that
is, the consumption of software by one
person or project does not make it less
available for consumption by another,
unlike, say, apples or gasoline, which,
once consumed, require additional re-
sources so an equivalent resource may
be consumed by another consumer. For
example, Linux is a mashup, beginning
as an operating system kernel, and owes
much of its implementation to a com-
position with another OSS project—the
GNU operating system. This practice of
composing OSS is so widespread that
the Apache project has created a tool—
Maven—for understanding and manag-
ing the many transitive dependencies
that arise in such projects.17

Conflicting, unknowable require-
ments. While iterative life cycles accept
that requirements change, they still
operate under the assumption that, in
any given iteration, a team might still
want to collect and analyze these re-
quirements. However, requirements
in a crowdsourced system emerge from
its participants operating indepen-
dently. For example, the requirements
for the redesigned server architecture
and APIs in Apache came from a single
core team developer.2 Requirements
for Wikipedia articles and Facebook
applications come from individual
authors and application developers.
As a consequence, requirements in a
crowdsourced system are never glob-
ally “knowable” and therefore inevita-
bly overlap or even conflict, just as the
requirements of a city’s inhabitants
often conflict; for example, some are
pro-development, some want more
green space, some want public money
for public transit, and some want more
highways. Many OSS projects use a vot-
ing or moderator process to mediate
conflicts,16 but in some crowdsourced
systems conflicts (such as similar but
competing periphery-created add-ons
within Firefox) are simply tolerated.

Continuous evolution. As a conse-
quence of having constantly chang-
ing requirements and distributed
resources, a crowdsourced system is
never “done” and hence never stable.
The term “perpetual beta”21 describes
this new phenomenon. One cannot

of the peers. Resources, including peo-
ple, computation, information, and
connectivity, come and go.16 Describing
OSS development, Mockus et al.,18 said
these systems “are built by potentially
large numbers of volunteers…Work
is not assigned; people undertake the
work they choose to undertake.” How-
ever, large numbers tend to ameliorate
the whims of any individual or indi-
vidual resource, while portabilitly of re-
sources has several manifestations:

In the CBSS arena, large numbers ˲˲

of prosumers (producers who are also
consumers of content) make it possible
for Wikipedia to be authoritative and
users to efficiently download digital
content they want through BitTorrent;

In the computational arena, large ˲˲

numbers of unstable resources result in
overall stability and impressive compu-
tational power. For example Skype is a
threat to traditional phone companies,
even though almost all its resources are
“contributed” by the masses. Similarly
the University of California, Berkeley’s
SETI@home project (http://setiath-
ome.ssl.berkeley.edu/) has, at times,
been rated the most powerful super-
computer in the world, even though it’s
powered by “spare” computation from
independent contributors; and

In the OSS arena, large numbers ˲˲

of independent developers working in
parallel tend to provide multiple, of-
ten overlapping, solutions to a single
problem, reducing the importance of
the success of any particular solution
or individual. The emerging trend is
that unstable resources are increas-
ingly accommodated and even em-
braced as part of the philosophy of
building and running crowdsourced
systems, even though unstable re-
sources are viewed as anathema to
successful projects.

Emergent behaviors. Large-scale
systems—computational and biolog-
ical—exhibit emergent behaviors, a
characteristic noted in traffic patterns,
epidemics, computer viruses, and sys-
tems of systems.10 Large-scale Web-
based applications (such as Second
Life, eBay, and MySpace) have certainly
seen complex behaviors emerge that
are beyond the vision and intent of
their creators (such as the “tax revolt”
in Second Life and a seller boycott on
eBay). Super-linear growth in OSS proj-
ects—previously assumed to be im-

conceive of a crowdsourced system’s
functionality in terms of “releases” any
more than a city has a release. Parts
are being created, modified, and torn
down at all times. We must accept
change as a constant. For example, OSS
projects employ a continuous build
process,18 producing a steady stream
of incremental releases and relying
on the community of users to be part
of the quality-assurance process. For
example, the Linux mantra is “release
early and often.”23 Iterative and, more
recently, agile processes similarly ad-
vocate small, frequent releases and
tight integration with users. Likewise,
on the CBSS side, there is no notion
of a release of Wikipedia or Facebook;
though the underlying platform for
both Web sites has traditional releases,
the content is constantly changing.

Focus on operations. Historically,
system-development life-cycle mod-
els have focused on development and
maintenance as the activities of in-
terest. However, much of the value
of crowdsourced systems is that they
must be as reliable and accessible as
a public utility. Many existing crowd-
sourced systems focus on operations
as a core competency,21 as in Amazon,
eBay, Facebook, Google, Yahoo, and
Wikipedia. Downtime for any reason is
unacceptable.

Sufficient correctness. Complete-
ness, consistency, and correctness
are goals that are, to varying degrees,
anathema to crowdsourced systems.
The notion of “perpetual beta,” de-
scribed earlier, is an admission and ac-
ceptance of ongoing incompleteness
in software.21 We are accustomed to a
steady stream of releases of our most
basic computing infrastructure (such
as operating systems, Web browsers,
Web servers, and email clients) to ad-
dress evolving needs, incorporate new
features, and correct bugs. Likewise,
sufficient correctness is the norm for
crowdsourced content. For example,
collaborative tagging—enormously
valuable for the semantic Web—does
not depend on widespread agree-
ment among taggers. Wikipedia never
claimed to be complete or even fully
correct, though its accuracy has been
assessed and found to be similar to the
Encyclopedia Britannica.12

Unstable resources. Peer-produced
applications are subject to the whims

http://setiathome.ssl.berkeley.edu/
http://setiathome.ssl.berkeley.edu/

80 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles

Most important is
that the kernel be
highly modular,
allowing a project
to scale as its
community grows,
while an original
visionary developer
or team retains
intellectual control.

possible—appears to be an emergent
behavior.14,21 Traditional systems have
made deterministic behavior a goal.
But systems on the Metropolis scale
must abandon this assumption; once
the crowds are invited in, determinism
is lost.

New Logic
These characteristics mean that tradi-
tional life-cycle models are inappropri-
ate for describing or developing crowd-
sourced systems and thus require a
new logic for both development and
management. The Metropolis Model
captures the characteristics that differ-
entiate crowdsourced systems, offering
a unified view of the two major types of
crowdsourced systems: CBSS and OSS.
Unlike traditional system life-cycle
models, the Metropolis Model deliber-
ately focuses on the role and nature of
creation by crowds.

Different stakeholders have differ-
ent roles within crowdsourced systems.
For this reason, we distinguish three
realms of roles (and associated infra-
structure) within a Metropolis Model,
as indicated by the “circles”—kernel,
periphery, and masses—in the figure.
Example roles for people involved in
the kernel include architect, business
owner, and policy maker; roles at the
periphery include developer and pro-
sumer; and roles for the masses include
customer and end user.

There are also differences in “per-
meability” (dashed and solid lines
in the figure) between the two major
types of crowdsourced systems. For
example, in OSS development it is pos-
sible to transition from end user to
developer to kernel architect by con-
sistently contributing and moving up
through the meritocracy. On the CBSS
side, it is generally impossible for a
prosumer to be part of the kernel, as a
distinct organization typically creates,
plans, and manages the kernel.

Principles
Given the fundamental constructs of the
Metropolis Model and their associated
roles and permeability, we now describe
its seven key principles, illustrating how
they apply to OSS and CBSS. From them
we also develop a set of implications for
a new life-cycle model:

Crowd engagement and egalitarian
management of open teams. A metropo-

lis without residents and visitors is a
ghost town. Absent in prior models, the
first and foremost principle of the Me-
tropolis Model is crowd management.
Crowds must be engaged for value co-
creation. How to engage them is not
only a system-level issue but a strate-
gic imperative for businesses. A crowd
typically consists of volunteers (hence
cheap labor) unknown to the business.
As when building a city, infrastructure
and rules must be in place to create
the social and technical mechanisms
needed to engage long-term partici-
pation, encouraging community cus-
todianship, recognizing merits of in-
dividuals, promoting them through a
hierarchy of “ranks” or allowing them
to move to a different realm, and finally
protecting the community by barring
malicious or dangerous participants.

Crowd-management issues over-
shadow project-management issues
(such as cost containment, schedul-
ing, division of labor, and team com-
munication and monitoring) in tradi-
tional systems. Focusing on the crowd
does not mean that crowdsourced sys-
tems lack traditional cost and sched-
uling concerns and responsibilities;
many do. The main impetus for crowd-
sourcing for many organizations is its
potential for cost reduction, increased
innovation, and quicker development
time for delivering products and ser-
vices that meet customer needs. How-
ever, management requirements are
totally different. Most important, the
management of open teams in the Me-
tropolis Model is not purely, or even
primarily, top-down,16,18 as discussed
earlier. Even though many for-profit
companies contribute to OSS proj-
ects, the contributions do not change
the inherent nature of management
in the projects.3 Work is not assigned,
and developers largely undertake the
work they choose to undertake. Proj-
ect leaders spend much of their time
attracting, motivating, and coordi-
nating a team of talented developers.
For example, in OSS projects, there
is no project plan, schedule, or list of
deliverables.16,18 What little manage-
ment structure exists is based on prin-
ciples of democracy and, frequently,
meritocracy. Kernel team members
in OSS projects are typically invited
in via a consensus of existing ker-
nel members or some kind of voting

contributed articles

july 2009 | vol. 52 | no. 7 | communications of the acm 81

Distributed testing. Verification of
the kernel differs from verification of
the periphery. Though the kernel must
be highly reliable, this requirement is
tractable because the kernel is typi-
cally small—often orders of magnitude
smaller than the periphery—highly
controlled, and slow to change. The
reliability of the most popular OSS
products has been reported to be quite
high.16 The reliability of the periphery
is indeterminate; sufficient correctness
is the norm. But sufficient correctness
is tolerable when the kernel is properly
architected, because problems in the
periphery do not compromise the ker-
nel. Linus Torvalds, creator of Linux,
once said, “When someone sends me
patches to do a new filesystem, and I
don’t necessarily trust the patches per
se, I can still trust the fact that if no-
body’s using this file system, it’s not
going to impact anything else.” Simi-
larly the Wikipedia wiki is small, heav-
ily tested, and highly reliable. But Wiki-
pedia relies on its distributed network
of contributors and editors to vet the
accuracy of its prosumer-contributed
entries.

Distributed delivery/maintenance.
Delivery and maintenance of the ker-
nel differs dramatically from delivery
and maintenance of the periphery. The
kernel must be stable and when it does
change must be backward compatible
(such as in terms of Internet protocols
and addressing). At the periphery, per-
petual beta is the norm, with a constant
stream of independent, uncoordinated
“releases.” At the periphery, there is no
notion of a stable system state. Gradual
and fragmented change is typical and
expected.9

Ubiquitous operations. Metropolis
systems are “always on,” even when
they’re being upgraded. Complicating
this mandate is the fact that upgrades
are not ubiquitous; parts of the system
at different release levels operate (and
interoperate) simultaneously. But for
systems built through a Metropolis
Model, operations must be a focal ac-
tivity and, in particular, geared toward
ultra-high availability. Also, upgrades
must be backward compatible, retain-
ing access to at least kernel functional-
ity, since there is no assumption that
all parts of the system will be upgraded
at any given point in time. Finally, the
ubiquitous-operations principle indi-

process, but only after first proving
themselves in development, debug-
ging, and design. For example, in the
Apache project, “Members are people
who have contributed for an extended
period of time, usually more than six
months and are nominated for mem-
bership and then voted on by the ex-
isting members.”18 On the CBSS side,
Wikipedia contributors are promoted
to the rank of “editor” (an unpaid po-
sition) only when they receive at least
a 75%–80% approval rating from their
peers However, their rights, when it
comes to articles, are no different from
those of other users. A new user is able
to update an article, and no one pulls
rank. Wikipedia does have specially
elected custodians with the authority
to track down and remove privileges
from rule violators; the crowds thus
assume administrative, promotion,
measurement, and asset-protection
responsibility.

Bifurcated requirements. Require-
ments must be bifurcated into:

Kernel service that deliver little or ˲˲

no end-user value, as in the Linux ker-
nel, Apache core, Wikipedia wiki, and
Facebook application platform; and

Periphery contributed by the peer ˲˲

network (the prosumers) that delivers
the vast majority of end-user value. Ex-
amples include Linux applications and
device drivers, Firefox add-ons, Wikipe-
dia articles, and Facebook applications.

The nature of the requirements in
these two categories are also different;
kernel service requirements concern
quality attributes and their trade-offs,
while periphery requirements almost
exclusively concern end-user perceiv-
able functions. For example, the re-
quirements for Wikipedia’s wiki are to-
tally unrelated to the requirements for
Wikipedia’s content. Facebook’s ap-
plication platform requirements were
determined by Facebook (with input
from its developers), whereas the re-
quirements for Facebook applications
(developed by prosumers) are deter-
mined entirely by developers.

Bifurcated architecture. The architec-
ture is divided into a kernel infrastruc-
ture and set of peripheral services creat-
ed by different groups through different
processes. Kernel services (such as in Li-
nux, Perl, Apache Core, Wikipedia wiki,
and the Facebook application platform)
are designed and implemented by a se-

lect set of highly experienced and mo-
tivated developers who are themselves
users of the product.16, 18 These kernel
services provide a platform on which
subsequent development is based, as
in the Linux kernel, along with a set of
“zoning rules” (such as the Internet’s
communication protocols) or both
platform and rules (such as the Face-
book application platform). The kernel
provides the means for achieving and
monitoring quality attributes (such as
performance, security, and availability).
The architecture of periphery compo-
nents is enabled and constrained by the
kernel through its primitives and com-
pliance with its protocols; the periphery
is otherwise unspecified. Each part of
the periphery could, in principle, have
its own unique architecture. This lack of
specification permits unbridled growth
and parallel creation at the periphery.
Note also that the kernel does not have
to be created through a Metropolis life
cycle; kernels are created through more
conventional means, typically following
evolutionary models.

Fragmented implementation. The bi-
furcation of the kernel and periphery
has important consequences for imple-
mentation. The vast majority of imple-
mentation in the Metropolis Model is
crowdsourced, though the crowdsourc-
ing applies only to the periphery. A dis-
tinct group implements the kernel,
not a crowd but rather a close-knit,
highly motivated, coordinated team.19
As Mockus18 noted about OSS projects:
“Developers are working only on things
for which they have a real passion.” The
periphery develops at its own pace, to
its own standards, using its own tools,
releasing code as it pleases. Similarly,
in a CBSS, Wikipedia contributors and
Facebook application developers con-
tribute their own resources and adhere
to no deadlines but their own. There is
no overarching plan and no coordina-
tion of the activities of the periphery,
just as there is no plan for the imple-
mentation of a city, which consists of
the collective decisions and actions of
perhaps millions of homeowners, busi-
nesses, contractors, and government
organizations. This is different from
existing development processes, even
distributed development, that assume
a central plan, allocation of resources,
and schedule to which all distributed
participants adhere.

82 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles

the usability (simplicity and learnabil-
ity) of the kernel, making it easy for the
periphery to carry on. Wikipedia suc-
ceeds, in part, because it is trivial for
a prosumer to create or edit an article.
Facebook succeeds, in part, because it
takes only hours for a developer to cre-
ate a simple application.

Separate kernel and periphery. The
Metropolis Model embeds explicit rec-
ognition of separate kernel and periph-
ery in different tools, processes, activi-
ties, roles, and expectations for each.
The kernel must be small and tightly
controlled by a group of developers
focusing on modularity, core services,
and core quality attributes, enabling
unbridled and uncoordinated growth
at the periphery.19 Separation of kernel
and periphery is the foundation for the
Metropolis Model principles of bifur-
cated requirements and bifurcated ar-
chitecture and the foundation for the
principles of distributed testing and
fragmented implementation.

Change the requirements process. The
requirements for Metropolis systems
are primarily asserted by the periph-
ery, typically through email, wikis, and
discussion forums. These forums must
be made available (typically by mem-
bers of the kernel) and the periphery
encouraged to participate in discus-
sions about the requirements to, in ef-
fect, create a community. In addition,
it must be stressed that these forums
are used mainly for discussing the re-
quirements of the core or of significant
parts of the periphery. Metropolis proj-
ects must, therefore, accept that many
requirements for functionality at the
periphery may never be discussed. For
example, any individual developer may
contribute a new device driver to Linux
for an obscure device or new Wikipedia
entry, and this contribution (and its re-
quirements) might never be discussed
in an open forum. This changes the fun-
damental nature of requirements engi-
neering, which traditionally focuses on
collecting requirements, making them
complete and consistent, and removing
redundancies wherever possible.

Increase attention to architecture. The
kernel architecture is the fabric that
unites Metropolis systems. As such, it
must be designed to accommodate the
specific characteristics of CBSSs and
OSSs. For this reason, the architecture
cannot “emerge,” as it often does in

cates that Metropolis systems must be
able to scale with the number of users;
scaling is achieved because the periph-
ery provides its own development and
execution resources (such as Skype,
BitTorrent, Kazaa, and SETI@home).

Implications
A system-development model is built
on a particular logic used to structure,
plan, and manage the process of devel-
oping a system. The model implies a set
of expectations on tools, processes, ac-
tivities, and roles. Many models (such as
waterfall, spiral, and agile) have evolved
over the years, each with its own charac-
teristics, strengths, and weaknesses. No
one model is best for all projects; each
is suited to particular development con-
texts and characteristics. For instance,
agile methods are typically best for proj-
ects with rapidly evolving requirements
and short time-to-market constraints,
whereas a waterfall model is best for
large projects with well-understood,
stable requirements and complex orga-
nizational structures. Accordingly, the
Metropolis Model describes a new set
of principles and prescribes a new set of
activities for an increasingly significant
segment of the market—crowdsourced
systems, both OSS and CBSS—as we’ve
explored here. The implications of the
Metropolis Model force a new perspec-
tive on system development in seven
important ways:

Focus on crowd management. The Me-
tropolis Model reflects the metaphor
of a bull’s-eye (as in the figure), as op-
posed to, say, a waterfall, a spiral, a “V,”
or other representations adopted by
other models. The contrast is salient;
the “phases” of development disappear
in the bull’s-eye. The model focuses
managerial attention on the inclusion
of customers (the periphery and the
masses) for system development, some-
thing never previously modeled.

Several challenges arise from the
first principle concerning crowd en-
gagement and egalitarian manage-
ment of open teams for the success
of crowdsourced systems. Policies
for crowd management must there-
fore be aligned with an organization’s
strategic goals and established early.
Crowds are good for certain tasks, not
for all. Much of the emergent behavior
comes from the activity of the crowd.
This connection implies that business

models are examined in light of sys-
tem-development tasks for crowd en-
gagement, performance-management
monitoring, and community protec-
tion. As crowdsourcing is rooted in the
“gift” culture, for-profit organizations
must align tasks with volunteers’ val-
ues and intentions.29 Project manag-
ers must set up a management system
that is “lightweight” so responsibility
for creation is borne by volunteers and
capable and robust enough to drive the
ongoing success of the site and protect
the system from destruction.8

By opening a project to the crowds,
management accepts that they consist
of unknown people at disparate loca-
tions anywhere on the Internet and in
time zones, countries, and cultures.
This is certainly the case for nontrivial
OSS projects. Managing them means
the periphery shares in their success
and, to a large extent, is self-governing
and self-adaptive. Many leaders of im-
portant, large-scale open source proj-
ects have said they do not “lead” in a
traditional sense. For example, Linus
Torvalds (creator of Linux) and Larry
Wall (creator of Perl) both say they ex-
ert no management control and do not
command members of the project.3
Jimmy Wales (founder of Wikipedia)
does not control Wikipedia; indeed, he
does not even control the Wikipedia en-
try on “Jimmy Wales.”30 Periphery mem-
bers cannot be controlled but must be
inspired, persuaded, and motivated.
Due to its distributed nature, the proj-
ect must have a clear task breakdown
structure but with a minimum of hier-
archy and bureaucracy; there must also
be collaboration or mass-collaboration
technology—typically email lists, wikis,
and discussion forums—for commu-
nication and coordination.16 Even the
entrance of many for-profit companies
into the OSS movement has not changed
the inherent nature of project manage-
ment in these projects, remaining more
consensus-based meritocracies than
traditional top-down hierarchies.

This culture means management
must focus on communication, negoti-
ation, and leadership to guide develop-
ers and content creators, persuading
them to share in the vision of the proj-
ect. The creators of the kernel must
also commit resources to create effec-
tive tutorials and examples. Finally,
kernel creators must pay attention to

contributed articles

july 2009 | vol. 52 | no. 7 | communications of the acm 83

traditional life-cycle and agile models.
It must be designed up-front by an ex-
perienced, motivated team focusing on
modularity to enable the parallel activi-
ties of the periphery and the kernel’s
core quality attributes (such as secu-
rity, performance, and availability).

A lead architect or small team of
leads should be assigned to manage
project coordination and have the final
say in matters affecting the kernel. For
example, Linus Torvalds continues to
exert veto rights on matters affecting
the Linux kernel. Similarly, members
of the team developing Apache’s core
control changes to the core’s architec-
ture, Facebook controls its application
platform architecture (even though it
is OSS), and Wikipedia.org controls the
structure and capabilities of its wiki.
Most important is that the kernel be
highly modular, allowing a project to
scale as its community grows, while an
original visionary developer or team re-
tains intellectual control.18

Plan for distributed testing. Bifurca-
tion of the kernel and periphery pro-
vides a guiding principle for testing ac-
tivities. The kernel must be thoroughly
tested and validated, since it unites the
system. This imperative can, however,
be made tractable. When planning
a Metropolis project, project leaders
must focus on validation of the kernel
and put tools, guidelines, and process-
es in place to facilitate this validation.
For this reason alone the kernel should
be kept small. The project should
have frequent (perhaps nightly) builds
and frequent releases. Bug reporting
should be built into the system and
require little effort on the part of the
periphery. The project should focus
on explicitly taking advantage of the
“many eyes” touted by OSS develop-
ment to constantly scrutinize and test
the kernel.23 Such scrutiny does not
imply that all aspects of a Metropolis
project are thoroughly tested, only that
the kernel is.

Create flexible automated delivery
mechanisms. Delivery mechanisms
must work in a distributed, asynchro-
nous manner and be flexible enough to
accept incompleteness of the installed
base as the norm. Thus, any delivery
mechanism must tolerate older ver-
sions, multiple coexisting versions,
and even incomplete versions. A Me-
tropolis system should also, as far as

possible, be tolerant of incompatibili-
ties in itself and among other systems.
For example, modern Web browsers
still parse old versions of HTML or in-
teract with old versions of Web servers;
add-ons and plug-ins in the Firefox
browser coexist at different version lev-
els yet do not “break” the browser. This
approach to delivery and maintenance
is a direct consequence of the charac-
teristic of sufficient correctness.

Plan for ultra-high availability opera-
tion. In most system-development proj-
ects, operations are not an early focus
of developer attention or resources. In
a Metropolis project, the principle of
ubiquitous operations must be made
a focus due to the distributed and un-
coordinated nature of contributions.
A Metropolis project must design and
plan for ultra-high reliability of the ker-
nel and its infrastructure while paradox-
ically accepting the fact that periphery
software often fails. This focus means
the project must explicitly create moni-
toring mechanisms, determine the cur-
rent state of the system, and control
mechanisms so bugs in the periphery do
not undermine the kernel. The project
must also avoid any form of centralized
critical resources or centralized con-
trol—people or computation—as they
are potential single points of failure and
hence anathema to high availability. In
addition, the system must transition
smoothly, maintaining continuous op-
erations as it evolves.

Conclusion
Life-cycle models are never revolution-
ary, arising instead in reaction to ambi-
ent conditions in the software-develop-
ment world. The waterfall model was
created almost 40 years ago to focus
more attention on removing flaws early
in a project’s life cycle in reaction to the
delays, bugs, and failures of projects
of increasing complexity. The spiral
model and, later, the Rational Unified
Process, were created because projects
needed to produce working versions of
software more quickly and mitigate risk
earlier in the software-development
life cycle.5 Agile methods grew out of
the desire for less bureaucracy, more
responsiveness to customer needs, and
shorter time to market.

Similarly, the Metropolis Model
formally captures a current market
response: commons-based peer pro-

Prior life-cycle
models are
inadequate—
mostly mute—on
the concerns of
crowdsourcing,
super-linear
growth, and change
as a constant.

http://Wikipedia.org

84 communications of the acm | july 2009 | vol. 52 | no. 7

contributed articles

duction and service-dominant logic.
Prior life-cycle models are inade-
quate—mostly mute—on the concerns
of crowdsourcing, super-linear growth,
and change as a constant. While the
Metropolis Model is not a life-cycle
model, it does offer new ways to think
about how a new breed of system can
be developed; its principles help man-
agement shift to new project-manage-
ment styles that take advantage of the
“wisdom of crowds.” The wrong model
or a misaligned model can mean di-
saster for an organization. The right
model—possibly requiring substan-
tial organizational and technological
reengineering—provides significant
new opportunity. For example, IBM
(the most patent-productive company
in the world) now makes more money
from crowdsourced OSS-related ser-
vices than from all its patent-protected
intellectual property,4 even though the
shift to OSS was turbulent and contro-
versial within IBM.

The Metropolis Model provides a
framework within which organizations
are able to reason about all aspects of
how they create systems, including tool
support, languages, training, resource
allocation and management, and per-
sonal motivation. The principles of
the Metropolis Model are useful as a
critical set of questions for examining
the alignment of system-development
activities with the underlying busi-
ness model. Business-model questions
come first: Who are our customers?
What value can be co-created by and
for them? What motivation can I of-
fer to engage them for the long term?
Answers prompt a new set of system-
development questions: How can cus-
tomer participation be engaged? How
can the infrastructure be bifurcated?
What technological or system compe-
tency must be developed to facilitate
engagement and custodianship of the
system? What policies must be estab-
lished to safeguard the community?
To answer, organizations must identify
the characteristics of their systems and
reconsider their business and develop-
ment models.

Metropolis Model concepts are not
appropriate for all forms of develop-
ment. Smaller systems with limited
scope will continue to benefit from the
conceptual integrity that accompanies
small, cohesive teams. High-security

Sector in the E.U. White paper, Nov. 2006; http://
ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-
flossimpact.pdf.

12.	 Giles, J. Special report: Internet encyclopedias go
head to head. Nature (Dec. 14, 2005).

13.	H owe, J. The rise of crowdsourcing. Wired 14, 6 (June
2006); http://www.wired.com/wired/archive/14.06/
crowds.html.

14.	K och, S. Software evolution in open source projects:
A large-scale investigation. Journal of Software
Maintenance and Evolution: Research and Practice 19,
6 (Nov./Dec. 2007), 361–382.

15.	 Maglio, P., Srinivasan, S., Kreulen, J., and Spohrer,
J. Service systems, service scientists, SSME, and
innovation. Commun. ACM 49, 7 (July 2006), 81–85.

16.	 Markus, M.L., Manville, B., and Agres, C. What makes a
virtual organization work?. Sloan Management Review
(Fall 2000), 13–25.

17.	 Maven Project; http://maven.apache.org/index.html.
18.	 Mockus, A., Fielding, R., and Herbsleb, J. Two case

studies of open source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology 11, 3 (July 2002),
309–346.

19.	 Narduzzo, A. and Rossi, A. Modularity in Action: GNU/
Linux and Free/Open Source Software Development
Model Unleashed. Research on Organizations,
Coordination & Knowledge working papers 020, Dept.
of Computer and Management Sciences, University of
Trento, Italy. 2003.

20.	 Northrop, L., Feiler, P., Gabriel, R., Goodenough, J.,
Linger, R., Longstaff, T., Kazman, R., Klein, M., Schmidt,
D., Sullivan, K., and Wallnau, K. Ultra-Large-Scale
Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2006.

21.	 O’Reilly, T. What is Web 2.0?: Design patterns and
business models for the next generation of software;
http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html.

22.	 O’Reilly, T. Lessons from open-source software
development. Commun. ACM 42, 4 (Apr. 1999), 33–37.

23.	 Raymond, E.S. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary. O’Reilly & Associates, Sebastopol, CA,
1999.

24.	 Scacchi, W. Understanding the requirements for
developing open source software systems. IEE
Proceedings Software 149, 1 (Feb. 2002), 24–39.

25.	 Scacchi, W. Free/open source software development:
Recent research results and emerging opportunities.
In Proceedings of the Sixth Joint Meeting of the
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (Dubrovnik, Croatia, Sept. 3–7). ACM
Press, New York, 2007, 459–468.

26.	 Torvalds, L. The Linux edge. In Open Sources: Voices
from the Open Source Revolution, C. DiBona, S.
Ockman, and M. Stone, Eds. O’Reilly & Associates,
Sebastopol, CA, 1999.

27.	 Vargo, S. and Lusch, R. Evolving to a new dominant
logic for marketing. Journal of Marketing 68 (Jan.
2004), 1–17.

28.	 von Hippel, E. and von Krogh, G. Open source software
and the ‘private-collective’ innovation model: Issues
for organization science. Organization Science 14, 2
(Mar.–Apr. 2003), 209–223.

29.	 Wagner, C. and Majchrzak, A. Enabling customer-
centricity-using wikis and the wiki way. Journal of
Management Information Systems 23, 3 (Winter
2006–7), 17–43.

30.	 Wikipedia.org. Jimmy Wales; http://en.wikipedia.
org/wiki/Jimmy_Wales#Editing_of_own_Wikipedia_
biography.

Rick Kazman (kazman@hawaii.edu) is a professor in the
Department of Information Technology Management in
the Shidler College of Business at the University of Hawaii,
Honolulu, HI, and a visiting scientist at the Software
Engineering Institute of Carnegie Mellon University,
Pittsburgh, PA.

Hong-Mei Chen (hmchen@hawaii.edu) is a professor
of IT management in the Department of Information
Technology Management in the Shidler College
of Business at the University of Hawaii at Manoa,
Honolulu, HI.

© 2009 ACM 0001-0782/09/0700 $10.00

and safety-critical systems and systems
built around protected intellectual
property will continue to be built in
traditional ways for the foreseeable fu-
ture. But more and more crowdsourc-
ing, mashups, open source, and other
forms of nontraditional development
are being harnessed for value co-cre-
ation. The Metropolis Model speaks to
all of them. For example, mashups are
beginning to be observed and support-
ed even in the extremely conservative
financial sphere.6

Embracing the Metropolis Model
requires dramatic changes to accept-
ed software-engineering practices.
Organizations must be prepared to
adopt new organizational structures,
processes, and tools to support these
changes. Each Metropolis principle is,
to some degree, counterintuitive rela-
tive to existing software-engineering
practices. Management must therefore
guard against old habits and foster a
new mindset to deal with unknown
people in open teams, embrace incom-
plete requirements, accept sufficient
correctness, and anticipate and toler-
ate emergent behavior.

Much more research is needed to
understand and capitalize on the rela-
tively new form of commons-based
peer production. We offer the Metrop-
olis Model as a foundation on which
subsequent research and life-cycle
models can be built. 	

References
1.	 Alexa.com; http://www.alexa.com/site/ds/top_sites.
2.	 Apache HTTP Server Project; http://httpd.apache.org/

ABOUT_APACHE.html.
3.	 Barr, J. The Paradox of Free/Open Source Project

Management; http://www.linux.com/feature/42466.
4.	 Benkler, Y. The Wealth of Networks: How Social

Production Transforms Markets and Freedom. Yale
University Press, New Haven, CT, 2006.

5.	 Boehm, B. A spiral model of software development
and enhancement. IEEE Computer 31, 7 (May 1988),
61–72.

6.	 BusinessWeek.com. E*Trade is banking on
Web services (Nov. 13, 2006); http://www.
businessweek.com/technology/content/nov2006/
tc20061113_151490.htm.

7.	 Chen, H-M and Vargo, S. Toward an alternate logic
for electronic customer relationship management.
International Journal of Business Environment 2, 2
(2008), 116–132.

8.	 Ciffolilli, A. Phantom authority, self-selective
recruitment and retention of members in virtual
communities: The case of Wikipedia. First Monday 8,
12 (Dec. 2003); http://firstmonday.org/htbin/cgiwrap/
bin/ojs/index.php/fm/article/view/1108/1028.

9.	 Fielding, R. Shared leadership in the Apache project.
Commun. ACM 42, 4 (Apr. 1999), 42–43.

10.	 Fisher, D. An Emergent Perspective on Interoperation
in Systems of Systems. Technical Report CMU/
SEI-2006-TR-003. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 2006.

11.	 Ghosh, R.A., Ed. Economic Impact of Open Source
Software on Innovation and the Competitiveness of
the Information and Communication Technologies

http://www.alexa.com/site/ds/top_sites
http://httpd.apache.org/ABOUT_APACHE.html
http://www.linux.com/feature/42466
http://www.businessweek.com/technology/content/nov2006/tc20061113_151490.htm
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1108/1028
http://www.wired.com/wired/archive/14.06/crowds.html
http://maven.apache.org/index.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
mailto:kazman@hawaii.edu
mailto:hmchen@hawaii.edu
http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf
http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf
http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf
http://www.wired.com/wired/archive/14.06/crowds.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://en.wikipedia.org/wiki/Jimmy_Wales#Editing_of_own_Wikipedia_biography
http://en.wikipedia.org/wiki/Jimmy_Wales#Editing_of_own_Wikipedia_biography
http://en.wikipedia.org/wiki/Jimmy_Wales#Editing_of_own_Wikipedia_biography
http://httpd.apache.org/ABOUT_APACHE.html
http://www.businessweek.com/technology/content/nov2006/tc20061113_151490.htm
http://www.businessweek.com/technology/content/nov2006/tc20061113_151490.htm
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1108/1028

http://www.acm.org/careercenter

86 communications of the acm | july 2009 | vol. 52 | no. 7

review articles

they query, search, and aggregate large
volumes of imprecise data to find the
“diamonds in the dirt.” This wide va-
riety of new applications points to the
need for generic tools to manage im-
precise data. In this article, we survey
the state of the art of techniques that
handle imprecise data by modeling it
as probabilistic data.2–4, 7, 12, 15, 23, 27, 36

A probabilistic database manage-
ment system, or ProbDMS, is a system
that stores large volumes of prob
abilistic data and supports complex
queries. A ProbDMS may also need to
perform some additional tasks, such
as updates or recovery, but these do
not differ from those in conventional
database management systems and
will not be discussed here. The ma-
jor challenge in a ProbDMS is that
it needs both to scale to large data
volumes, a core competence of da-
tabase management systems, and to
do probabilistic inference, which is a
problem studied in AI. While many
scalable data management systems
exist, probabilistic inference is a hard
problem,35 and current systems do
not scale to the same extent as data
management systems do. To address
this challenge, researchers have fo-
cused on the specific nature of rela-
tional probabilistic data, and exploit-
ed the special form of probabilistic
inference that occurs during query
evaluation. A number of such results
have emerged recently: lineage-based
representations,4 safe plans,11 al-
gorithms for top-k queries,31, 37 and
representations of views over proba-
bilistic data.33 What is common to
all these results is they apply and
extend well-known concepts that are
fundamental to data management,
such as the separation of query and
data when analyzing complexity,38
incomplete databases,22 the thresh-
old algorithm,16 and the use of mate-
rialized views to answer queries.21 In
this article, we briefly survey the key
concepts in probabilistic database
systems and explain the intellec-
tual roots of these concepts in data
management.

a wide range of applications have recently emerged
that require managing large, imprecise data sets.
The reasons for imprecision in data are as diverse
as the applications themselves: in sensor and RFID
data, imprecision is due to measurement errors;15, 34
in information extraction, imprecision comes from
the inherent ambiguity in natural-language text;20, 26
and in business intelligence, imprecision is tolerated
because of the high cost of data cleaning.5 In some
applications, such as privacy, it is a requirement that
the data be less precise. For example, imprecision
is purposely inserted to hide sensitive attributes
of individuals so that the data may be published.30
Imprecise data has no place in traditional, precise
database applications like payroll and inventory,
and so, current database management systems are
not prepared to deal with it. In contrast, the newly
emerging applications offer value precisely because

doi:10.1145/1538788.1538810

Treasures abound from hidden facts found
in imprecise data sets.

by Nilesh Dalvi, Christopher Ré, and Dan Suciu

Probabilistic
Databases:
Diamonds in
the Dirt

july 2009 | vol. 52 | no. 7 | communications of the acm 87

An Example:
The Purple Sox System
We illustrate using an example from
an information extraction system. The
Purple Soxa system at Yahoo! Research
focuses on technologies to extract and
manage structured information from
the Web related to a specific commu-
nity. An example is the DbLife system14
that aggregates structured information
about the database community from
data on the Web. The system extracts
lists of database researchers together
with structured, related information
such as publications they authored,
their coauthor relationships, talks they
have given, their current affiliations,
and their professional services. Figure
1(a) illustrates the researchers’ affilia-
tions, and Figure 1(b) illustrates their
professional activities. Although most
researchers have a single affiliation,
in the data in Figure 1(a), the extracted
affiliations are not unique. This occurs
because outdated/erroneous informa-
tion is often present on the Web, and
even if the extractor is operating on an
up-to-date Web page, the difficulty of
the extraction problem forces the ex-
tractors to produce many alternative
extractions or risk missing valuable
data. Thus, each Name contains several
possible affiliations. One can think of
Affiliation as being an attribute
with uncertain values. Equivalently,
one can think of each row as being a
separate uncertain tuple. There are two
constraints on this data: tuples with
the same Name but different Affili-
ation are mutually exclusive; and tu-
ples with different values of Name are
independent. The professional services
shown in Figure 1(b) are extracted from
conference Web pages, and are also im-
precise: in our example, each record in
this table is an independent extraction
and assumed to be independent.

In both examples, the uncertainty
in the data is represented as a proba-
bilistic confidence score, which is
computed by the extractor. For ex-
ample, Conditional Random Fields
produce extractions with semantically
meaningful confidence scores.20 Other
sources of uncertainty can also be con-
verted to confidence scores, for exam-
ple, probabilities produced by entity
matching algorithms. (Does the men-

a	 http://research.yahoo.com/node/498I
llustration

 by

 dave

 bollinger

http://research.yahoo.com/node/498

88 communications of the acm | july 2009 | vol. 52 | no. 7

review articles

Numbers). A separate and difficult task
is how to indicate to the user the corre-
lations between the output tuples. For
example, the two highest ranked tuples
may be mutually exclusive, but they
could also be positively correlated. As a
result, their ranks alone convey insuf-
ficient information to the user. Finally,
a major challenge of this facet is how
to obtain feedback from the users and
how to employ this feedback to “clean”
the underlying database. This is a hard
problem, that to date has not yet been
solved.

Probabilistic databases have found
usage in a wide class of applications.
Sensor data is obtained from battery-
powered sensors that acquire tempera-
ture, pressure, or humidity readings
from the surrounding environment.
The BBQ system15 showed that a prob-
abilistic data model could represent
well this kind of sensor data. A key
insight was the probabilistic model
could answer many queries with suf-
ficient confidence without needing to
acquire additional readings. This is an
important optimization since acquir-
ing fewer sensor readings allows longer
battery life, and so more longer lasting
sensor deployments. Information Ex-
traction is a process that extracts data
items of a given type from large cor-
pora of text.26 The extraction is always
noisy, and the system often produces
several alternatives. Gupta and Saraw-
agi20 have argued that such data is best
stored and processed by a probabilistic
database. In Data Cleaning, deduplica-
tion is one of the key components and
is also a noisy and imperfect process.

tioned Fred in one Web page refer to
the same entity as Fred in another Web
page?) The example in Figure 1 pres-
ents a very simplified view of a general
principle: uncertain data is annotated
with a confidence score, which is inter-
preted as a probability. Here, we use
“probabilistic data” and “uncertain
data” as synonyms.

Facets of a Probdms
There are three important, related
facets of any ProbDMS: How do we
store (or represent) a probabilistic da-
tabase? How do we answer queries us-
ing our chosen representation? How
do we present the result of queries to
the user?

There is a tension between the pow-
er of a representation system, that is,
as the system more faithfully models
correlations, it becomes increasingly
difficult to scale the system. A simple
representation where each tuple is an
independent probabilistic event is eas-
ier to process, but it cannot faithfully
model the correlations important to all
applications. In contrast, a more com-
plicated representation, for example,
a large Markov Network,9 can capture
the semantics of the data very faithful-
ly, but it may be impossible to compute
even simple SQL queries using this rep-
resentation. An extra challenge is to en-
sure the representation system maps
smoothly to relational data, so that the
nonprobabilistic part of the data can
be processed by a conventional data-
base system.

A ProbDMS must support complex,
decision-support style SQL, with ag-

gregates. While some applications can
benefit from point queries, the real
value comes from queries that search
many tuples, or aggregate over many
data values. For example, the answer
to find the affiliation of PC Chair of SIG-
MOD’2008 is inherently imprecise (and
can be answered more effectively by
consulting the SIGMOD’2008 home
page), but a query like find all institu-
tions (affiliations) with more than 20
SIGMOD and VLDB PC Members re-
turns more interesting answers. There
are two logical steps in computing an
SQL query on probabilistic data: first,
fetch and transform the data, and sec-
ond, perform probabilistic inference.
A straightforward but naïve approach
is to separate the two steps: use a da-
tabase engine for the first step and a
general-purpose probabilistic infer-
ence technique9, 13 for the second. But
on large data the probabilistic infer-
ence quickly dominates the total run-
ning time. A better approach is to inte-
grate the two steps, which allows us to
leverage some database-specific tech-
niques, such as query optimization,
using materialized views, and schema
information, to speed up the probabi-
listic inference.

Designing a good user interface
raises new challenges. The answer to
an SQL query is a set of tuples, and it is
critical to find some way to rank these
tuples because there are typically lots
of false positives when the input data
is imprecise. Alternatively, aggregation
queries can extract value from impre-
cise data, because errors tend to cancel
each other out (the Law of the Large

Figure 1: Example of a probabilistic database. This is a block-independent-disjoint database: the eight tuples in Researchers are
grouped in four groups of disjoint events, for example, t1

1, t1
2, t1

3 are disjoint, and so are, t4
1, t4

2, while tuples from different blocks
are independent, for example, t1

2, t2
2, t4

1 are independent; the five tuples in Services are independent probabilistic events. This
database can be represented as a c-table using the hidden variables X1, X2, X3, X4 for Researchers and Y1, Y2, Y3, Y4, Y5 for Services.

Researchers:

Name Affiliation P

Fredt1
1

t1
2

t1
3

t2
1

t3
1

t4
1

t4
2

t3
2

p1
1

p1
2

p1
3

p2
1

p3
1

p4
1

p4
2

p3
2

U. Washington
= 0.2
= 0.3

= 0.5

= 1.0

= 0.7
= 0.3

= 0.9
= 0.1

X1 = 1

S1

S2

S3

S4

S5

X1 = 2
X1 = 3
X2 = 1

X3 = 1
X3 = 2

X4 = 1

Y1 = 1
Y2 = 1

Y3 = 1
Y4 = 1
Y5 = 1

q1 = 0.2
q2 = 0.8

q3 = 0.7
q4 = 0.7
q5 = 0.5

X4 = 2

U. Wisconsin
Y! Research

Sue U. Washington
John U. Wisconsin

U. Washington
Frank Y! Research

M. Research

(a)

Services:

Name Conference Role P

Fred VLDB Session Chair
Fred VLDB PC Member
John SIGMOD PC Member
John VLDB PC Member
Sue SIGMOD Chair

(b)

Researchers:

Name Affiliation P

Fredt1
1

t1
2

t1
3

t2
1

t3
1

t4
1

t4
2

t3
2

p1
1

p1
2

p1
3

p2
1

p3
1

p4
1

p4
2

p3
2

U. Washington
= 0.2
= 0.3

= 0.5

= 1.0

= 0.7
= 0.3

= 0.9
= 0.1

X1 = 1

S1

S2

S3

S4

S5

X1 = 2
X1 = 3
X2 = 1

X3 = 1
X3 = 2

X4 = 1

Y1 = 1
Y2 = 1

Y3 = 1
Y4 = 1
Y5 = 1

q1 = 0.2
q2 = 0.8

q3 = 0.7
q4 = 0.7
q5 = 0.5

X4 = 2

U. Wisconsin
Y! Research

Sue U. Washington
John U. Wisconsin

U. Washington
Frank Y! Research

M. Research

(a)

Services:

Name Conference Role P

Fred VLDB Session Chair
Fred VLDB PC Member
John SIGMOD PC Member
John VLDB PC Member
Sue SIGMOD Chair

(b)

review articles

july 2009 | vol. 52 | no. 7 | communications of the acm 89

Andritsos, Fuxman, and Miller1 have
shown that a probabilistic database
can simplify the deduplication task, by
allowing multiple conflicting tuples to
coexist in the database. Many other ap-
plications have looked at probabilistic
databases for their data management
needs: RFID data management,34 man-
agement of anonymized data,30 and sci-
entific data management.28

We present a number of key con-
cepts for managing probabilistic data
that have emerged in recent years. We
group these concepts by the three fac-
ets, although some concepts may be
relevant to more than one facet.

Facet 1: Semantics
and Representation
The de facto formal semantics of a
probabilistic database is the possible
worlds model.12 By contrast, there is no
agreement on a representation system,
instead there are several approaches
covering a spectrum between expres-
sive power and usability.4 A key concept
in most representation systems is that
of lineage, which is derived from early
work on incomplete databases by Im-
melinski and Lipski.22

Possible Worlds Semantics. In its most
general form, a probabilistic database
is a probability space over the possible
contents of the database. It is custom-
ary to denote a (conventional) relation-
al database instance with the letter I.
Assuming there is a single table in our
database, I is simply a set of tuples (re-
cords) representing that table; this is a
conventional database. A probabilistic
database is a discrete probability space
PDB = (W, P), where W = {I1, I2, …, In} is
a set of possible instances, called pos-
sible worlds, and P: W → [0, 1] is such
that Σj = 1,  n P(Ij) = 1. In the terminology of
networks of belief, there is one random
variable for each possible tuple whose
values are 0 (meaning that the tuple
is not present) or 1 (meaning that the
tuple is present), and a probabilistic
database is a joint probability distribu-
tion over the values of these random
variables.

This is a very powerful definition
that encompasses all the concrete
data models over discrete domains
that have been studied. In practice,
however, one must step back from this
generality and impose some workable
restrictions, but it is always helpful to

keep the general model in mind. Note
that in our discussion we restrict our-
selves to discrete domains: although
probabilistic databases with continu-
ous attributes are needed in some ap-
plications,7, 15 no formal semantics in
terms of possible worlds has been pro-
posed so far.

Consider some tuple t (we use inter-
changeably the terms tuple and record
in this article). The probability that
the tuple belongs to a randomly cho-
sen world is P(t) = Σj: t ∈ Ij

 P(Ij), and is also
called the marginal probability of the
tuple t. Similarly, if we have two tuples
t1, t2, we can examine the probability
that both are present in a randomly cho-
sen world, denoted P(t1t2). When the
latter is P(t1)P(t2), we say that t1, t2 are in-
dependent tuples; if it is 0 then we say
that t1, t2 are disjoint tuples or exclusive
tuples. If none of these hold, then the
tuples are correlated in a nonobvious
way. Consider a query Q, expressed in
some relational query language like
SQL, and a possible tuple t in the que-
ry’s answer. P(t ∈ Q) denotes the proba-
bility that, in a randomly chosen world,
t is an answer to Q. The job of a proba-
bilistic database system is to return all
possible tuples t1, t2, … together with
their probabilities P(t1 ∈ Q), P(t2 ∈ Q), .…

Representation Formalisms. In prac-
tice, one can never enumerate all pos-
sible worlds, and instead we need to
use some more concise representation
formalism. One way to achieve that is
to restrict the class of probabilistic da-
tabases that one may represent. A pop-
ular approach is to restrict the possible
tuples to be either independent or dis-
joint. Call a probabilistic database block
independent-disjoint, or BID, if the set
of all possible tuples can be partitioned
into blocks such that tuples from the
same block are disjoint events, and
tuples from distinct blocks are inde-
pendent. A BID database is specified by
defining the partition into blocks, and
by listing the tuples’ marginal prob-
abilities. This is illustrated in Figure 1.
The blocks are obtained by grouping
Researchers by Name, and grouping
Services by (Name, Conference,
Role). The probabilities are given by
the P attribute. Thus, the tuples t1

2 and
t1

3 are disjoint (they are in the same
block), while the tuples t1

1, t5
2, s1, s2 are

independent (they are from different
blocks). An intuitive BID model was

All representation
formalisms are,
at their core,
an instance
of database
normalization:
they decompose
a probabilistic
database with
correlated tuples
into several
BID tables.

90 communications of the acm | july 2009 | vol. 52 | no. 7

review articles

Lineage is a powerful tool in
ProbDMS because of the following
important property: the answer to a
query over a c-table can always be rep-
resented as another c-table, using the
same hidden variables. In other words,
it is always possible to compute the lin-
eage of the output tuples from those
of the input tuples. This is called a clo-
sure property and was first shown by
Imielinski and Lipski.22 We illustrate
this property on the database in Figure
1, where each tuple has a very simple
lineage. Consider now the SQL query in
Figure 3(a), which finds the affiliations
of all people who performed some
service for the VLDB conference. The
answer to this query is precisely the c-
table in Figure 2.

Facet 2: Query Evaluation
Query evaluation is the most difficult
technical challenge in a ProbDMS.
One approach is to separate the que-
ry and lineage evaluation from the
probabilistic inference on the lineage
expression. Various algorithms have
been used for the latter, such as Monte
Carlo approximation algorithms.11, 31
Recently, a much more general Monte
Carlo framework has been proposed by
Jampani et al.23 Variable Elimination9
was used by Sen and Deshpande.36

Another approach is to integrate the
probabilistic inference with the query
computation step. With this approach,
one can leverage standard data man-
agement techniques to speed up the
probabilistic inference, such as static
analysis on the query or using material-
ized views. This has led to safe queries
and to partial representations of mate-
rialized views.

Safety. Two of the authors showed
that certain SQL queries can be evalu-
ated on a probabilistic database by
pushing the probabilistic inference
completely inside the query plan.11
Thus, for these queries there is no need
for a separate probabilistic inference
step: the output probabilities are com-
puted inside the database engine, dur-
ing normal query processing. The per-
formance improvements can be large,
for example, Ré et al.31 observed two or-
ders of magnitude improvements over
a Monte Carlo simulation. Queries for
which this is possible are called safe
queries, and the relational plan that
computes the output probabilities

introduced by Trio4 and consists of
maybe-tuples, which may or may not be
in the database, and x-tuples, which are
sets of mutually exclusive tuples.

Several applications require a richer
representation formalism, one that
can express complex correlations be-
tween tuples, and several such formal-
isms have been described in the litera-
ture: lineage-based,4, 18 U-relations,2
or the closure of BID tables under
conjunctive queries.12 Others are the
Probabilistic Relational Model of
Friedman et al.17 that separates the
data from the probabilistic network,
and Markov Chains.25, 34 Expressive for-
malisms, however, are often difficult to
understand by users, and increase the
complexity of query evaluation, which
lead researchers to search for sim-
pler, workable models for probabilistic
data.4

All representation formalisms are,
at their core, an instance of database
normalization: they decompose a
probabilistic database with correlated
tuples into several BID tables. This is
similar to the factor decomposition
in graphical models,9 and also similar
to database normalization based on
multivalued dependencies.39 A first
question is how to design the normal
representation given a probabilistic da-
tabase. This requires a combination of
techniques from graphical models and
database normalization, but, while the
connection between these two theories
was described by Verma and Pearl39
in the early 1990s, to date there exists
no comprehensive theory of normal-
ization for probabilistic databases. A
second question is how to recover the
complex probabilistic database from
its normalized representation as BID
tables. This can be done through SQL
views12 or through lineage.

Lineage. The lineage of a tuple is an
annotation that defines its derivation.
Lineage is used both to represent prob-
abilistic data, and to represent query
results. The Trio system4 recognized
the importance of lineage in managing

data with uncertainty, and called itself
a ULDB, for uncertainty-lineage data-
base. In Trio, when new data is pro-
duced by queries over uncertain data,
the lineage is computed automatically
and captures all correlations needed
for computing subsequent queries
over the derived data.

Lineage also provides a powerful
mechanism for understanding and re-
solving uncertainty. With lineage, user
feedback on correctness of results can
be traced back to the sources of the rel-
evant data, allowing unreliable sources
to be identified. Users can provide
much detailed feedback if data lineage
is made visible to them. For example,
in information extraction applications
where data items are generated by pipe-
lines of AI operators, users can indicate
if a data item is correct, as well as look
at the lineage of data items to locate
the exact operator making the error.

The notion of lineage is derived from
a landmark paper by Imielinski and
Lipski22 from 1984, who introduced
c-tables as a formalism for represent-
ing incomplete databases. We describe
c-tables and lineage by using the exam-
ple in Figure 2. In a c-table, each tuple
is annotated with a Boolean expression
over some hidden variables; today,
we call that expression lineage. In our
example there are three tuples, U. of
Washington, U. of Wisconsin,
and Y! Research, each annotated
with a lineage expression over vari-
ables X1, X3, Y1, Y2, Y4. The semantics of
a c-table is a set of possible worlds. An
assignment of the variables defines the
world consisting of precisely those tu-
ples whose lineage is true under that
assignment, and the c-table “means”
the set of possible worlds defined by all
possible assignments. For an illustra-
tion, in our example any assignment
containing X1 = 3, Y2 = 1, X3 = 2, Y4 = 1
(and any values for the other variables)
defines the world {Y! Research, U.
of Washington}, while any assign
ment with Y1 = Y2 = Y3 = 0 defines the
empty world.

Location
U. Washington (>

>
>

<
<

<

>
>

<
<

>
>

>

((Y4 = 1)

(X4 = 1)

(X3 = 2)

(X3 = 1)

(Y2 = 1)

(Y2 = 1)

(Y2 = 1)

(Y1 = 1)

(Y1 = 1)

(Y1 = 1)

(X1 = 1)

(X1 = 2)

(X1 = 3)

(X1 = 1)

(X1 = 2)

(X1 = 3)

U. Wisconsin ((

Y! Research (

Figure 2: An example of a c-table.

review articles

july 2009 | vol. 52 | no. 7 | communications of the acm 91

correctly is called a safe plan. To un-
derstand the context of this result we
review a fundamental principle in rela-
tional query processing: the separation
between what and how.

In a relational query the user speci-
fies what she wants: relational query
languages like SQL are declarative.
The system translates the query into
relational algebra, using operators
like join  , selection s, projection-
with-duplicate-elimination Π. The re-
sulting expression is called a relational
plan and represents how the query will
be evaluated. The separation between
what and how was first articulated by
Codd when he introduced the rela-
tional data model,8 and is at the core
of any modern relational database sys-
tem. A safe plan allows probabilities to
be computed in the relational algebra,
by extending its operators to manipu-
late probabilities.12 There are multiple
ways to extend them, the simplest is to
assume all tuples to be independent:
a join that combines two tuples com-
putes the new probability as p1p2, and
a duplicate elimination that replaces
n tuples with one tuple computes the
output probability as 1 − (1 − p1) . . . 
(1 − pn). A safe plan is by definition a
plan in which all these operations
are provably correct. The correct-
ness proof (or safety property) needs
to be done by the query optimizer,
through a static analysis on the plan.
Importantly, safety does not depend
on the actual instance of the database,
instead, once a plan has been proven
to be safe, it can be executed on any da-
tabase instance.

We illustrate with the query in Figure
3(a). Any modern relational database
engine will translate it into the logi-
cal plan shown in (b). However, this
plan is not safe, because the operation
Π
Affiliation      

(projection-with-duplicate-
elimination) combines tuples that are
not independent, and therefore the out-
put probabilities are incorrect. The fig-
ure illustrates this for the output value Y!
Research, by tracing its computation
through the query plan: the output prob-
ability is 1 − (1 − p3

1q1)(1 − p3
1q2). However,

the lineage of Y! Research is (X1 = 3 ∧ Y1
= 1) ∧ (X1 = 3 ∧ Y2 = 1), hence the correct
probability is p3

1(1 − (1 − q1)(1 − q2)).
Alternatively, consider the plan

shown in (c). This plan performs an ear-
ly projection and duplicate elimination

on Services. It is logically equivalent
to the plan in (b), i.e., the extra dupli-
cate elimination is harmless. However,
the new plan computes the output
probability correctly: the figure illus-
trates this for the same output value,
Y! Research. Note that although
plans (b) and (c) are logically equiva-
lent over conventional databases, they
are no longer equivalent in their treat-
ment of probabilities: one is safe, the
other not.

Safety is a central concept in query
processing on probabilistic databases.
A query optimizer needs to search not
just for a plan with lowest cost, but for
one that is safe as well, and this may
affect the search strategy and the out-
come: in a conventional database there
is no reason to favor the plan in (c) over
that in (b) (and in fact modern optimiz-
ers will not choose plan (c) because the
extra duplication elimination increas-
es the cost), but in a probabilistic data-
base plan (c) is safe while (b) is unsafe.
A safe plan can be executed directly
by a database engine with only small
changes to the implementation of its
relational operators. Alternatively, a
safe plan can be executed by express-
ing it in regular SQL and executing it
on a conventional database engine,
without any changes: Figure 3(d) illus-
trates how the safe plan can be convert-
ed back into SQL.

Safe plans have been described for
databases with independent tuples,11
for BID databases,12 for queries whose
predicates have aggregate operators,32
and for Markov Chain databases.34
While conceptually a safe plan ties the
probabilistic inference to the query
plan, Olteanu et al.29 have shown that it
is possible to separate them at runtime:
the optimizer is free to choose any que-
ry plan (not necessarily safe), then the
probabilistic inference is guided by the
information collected from the safe
plan. This results in significant execu-
tion speed-up for typical SQL queries.

Dichotomy of Query Evaluation.
Unfortunately, not all queries admit
safe plans. In general, query evaluation
on a probabilistic database is no easier
than general probabilistic inference.
The latter is known to be a hard prob-
lem.35 In databases, however, one can
approach the query evaluation prob-
lem differently, in a way that is best
explained by recalling an important

distinction made by Vardi in a land-
mark paper in 1982.38 He proposed that
the query expression (which is small)
and the database (which is large) be
treated as two different inputs to the
query evaluation problem, leading to
three different complexity measures:
the data complexity (when the query
is fixed), the expression complexity
(when the database is fixed), and the
combined complexity (when both
are part of the input). For example, in
conventional databases, all queries
have data complexity in PTIME, while
the combined complexity is PSPACE
complete.

We apply the same distinction to
query evaluation on probabilistic data-
bases. Here the data complexity offers
a more striking picture: some queries
are in PTIME (for example, all safe que-
ries), while others have #P-hard data
complexity. In fact, for certain query
languages or under certain assump-
tions it is possible to prove a complete
dichotomy, that is, each query belongs
to one of these two classes.10, 12, 32, 34
Figure 4 describes the simplest dichot-
omy theorem, for conjunctive queries
without self-joins over databases with
independent tuples, first proven by
Dalvi and Suciu.11 Safe queries are by
definition in the first class; under the
dichotomy property, any unsafe query
has #P-hard data complexity. For un-
safe queries we really have no choice
but to resort to a probabilistic infer-
ence algorithm that solves, or approxi-
mates ,a #P-hard problem. The abrupt
change in complexity from PTIME to
#P-hard is unique to probabilistic da-
tabases, and it means that query opti-
mizers need to make special efforts to
identify and use safe queries.

An active line of research develops
query evaluation techniques that soft-
en the transition from safe to unsafe
queries. One approach extends the
reach of safe plans: for example, safe
subplans can be used to speed up pro-
cessing unsafe queries,33 functional
dependencies on the data, or knowing
that some relations are deterministic
can be used to find more safe plans,11,

29 and safe plans have been described
for query languages for streams of
events.34

Another approach is to optimize
the general-purpose probabilistic in-
ference on the lineage expressions.36

92 communications of the acm | july 2009 | vol. 52 | no. 7

review articles

independent, but it is always possible
to partition the tuples into blocks such
that tuples from different blocks are
independent, and, moreover, there ex-
ists a “best” such partition33; within
a block, the correlations between the
tuples remain unspecified. The blocks
are described at the schema level, by a
specific set of attributes: grouping by
those attributes gives the blocks. This
is called a partial representation, and
can be used to evaluate some queries
over the views. Note that the problem
of finding a good partial represen-
tation of the view is done by a static
analysis that is orthogonal to the analy-
sis whether the view is safe or unsafe:
there are examples for all four combi-
nations of safe/unsafe representable/
unrepresentable views.

Facet 3: User Interface
The semantics of query Q on a probabi-
listic database with possible worlds W
is, in theory, quite simple, and is given
by the image probability space over the
set of possible answers, {Q(I) | I ∈ W}.
In practice, it is impossible, and per-
haps useless, to return all possible sets
of answers. An important problem in
probabilistic databases is how to best

A new direction is taken by a recent
project at IBM Almaden23 that builds
a database system where Monte Carlo
simulations are pushed deep inside
the engine, thus able to evaluate any
query safe or unsafe. What is particu-
larly promising about this approach
is that through clever query optimiza-
tion techniques, such as tuple bundles,
the cost of sampling operations can be
drastically reduced. A complementary
approach, explored by Olteanu et al.,29
is to rewrite queries into ordered binary
decision diagrams (OBDD). They have
observed that safe plans lead to linear-
sized OBDDs. This raises the possibil-
ity that other tractable cases of OBDDs
can be inferred, perhaps by analyzing
both the query expression and the da-
tabase statistics.

Materialized Views. The use of mate-
rialized views to answer queries is a very
powerful tool in data management.21
In its most simple formulation, there
are a number of materialized views, for
example, answers to previous queries,
and the query is rewritten in terms of
these views, to improve performance.

In the case of probabilistic data-
bases, materialized views have been
studied in Ré and Suciu.33 Because of

the dichotomy of the query complex-
ity, materialized views can have a dra-
matic impact on query evaluation: a
query may be unsafe, hence #P-hard,
but after rewriting it in terms of views
it may become a safe query, and thus is
in PTIME. There is no magic here, we
don’t avoid the #P-hard problem, we
simply take advantage of the fact that
the main cost has already been paid
when the view was materialized.

The major challenge in using ma-
terialized views over probabilistic data
is that we need to represent the view’s
output. We can always compute the lin-
eage of all the tuples in the view, and
this provides a complete representa-
tion of the view, but it also defeats our
purpose, since using these lineage ex-
pressions during query evaluation does
not simplify the probabilistic inference
problem. Instead, we would like to use
only the marginal tuple probabilities
that have been computed for the ma-
terialized view, not their lineage. For
example, it may happen that all tuples
are independent probabilistic events,
and in this case we only need the
marginal probabilities; we say in this
case the view is fully representable. In
general, not all tuples in the view are

Figure 3: An SQL query on the data in Figure 1(a) returning the affiliations of all researchers who performed some service for VLDB. The
query follows the syntax of MayBMS,2 where confidence() is an aggregate operator returning the output probability. The figure shows an
unsafe plan in (b) and a safe plan in (c), and also traces the computation of the output probability of Y! Research: it assumes there is a single
researcher Fred with that affiliation, and that Fred performed two services for VLDB. The safe plan rewritten in SQL is shown in (d): the ag-
gregate function prod is not supported by most relational engines, and needs to be rewritten in terms of sum, logarithms, and exponentiation.

SELECT x.Affiliation, confidence()
FROM Researchers x, Services y
WHERE x.Name = y.Name
and y.Conference = ’VLDB’
GROUP BY x.Affiliation

(a)

SELECT x.Affiliation, 1-prod(1-x.P*y.P)
FROM Researchers x,(SELECT Name, 1-(1-prod(P))

FROM Services
WHERE Conference = ’VLDB’
GROUP BY Name) y

WHERE x.Name = y.Name
GROUP BY x.Affiliation

(d)

Name

Researchers Services

Affiliation

Conference

(b)

Name

Researchers Services

Affiliation

Conference

Name

(c)

Fred Y! Research

Y! Research 1 − (1 − p3
1q1)(1 − p3

1q2)
Y! Research

Y! ResearchFred

1 − p3
1(1 − q1)(1 − q2)

1 − p3
1(1 − q1)(1 − q2)

1 − (1 − q1)(1 − q2)
VLDB Session Chair p3

1q1

Fred Y! Research p3
1

Fred

Fred Y! Research p3
1

p3
1q2PC MemberVLDBY! ResearchFred

Fred

Fred

Session Chair

PC Member

q1

q2

VLDB

VLDB
Fred

Fred

Session Chair

PC Member

q1

q2

VLDB

VLDB

review articles

july 2009 | vol. 52 | no. 7 | communications of the acm 93

present the set of possible query an-
swers to the user. To date, two practi-
cal approaches have been considered:
ranking tuples and aggregation over
imprecise values.

Ranking and Top-k Query Answering.
In this approach the system returns all
possible answer tuples and their prob-
abilities: P(t1 ∈ Q), P(t2 ∈ Q), . . . noted
previously: the correlations between
the tuples are thus lost. The emphasis
in this approach is to rank these tuples,
and restrict them to the top k.

One way to rank tuples is in decreas-
ing order of their output probabili-
ties:31 P(t1 ∈ Q) ≥ P(t2 ∈ Q) ≥ . . . Often,
however, there may be a user-specified
order criteria, and then the system
needs to combine the user’s ranking
scores with the output probability.37 A
separate question is whether we can
use ranking to our advantage to speed
up query performance by returning
only the k highest ranked tuples: this
problem is called top-k query answer-
ing. One can go a step further and drop
the output probabilities altogether: Ré
et al.31 argue that ranking the output
tuples is the only meaningful seman-
tics for the user, and propose focus-
ing the query processor on computing

return those companies having the sum
of profits greater than 1M. Both types
of aggregates are needed in probabi-
listic databases. The first type is in-
terpreted as expected value, and most
aggregate functions can be computed
easily using the linearity of expecta-
tion. For instance, the complexities of
computing sum and count aggregates
over a column are the same as the com-
plexities of answering the same query
without the aggregate, such as where
all possible values of the column are
returned along with their probabili-
ties.11 Complexities of computing min
and max are the same as those of com-
puting the underlying queries with the
aggregates replaced by projections
removing the columns.11 One aggre-
gate whose expected value is more dif-
ficult to compute is average, which
is an important aggregate function for
OLAP over imprecise data. One can
compute the expected values of sum
and count(*), but the expected value
of average is not their ratio. A sur-
prising result was shown by Jayram et
al.24 who proved that average can be
computed efficiently. They give an ex-
act algorithm to compute average on
a single table in time O(n log2 n). They

Figure 4: The dichotomy of conjunctive queries without self-joins on tuple-independent probabilistic
databases is captured by Hierarchical Queries.

Hierarchical Queries
In the case of tuple-independent databases (where all tuples are independent) safe queries are precisely the
hierarchical queries; we define hierarchical queries here.
A conjunctive query is:

q(z̄) : − body

A conjunctive query is without self-joins if any two distinct subgoals refer to distinct relation symbols.

To illustrate the theorem, consider the two queries:

In q2 we have sg(x) = {R, S}, sg(y) = {S, T }; hence it is nonhierarchical and is #P-hard.
In q1 we have sg(x) = {R, S, T}, sg(y) = {S}; hence it is hierarchical and can be evaluated in PTIME.

 THEOREM 2.2 (DICHOTOMY). (Dalvi and Suciu11, 12) Let q be a conjunctive query without self-joins. (1) If q is
hierarchical then its data complexity over tuple-independent databases is in PTIME. (2) If q is not hierarchical
then its data complexity over tuple-independent databases is #P-hard.

where body consists of a set of subgoals g1, g2, . . . , gk, and ̄z are called the head variables. Denote Vars(gi) the set of
variables occurring in gi and Vars (q) = �i = 1, k Vars(gi). For each x � Vars(q) denote sg(x) = {gi | x � Vars(gi)}.

DEFINITION 2.1. Let q be a conjunctive query and ̄z its head variables. q is called hierarchical if for all x, y �
Vars(q) − z̄, one of the following holds: (a) sg(x) � sg(y), or (b) sg(x) � sg(y), or (c) sg(x) � sg(y) = .

q2(z) : − R(x, z), S(x, y), T(y, z)

q1(z) : − R(x, z), S(x, y), T(x, z)

the ranking, instead of the output
probabilities.

The power of top-k query answering
in speeding up query processing has
been illustrated in a seminal paper by
Fagin et al.16 When applied to probabi
listic databases that principle leads to
a technique called multisimulation.31
It assumes that a tuple’s probability P(t
∈ Q) is approximated by an iterative al-
gorithm, like a Monte Carlo simula-
tion: after some number steps n, the
probability P(t ∈ Q) is known to be, with
high probability, in an interval (p − en,
p + en), where en decreases with n. The
idea in the multisimulation algorithm
is to carefully control how to allocate
the simulation steps among all candi-
date tuples in the query’s answer, in or
der to identify the top-k tuples without
wasting iterations on the other tuples.
Multisimulation reduces the compu
tation effort roughly by a factor of N/k,
where N is the number of all possible
answers, and k is the number of top tu-
ples returned to the user.

Aggregates over Imprecise Data. In
SQL, aggregates come in two forms:
value aggregates, as in for each compa-
ny return the sum of the profits in all its
units, and predicate aggregates, as in

94 communications of the acm | july 2009 | vol. 52 | no. 7

review articles

research community. In CIDR (2007), 169–172.
15.	 Deshpande, A., Guestrin, C., Madden, S., Hellerstein,

J.M. and Hong, W. Model-driven data acquisition in
sensor networks. In VLDB (2004), 588–599.

16.	 Fagin, R., Lotem, A. and Naor, M. Optimal aggregation
algorithms for middleware. In Proceedings of the
20th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (2001), ACM Press,
102–113.

17.	 Friedman, N., Getoor, L., Koller, D. and Pfeffer A.
Learning probabilistic relational models. In IJCAI
(1999), 1300–1309.

18.	 Fuhr, N. and Roelleke, T. A probabilistic relational
algebra for the integration of information retrieval
and database systems. ACM Trans. Inf. Syst. 15, 1
(1997), 32–66.

19.	 Grädel, E., Gurevich, Y. and Hirsch, C. The complexity
of query reliability. In PODS (1998), 227–234.

20.	Gupta, R. and Sarawagi, S. Creating probabilistic
databases from information extraction models.
In VLDB (2006), 965–976.

21.	H alevy, A. Answering queries using views: A survey.
VLDB J. 10, 4 (2001), 270–294.

22.	 Imielinski, T. and Lipski, W. Incomplete information
in relational databases. J. ACM 31 (Oct. 1984),
761–791.

23.	 Jampani, R., Xu, F., Wu, M., Perez, L., Jermaine, C. and
Haas, P. MCDB: A Monte Carlo approach to managing
uncertain data. In SIGMOD (2008), 687–700.

24.	 Jayram, T., Kale, S. and Vee, E. Efficient aggregation
algorithms for probabilistic data. In SODA (2007).

25.	K anagal, B. and Deshpande, A. Online filtering,
smoothing and probabilistic modeling of streaming
data. In ICDE (2008), 1160–1169.

26.	 Lafferty, J., McCallum, A. and Pereira, F. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML (2001).

27.	 Lakshmanan, L., Leone, N., Ross, R. and
Subrahmanian, V. Probview: A flexible probabilistic
database system. ACM Trans. Database Syst. 22, 3
(1997).

28.	 Nierman, A. and Jagadish, H. ProTDB: Probabilistic
data in XML. In VLDB (2002), 646–657.

29.	 Olteanu, D., Huang, J. and Koch, C. SPROUT: Lazy vs.
eager query plans for tuple independent probabilistic
databases. In ICDE (2009).

30.	Rastogi, V., Suciu, D. and Hong, S. The boundary
between privacy and utility in data publishing.
In VLDB (2007).

31.	 Ré, C., Dalvi, N. and Suciu, D. Efficient Top-k query
evaluation on probabilistic data. In ICDE (2007).

32.	 Ré, C., Suciu, D. Efficient evaluation of having queries
on a probabilistic database. In Proceedings of DBPL
(2007).

33.	 Ré, C. and Suciu, D. Materialized views in probabilistic
databases for information exchange and query
optimization. In Proceedings of VLDB (2007).

34.	Ré, C., Letchner, J., Balazinska, M. and Suciu, D.
Event queries on correlated probabilistic streams. In
SIGMOD (Vancouver, Canada, 2008).

35.	 Roth, D. On the hardness of approximate reasoning.
Artif. Intell. 82, 1–2 (1996), 273–302.

36.	 Sen, P. and Deshpande, A. Representing and querying
correlated tuples in probabilistic databases. In ICDE,
2007.

37.	 Soliman, M.A., Ilyas, I.F. and Chang, K.C.-C.
Probabilistic top- and ranking-aggregate queries.
ACM Trans. Database Syst. 33, 3 (2008).

38.	 Vardi, M.Y. The complexity of relational query
languages. In Proceedings of 14th ACM SIGACT
Symposium on the Theory of Computing (San
Francisco, California, 1982), 137–146.

39.	Verma, T. and Pearl, J. Causal networks: Semantics
and expressiveness. Uncertainty Artif. Intell. 4
(1990), 69–76.

40.	Wong, E. A statistical approach to incomplete
information in database systems. ACM Trans.
Database Syst. 7, 3 (1982), 470–488.

Nilesh Dalvi (ndalvi@yahoo-inc.com)
Yahoo!Research, Santa Clara, CA.

Christopher Ré (chrisre@cs.washington.edu)
University of Washington, Seattle, WA.

Dan Suciu (suciu@cs.washington.edu)
University of Washington, Seattle, WA.

© 2009 ACM 0001-0782/09/0700 $10.00

also give efficient algorithms to com-
pute various aggregates when the data
is streaming.

The second type of aggregates, those
occurring in the HAVING clause of an
SQL query, have also been considered.32
In this case, one needs to compute the
entire density function of the random
variable represented by the aggregate,
and this is more difficult than comput-
ing the expected value. Similar to safe
queries, the density function can some-
times be computed efficiently and ex-
actly, but it is hard in general. Worse, in
contrast to safe queries, which can al-
ways be efficiently approximated, there
exists HAVING queries that do not ad-
mit efficient approximations.

A Little History of the
(Possible) Worlds
There is a rich literature on probabilistic
databases, and we do not aim here to be
complete; rather, as in Gombrich’s clas-
sic A Little History of the World, we aim to
“catch a glimpse.” Early extensions of
databases with probabilities date back
to Wong40 and Cavallo and Pittarelli.6 In
an influential paper Barbara et al.3 de-
scribed a probabilistic data model that
is quite close to the BID data model,
and showed that SQL queries without
duplicate elimination or other aggrega-
tions can be evaluated efficiently. Prob-
View27 removed the restriction on que-
ries, but returned confidence intervals
instead of probabilities. At about the
same time, Fuhr and Roelleke18 started
to use c-tables and lineage for probabi-
listic databases and showed that every
query can be computed this way.

Probabilities in databases have also
been studied in the context of “reli-
ability of queries,” which quantifies
the probability of a query being correct
assuming that tuples in the database
have some probability of being wrong.
Grädel et al.19 were the first to prove
that a simple query can have data com-
plexity that is #P-hard.

Andritsos et al.1 have applied proba-
bilistic databases to the problem of
consistent query answering over incon-
sistent databases. They observed that
the “certain tuples”21 to a query over an
inconsistent database are precisely the
tuples with probability 1 under proba-
bilistic semantics.

The intense interest in probabi-
listic databases seen today is due to a

number of influential projects: appli-
cations to sensor data,7, 15 data clean-
ing,1 and information extraction,20 the
safe plans of Dalvi and Suciu,11 the Trio
system4 that introduced ULDBs, and
the advanced representation systems
described in Antova et al.2 and Sen and
Deshpande.36

Conclusion
Many applications benefit from find-
ing valuable facts in imprecise data,
the diamonds in the dirt, without hav-
ing to clean the data first. The goal
of probabilistic databases is to make
uncertainty a first-class citizen, and
to reduce the cost of using such data,
or (more likely) to enable applications
that were otherwise prohibitively ex-
pensive. This article describes some
of the recent advances for large-scale
query processing on probabilistic data-
bases and their roots in classical data
management concepts.

This work was partially supported by
NSF Grants IIS-0454425, IIS-0513877,
IIS-0713576, and a Gift from Microsoft.
An extended version of this work with
additional references is available at
http://www.cs.washington.edu/homes/
suciu/.�

References
1.	 Andritsos, P. and Fuxman, A., Miller, R.J. Clean

answers over dirty databases. In ICDE (2006).
2.	 Antova, L., Jansen, T., Koch, C. and Olteanu, D. Fast

and simple relational processing of uncertain data.
In ICDE (2008).

3.	 Barbara, D., Garcia-Molina, H. and Porter, D. The
management of probabilistic data. IEEE Trans.
Knowl. Data Eng. 4, 5 (1992), 487–502.

4.	 Benjelloun, O., Sarma, A.D., Halevy, A., Theobald,
M. and Widom, J. Databases with uncertainty and
lineage. VLDBJ 17, 2 (2008), 243–264.

5.	 Burdick, D., Deshpande, P., Jayram, T.S.,
Ramakrishnan, R. and Vaithyanathan, S. Efficient
allocation algorithms for OLAP over imprecise data.
In VLDB (2006), 391–402.

6.	 Cavallo, R. and Pittarelli, M. The theory of
probabilistic databases. In Proceedings of VLDB
(1987), 71–81.

7.	 Cheng, R., Kalashnikov, D. and Prabhakar, S.
Evaluating probabilistic queries over imprecise data.
In SIGMOD (2003), 551–562.

8.	 Codd, E.F. Relational completeness of data base
sublanguages. In Database Systems (1972),
Prentice-Hall, 65–98.

9.	 Cowell, R., Dawid, P., Lauritzen, S. and Spiegelhalter,
D., eds. Probabilistic Networks and Expert Systems
(1999), Springer.

10.	 Dalvi, N. and Suciu, D. The dichotomy of conjunctive
queries on probabilistic structures. In PODS (2007),
293–302.

11.	 Dalvi, N. and Suciu, D. Efficient query evaluation
on probabilistic databases. VLDB J. 16, 4 (2007),
523–544.

12.	 Dalvi, N. and Suciu, D. Management of probabilistic
data: Foundations and challenges. In PODS (Beijing,
China, 2007) 1–12 (invited talk).

13.	 Darwiche, A. A differential approach to inference in
bayesian networks. J. ACM 50, 3 (2003), 280–305.

14.	 DeRose, P., Shen, W., Chen, F., Lee, Y., Burdick, D.,
Doan, A. and Ramakrishnan, R. Dblife: A community
information management platform for the database

http://www.cs.washington.edu/homes/suciu
mailto:ndalvi@yahoo-inc.com
mailto:chrisre@cs.washington.edu
mailto:suciu@cs.washington.edu
http://www.cs.washington.edu/homes/suciu

research highlights

july 2009 | vol. 52 | no. 7 | communications of the acm 95

p. 107

Formal Verification
of a Realistic Compiler
By Xavier Leroy

p. 106

Technical
Perspective
A Compiler’s Story
By Greg Morrisett

p. 97

Apprenticeship Learning
for Helicopter Control
By Adam Coates, Pieter Abbeel, and Andrew Y. Ng

p. 96

Technical
Perspective
The Ultimate
Pilot Program
By Stuart Russell
and Lawrence Saul

96 communications of the acm | july 2009 | vol. 52 | no. 7

tion not taken is a negative example.
Unfortunately, the resulting policies
fail miserably when any perturbation
puts the aircraft into a state not seen
during training. Perhaps this is not
surprising, because the policy has no
idea how the vehicle works or what the
pilot is attempting.

In contrast, the authors formulate
the problem as a Markov decision
process (MDP), where the transition
model specifies how the vehicle works,
the reward function specifies what the
pilot is trying to do, and the optimal
policy maximizes the expected sum of
rewards over the entire trajectory. Ini-
tially, of course, the transition model
and reward function are unknown, so
the learning system cannot compute
the optimal policy without first ob-
taining more information. In the well-
established setting of reinforcement
learning, the learning system acts in
the world and observes outcomes and
rewards. For many problems, learning
a model and a reward function requires
fewer experiences than trying to learn a
policy directly—and experiences are al-
ways in short supply in robot learning.

Pure tabula rasa reinforcement
learning is not applicable to helicopter
aerobatics, however, for two reasons:
First, in the early stages of learning
there would be far too many crashes;
second, the reward function is not
known even to the experimenters, so
a reward signal cannot easily be pro-
vided to the learning system. The ap-
prenticeship learning setting adopted
by the authors avoids both problems
by learning from expert behaviors.

By observing the helicopter’s tra-
jectory while the expert is flying, the
learning system can acquire a transi-
tion model that is reasonably accurate
in the regions of state space that are
likely to be visited during these ma-
neuvers. The role of prior knowledge is
crucial here; while the model param-
eters are learned, the model structure
is determined in advance from general
knowledge of helicopter dynamics.

The task of learning the reward

In one scene from The Matrix, two
leaders of the human resistance are
trapped on the roof of a skyscraper.
The only means of escape is by heli-
copter, which neither can operate.
The humans quickly call up a “pilot
program” for helicopter flight, absorb
the knowledge instantly via a brain-
computer interface, and take off in the
nick of time.

The following paper by Coates, Ab-
beel, and Ng describes an equally re-
markable feat: learning to fly helicop-
ter aerobatics of superhuman quality
by watching a few minutes of a human
expert performance. Before you read
the paper, we suggest watching the
videos at http://heli.stanford.edu/.

The authors provide careful de-
scriptions of the problem and of the
technical innovations required for
its solution. The paper’s importance
lies not only in these innovations, but
also in the way it illustrates the flavor
of modern artificial intelligence re-
search. AI has grown to encompass, in
a seamless way, techniques from areas
such as statistical learning, dynami-
cal systems, and control theory, and
has reintegrated with areas that many
thought had gone their own way, such
as robotics, vision, and natural lan-
guage understanding. The key to re-
unification has been the emergence of
effective techniques for probabilistic
reasoning and machine learning. The
authors illustrate this trend perfectly,
solving a problem in robotics that had
resisted traditional control theory
techniques for many years.

Learning to fly a helicopter means
learning a policy—a mapping from
states to control actions. What form
should the mapping take and what in-
formation should be supplied to the
learning system? Some early work ad-
opted the idea of observing expert per-
formance to learn to fly a small plane,1

using supervised learning methods
and representing policies as decision
trees. In this approach, each expert
action is a positive example of the
function to be learned, while each ac-

function from expert behavior is called
“inverse reinforcement learning.” In-
troduced in AI in the late 1990s, this
actually has a long history in econom-
ics.2 For helicopter aerobatics, the
reward function specifies what the
desirable trajectories are, such that
following them yields high reward,
and how deviations should be penal-
ized. This information is implicit in
the expert’s behavior and its variabil-
ity. To account for this variability, the
authors develop a probabilistic gen-
erative model for trajectories, borrow-
ing methods from speech recognition
and biological sequence alignment
to handle variations in timing. After
learning from several expert perfor-
mances, the reward function actually
defines a much better trajectory than
the expert could demonstrate, and
the autonomous helicopter eventually
outperforms its human teacher.

The authors’ success in this difficult
task reflects fundamental progress in
our field. While achieving compara-
ble success on other difficult robotic
tasks is not yet a routine application of
off-the-shelf methods, the technology
of apprenticeship learning provides a
plausible template for progress.	

References
1.	 Sammut, C., Hurst, S., Kedzier, D. and Michie, D.

Learning to fly. In Proceedings of the Intern. Conf. on
Machine Learning (1992).

2.	 Sargent, T.J. Estimation of dynamic labor demand
schedules under rational expectations. J. Political
Economy 86 (1978), 1009–1044.

Stuart Russell is a professor of CS, chair of the
Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley, and co-
chair of Communications’ Research Highlights Board.

Lawrence Saul is an associate professor in the
Department of Computer Science and Engineering at
the University of California, San Diego, and a member of
Communications’ Research Highlights Board.

© 2009 ACM 0001-0782/09/0700 $10.00

Technical Perspective
The Ultimate Pilot Program
By Stuart Russell and Lawrence Saul

research highlights

doi:10.1145/1538788.1538811

http://heli.stanford.edu/

july 2009 | vol. 52 | no. 7 | communications of the acm 97

In apprenticeship learning, we assume that an expert is
available who is capable of performing the desired maneu-
vers. We then leverage these demonstrations to learn all of the
necessary components for our control system. In particular,
the demonstrations allow us to learn a model of the helicop-
ter dynamics, as well as appropriate choices of target trajec-
tories and reward parameters for input into a reinforcement
learning or optimal control algorithm.

The remainder of this paper is organized as follows: Sec
tion 2 briefly overviews related work in the robotics literature
that is similar in spirit to our approach. Section 3 describes
our basic modeling approach, where we develop a model of
the helicopter dynamics from data collected under human
control, and subsequently improve this model using data
from autonomous flights. Section 4 presents an apprentice-
ship-based trajectory learning algorithm that learns idealized
trajectories of the maneuvers we wish to fly. This algorithm
also provides a mechanism for improving our model of the
helicopter dynamics along the desired trajectory. Section 5
describes our control algorithm, which is based on differen-
tial dynamic programming (DDP).15 Section 6 describes our
helicopter platform and presents our experimental results.

2. RELATED WORK
Although no prior works span our entire setting of appren-
ticeship learning for control, there are separate pieces of
work that relate to various components of our approach.

Atkeson and Schaal,8 for instance, use multiple demon-
strations to learn a model for a robot arm, and then find an
optimal controller in their simulator, initializing their opti-
mal control algorithm with one of the demonstrations.

The work of Calinon et al.11 considered learning trajectories
and constraints from demonstrations for robotic tasks. There,
however, they do not consider the system’s dynamics or pro-
vide a clear mechanism for the inclusion of prior knowledge,
which will be a key component of our approach as detailed in
Section 4. Our formulation will present a principled, joint opti-
mization which takes into account the multiple demonstra-
tions, as well as the (complex) system dynamics.

Among others, An et al.6 and Abbeel et al.5 have exploited
the idea of trajectory-specific model learning for control.

Apprenticeship Learning
for Helicopter Control
By Adam Coates, Pieter Abbeel, and Andrew Y. Ng

doi:10.1145/1538788.1538812

Abstract
Autonomous helicopter flight is widely regarded to be a
highly challenging control problem. As helicopters are highly
unstable and exhibit complicated dynamical behavior, it is
particularly difficult to design controllers that achieve high
performance over a broad flight regime.

While these aircraft are notoriously difficult to control,
there are expert human pilots who are nonetheless capable
of demonstrating a wide variety of maneuvers, including
aerobatic maneuvers at the edge of the helicopter’s perfor-
mance envelope. In this paper, we present algorithms for
modeling and control that leverage these demonstrations
to build high-performance control systems for autonomous
helicopters. More specifically, we detail our experiences with
the Stanford Autonomous Helicopter, which is now capable
of extreme aerobatic flight meeting or exceeding the perfor-
mance of our own expert pilot.

1. INTRODUCTION
Autonomous helicopter flight represents a challenging con-
trol problem with high-dimensional, asymmetric, noisy, non-
linear, nonminimum phase dynamics. Helicopters are widely
regarded to be significantly harder to control than fixed-wing
aircraft. (See, e.g., Leishman,18 Seddon.31) At the same time,
helicopters provide unique capabilities, such as in-place hover
and low-speed flight, important for many applications. The
control of autonomous helicopters thus provides a challenging
and important test bed for learning and control algorithms.

There is a considerable body of research concerning con-
trol of autonomous (RC) helicopters in the typical “upright
flight regime.” This has allowed autonomous helicopters
to reliably perform many practical maneuvers, such as sus-
tained hover, low-speed horizontal flight, and autonomous
landing.9, 16, 17, 24, 28, 30

In contrast, autonomous flight achievements in other
flight regimes have been limited. Gavrilets et al.14 performed
some of the first autonomous aerobatic maneuvers: a stall-
turn, a split-S, and an axial roll. Ng et al.23 achieved sustained
autonomous inverted hover. While these results significantly
expanded the potential capabilities of autonomous heli-
copters, it has remained difficult to design control systems
capable of performing arbitrary aerobatic maneuvers at a per-
formance level comparable to human experts.

In this paper, we describe our line of autonomous helicop-
ter research. Our work covers a broad approach to autono-
mous helicopter control based on “apprenticeship learning”
that achieves expert-level performance on a vast array of
maneuvers, including extreme aerobatics and autonomous
autorotation landings.1, 2, 12, 23 (Refer footnote a.)

A previous version of this paper, entitled “Learning for
Control from Multiple Demonstrations” was published
in Proceedings of the 26th International Conference of
Machine Learning, (ICML 2008), 144–151.

a  Autorotation is an emergency maneuver that allows a trained pilot to de-
scend and land the helicopter without engine power.

98 communications of the acm | july 2009 | vol. 52 | no. 7

research highlights

By our convention, the superscripts b indicate that we
are using body coordinates. We note our model explicitly
encodes the dependence on the gravity vector (gb

x, gb
y, gb

z ) and
has a sparse dependence of the accelerations on the current
velocities, angular rates, and inputs. The terms wx, wy, wz,

are zero mean Gaussian random variables,
which represent the perturbation of the accelerations due to
noise (or unmodeled effects).

To learn the coefficients, we record data while the heli-
copter is being flown by our expert pilot. We typically ask
our pilot to fly the helicopter through the flight regimes we
would like to model. For instance, to build a model for hov-
ering, the pilot places the helicopter in a stable hover and
sweeps the control sticks back and forth at varying frequen-
cies to demonstrate the response of the helicopter to differ-
ent inputs while hovering. Once we have collected this data,
the coefficients (e.g., Ax, Bx, C1, etc.) are estimated using lin-
ear regression.

When we want to perform a new maneuver, we can col-
lect data from the flight regimes specific to this maneu-
ver and build a new model. For aerobatic maneuvers, this
involves having our pilot repeatedly demonstrate the desired
maneuver.

It turns out that, in practice, these models generalize
reasonably well and can be used as a “crude” starting point
for performing aerobatic maneuvers. In previous work,2 we
demonstrated that models of the above form are sufficient
for performing several maneuvers including “funnels” (fast
sideways flight in a circle) and in-place flips and rolls. With
a “crude” model trained from demonstrations of these
maneuvers, we can attempt the maneuver autonomously.
If the helicopter does not complete the maneuver success-
fully, the model can be re-estimated, incorporating the data
obtained during the failed trial. This new model more accu-
rately captures the dynamics in the flight regimes actually
encountered during the autonomous flight and hence can
be used to achieve improved performance during subse-
quent attempts.

The observation that we can leverage pilot demonstra-
tions to safely obtain “reasonable” models of the helicopter
dynamics is the key to our approach. While these models may
not be perfect at first, we can often obtain a good approxima-
tion to the true dynamics provided we attempt to model only
a small portion of the flight envelope. This model can then,
optionally, be improved by incorporating new data obtained
from autonomous flights. Our trajectory learning algorithm
(Section 4) exploits this same observation to achieve expert-
level performance on an even broader range of maneuvers.

4. TRAJECTORY LEARNING
Once we are equipped with a (rudimentary) model of the
helicopter dynamics, we need to specify the desired trajec-
tory to be flown. Specifying the trajectory by hand, while
tedious, can yield reasonable results. Indeed, much of our
own previous work used hand-coded target trajectories.2
Unfortunately these trajectories usually do not obey the
system dynamics—that is, the hand-specified trajectory
is infeasible, and cannot actually be flown in reality. This
results in a somewhat more difficult control problem since

In contrast to our setting, though, their algorithms do not
coherently integrate data from multiple (suboptimal) dem-
onstrations by experts. We will nonetheless use similar ideas
in our trajectory learning algorithm.

Our work also has strong connections with recent work on
inverse reinforcement learning, which extracts a reward func-
tion from expert demonstrations. See, e.g., Abbeel,4 Neu,22
Ng, Ramachandran, Ratliff,25–27 Syed.32 We will describe a
methodology roughly corresponding to the inverse RL algo-
rithm of Abbeel4 to tune reward weights in Section 5.2.

3. MODELING
The helicopter state s comprises its position (x, y, z), orien-
tation (expressed as a unit quaternion q), velocity (x., y., z.),
and angular velocity (wx, wy, wz). The pitch angle of a blade
is changed by rotating it around its long axis changing the
amount of thrust the blade generates. The helicopter is con-
trolled via a four-dimensional action space:

1.	 u1 and u2: The lateral (left–right) and longitudinal
(front–back) cyclic pitch controls cause the helicopter
to roll left or right, and pitch forward or backward,
respectively.

2.	 u3: The tail rotor pitch control changes tail rotor thrust,
controlling the rotation of the helicopter about its ver-
tical axis.

3.	 u4: The main rotor collective pitch control changes the
pitch angle of the main rotor’s blades, by rotating the
blades around an axis that runs along the length of the
blade. The resulting amount of upward thrust (gener-
ally) increases with this pitch angle; thus this control
affects the main rotor’s thrust.

By using the cyclic pitch and tail rotor controls, the pilot can
rotate the helicopter into any orientation. This allows the
pilot to direct the thrust of the main rotor in any particular
direction (and thus fly in any particular direction) by rotat-
ing the helicopter appropriately.

Following our approach from Abbeel,3 we learn a model
from flight data that predicts accelerations as a function of the
current state and inputs. Accelerations are then integrated to
obtain the state changes over time. To take advantage of sym-
metry of the helicopter, we predict linear and angular accel-
erations in a “body-coordinate frame” (a coordinate frame
attached to the helicopter). In this body-coordinate frame,
the x-axis always points forward, the y-axis always points to
the right, and z-axis always points down with respect to the
helicopter.

In particular, we use the following model:

july 2009 | vol. 52 | no. 7 | communications of the acm 99

the control algorithm must determine an appropriate trade-
off between the errors it must inevitably make. As well, it
complicates our modeling process because we do not know,
a priori, the trajectory that the controller will attempt to fly,
and hence cannot focus our data collection in that region of
state space.

One solution to these problems is to leverage expert dem-
onstrations. By using a trajectory acquired from a demon-
stration aboard the real helicopter as the target trajectory
we are guaranteed that our target is a feasible trajectory.
Moreover, our data collection will already be focused on the
proper flight regime, provided that our expert demonstra-
tions cover roughly the same parts of state space each time.
Thus, we expect that our model of the dynamics along the
demonstrated trajectory will be reasonably accurate. This
approach has been used successfully to perform autono-
mous autorotation landings with our helicopter.1

While the autorotation maneuver can be demonstrated
relatively consistently by a skilled pilot,b it may be difficult
or impossible to obtain a perfect demonstration that is suit-
able for use as a target trajectory when the maneuver does
not include a steady-state regime, or involves complicated
adjustments over long periods of time. For example, when
our expert pilot attempts to demonstrate an in-place flip, the
helicopter position often drifts away from its starting point
unintentionally. Thus, when using this demonstration as
our desired trajectory, the helicopter will repeat the pilot’s
errors. However, repeated expert demonstrations are often
suboptimal in different ways, suggesting that a large number
of demonstrations could implicitly encode the ideal trajec-
tory that the (suboptimal) expert is trying to demonstrate.

In Coates,12 we proposed an algorithm that approxi-
mately extracts this implicitly encoded optimal demonstra-
tion from multiple suboptimal expert demonstrations. This
algorithm also allows us to build an improved, time-varying
model of the dynamics along the resulting trajectory suit-
able for high-performance control. In doing so, the algo-
rithm allows the helicopter to not only mimic the behavior
of the expert but even perform significantly better.

Properly extracting the underlying ideal trajectory from a
set of suboptimal trajectories requires a significantly more
sophisticated approach than merely averaging the states
observed at each time step. A simple arithmetic average of
the states would result in a trajectory that does not obey the
constraints of the dynamics model. Also, in practice, each
of the demonstrations will occur at different rates so that
attempting to combine states from the same time step in
each trajectory will not work properly.

Following Coates,12 we propose a generative model that
describes the expert demonstrations as noisy observations of
the unobserved, intended target trajectory, where each dem-
onstration is possibly warped along the time axis. We use an
expectation–maximization (EM) algorithm to both infer the
unobserved, intended target trajectory and a time-alignment

of all the demonstrations. The time-aligned demonstrations
provide the appropriate data to learn good local models in
the vicinity of the trajectory—such trajectory-specific local
models tend to greatly improve control performance.

4.1. Basic generative model
From our expert pilot we obtain M demonstration trajecto-
ries of length Nk, for k = 0..M − 1. Each trajectory is a sequence
of states, sk

j , and control inputs, uk
j , composed into a single

state vector:

Our goal is to estimate a “hidden” target trajectory of length
H, denoted similarly:

We use the following notation: y = {yk
j | j = 0..Nk - 1,

k = 0..M - 1}, z = {zt|t = 0..H}, and similarly for other indexed
variables.

The generative model for the ideal trajectory is given by
an initial state distribution z0 ~ N ( m0, Σ0) and an approxi-
mate model of the dynamics

	 	 (1)

The dynamics model does not need to be particularly accu-
rate. In fact, in our experiments, this model is of the form
described in Section 3, trained on a large corpus of data that
is not even specific to the trajectory we want to fly.c In our
experiments (Section 6) we provide some concrete examples
showing how accurately the generic model captures the true
dynamics for our helicopter.

Our generative model represents each demonstration as
a set of independent “observations” of the hidden, ideal tra-
jectory z. Specifically, our model assumes

	
	 (2)

Here t k
j is the time index in the hidden trajectory to which

the observation yk
j is mapped. The noise term in the observa-

tion equation captures both inaccuracies in estimating the
observed trajectories from sensor data, as well as errors in
the maneuver that are the result of the human pilot’s imper-
fect demonstration.d

b  The autorotation maneuver consists of a steady-state “glide” followed by
a short (several second) “flare” before landing. Though the maneuver is not
easy to learn, these components tend not to vary much from one demonstra-
tion to the next.

c  The state transition model also predicts the controls as a function of the
previous state and controls. In our experiments we predict u*t + 1 as u*t plus
Gaussian noise.
d  Even though our observations, y, are correlated over time with each other
due to the dynamics governing the observed trajectory, our model assumes
that the observations yk

j are independent for all j = 0 . . Nk − 1 and k = 0 . . M − 1.

100 communications of the acm | july 2009 | vol. 52 | no. 7

research highlights

The time indices t k
j are unobserved, and our model

assumes the following distribution with parameters dk
i  :

	
	 (3)

	 	 (4)

To accommodate small, gradual shifts in time between the
hidden and observed trajectories, our model assumes the
observed trajectories are subsampled versions of the hidden
trajectory. We found that having a hidden trajectory length
equal to twice the average length of the demonstrations, i.e.,

, gives sufficient resolution.
Figure 1 depicts the graphical model corresponding to

our basic generative model. Note that each observation yk
j

depends on the hidden trajectory’s state at time t k
j, which

means that for t k
j unobserved, yk

j depends on all states in
the hidden trajectory with which it could potentially be
associated.

4.2. Extensions to the generative model
We have assumed, thus far, that the expert demonstrations
are misaligned copies of the ideal trajectory merely cor-
rupted by Gaussian noise. Listgarten et al. have used this
same basic generative model (for the case where f (.) is the
identity function) to align speech signals and biological
data.19, 20 In our application to autonomous helicopter flight,
we can augment the basic model described above to account
for other sources of error that are important for modeling
and control.
Learning Local Model Parameters: We can substantially
improve our modeling accuracy by using a time-varying
model ft(.) that is specific to the vicinity of the intended tra-
jectory at each time t.

We express ft as our “crude” model (from Section 3), f,
augmented with a bias term,e b*t :

To regularize our model, we assume that b*t changes only
slowly over time. Specifically

We incorporate the bias into our observation model by
computing the observed bias for each of
the observed state transitions, and modeling this as a direct
observation of the “true” model bias corrupted by Gaussian
noise.

The result of this modification is that the ideal trajec-
tory must not only look similar to the demonstration tra-
jectories, but it must also obey a dynamics model which

includes those modeling errors consistently observed in the
demonstrations.
Factoring Out Demonstration Drift: It is often difficult, even
for an expert pilot, during aerobatic maneuvers to keep the
helicopter centered around a fixed position. The recorded
position trajectory will often drift around unintentionally.
Since these position errors are highly correlated, they are not
explained well by the Gaussian noise term in the observation
model. The basic dynamics model is easily augmented with
“drift” terms to model these errors, allowing us to infer the
drift included in each demonstration and remove it from the
final result (see Coates12 for details).
Incorporating Prior Knowledge: Even though it might be
hard to specify the complete ideal trajectory in state space,
we might still have prior knowledge about the trajectory. For
example, for the case of a helicopter performing an in-place
flip, our expert pilot can tell us that the helicopter should stay
at a fixed position while it is flipping. We show in Coates12 that
these bits of knowledge can be incorporated into our model
as additional noisy observations of the hidden states, where
the variance of the noise expresses our confidence in the accu-
racy of the expert’s advice. In the case of the flip, the variance
expresses our knowledge that it is, in fact, impossible to flip
perfectly in place and that the actual position of the helicop-
ter may vary slightly from the position given by the expert.

4.3. Trajectory learning algorithm
Our learning algorithm will automatically find the time-
alignment indices t, the time-index transition probabilities
d, and the covariance matrices Σ(·) by (approximately) maxi-
mizing the joint likelihood of the observed trajectories y and
the observed prior knowledge about the ideal trajectory, r,
while marginalizing out over the unobserved, intended tra-
jectory z. Concretely, our algorithm (approximately) solves

	 	 (5)

Then, once our algorithm has found t, d, Σ(·), it finds the most
likely hidden trajectory, namely the trajectory z that maxi-
mizes the joint likelihood of the observed trajectories y and
the observed prior knowledge about the ideal trajectory for
the learned parameters t, d, Σ(·). The joint optimization in

e  Our generative model can incorporate richer local models. We discuss
our choice of merely using biases in Coates.12 We also show there how to
estimate richer models post hoc using the output of our trajectory learning
algorithm.

Figure 1: Graphical model representing our trajectory assumptions.
(Shaded nodes are observed.)

z0

y
0

k y
1

k y
2

k

t0
k t1

k t2
k

z1 z2 z3 z4 ...

...

...

july 2009 | vol. 52 | no. 7 | communications of the acm 101

Equation 5 is difficult because (as can be seen in Figure 1)
the lack of knowledge of the time-alignment index variables
t introduces a very large set of dependencies between all the
variables. However, when t is known, the optimization prob-
lem in Equation 5 greatly simplifies thanks to context specific
independencies.10 For instance, knowledge that t k

1 = 3 tells us
that y k

1 depends only on z3. Thus, when all of the t are fixed, we
obtain a simplified model such as the one shown in Figure 2.
In this model we can directly estimate the multinomial
parameters d in closed form; and we have a standard HMM
parameter learning problem for the covariances Σ(·), which
can be solved using the EM algorithm13—often referred to
as Baum–Welch in the context of HMMs. Concretely, for our
setting, the EM algorithm’s E-step computes the pairwise
marginals over sequential hidden state variables by running
a (extended) Kalman smoother; the M-step then uses these
marginals to update the covariances Σ(·).

To also optimize over the time-indexing variables t, we
propose an alternating optimization procedure. For fixed Σ(·)
and d, and for fixed z, we can find the optimal time-indexing
variables t using dynamic programming over the time-index
assignments for each demonstration independently. The
dynamic programming algorithm to find t is known in the
speech recognition literature as dynamic time warping29
and in the biological sequence alignment literature as the
Needleman–Wunsch algorithm.21 The fixed z we use is the
one that maximizes the likelihood of the observations for
the current setting of parameters t, d, Σ(·).f

In practice, rather than alternating between complete
optimizations over Σ(·), d and t, we only partially optimize
over Σ(·), running only one iteration of the EM algorithm.

Complete details of the algorithm are provided in Coates.12

5. CONTROLLER DESIGN
Using the methods of Sections 3 and 4, we can obtain a
good target trajectory and a high-accuracy dynamics model
for this trajectory using pilot demonstrations. It remains
to develop an adequate feedback controller that will allow
the helicopter to fly this trajectory in reality. Our solution is
based on the DDP algorithm, which we have used in previ-
ous work.1, 2

5.1. Reinforcement learning formalism and DDP
A reinforcement learning problem (or optimal control prob-
lem) can be described by a quintuple (S, A, T, H, s0, R), which
is also referred to as a Markov decision process (MDP). Here
S is the set of states; A is the set of actions or inputs; T  is the
dynamics model, which is a set of probability distributions
{P tsu} (P tsu(s′ | s, u) is the probability of being in state s′ at time
t + 1 given the state and action at time t are s and u); H is the
horizon or number of time steps of interest; s0 ∈ S is the ini-
tial state; R: S × A → ℝ is the reward function.

A policy p = (m0, m1, . . . , mH) is a tuple of mappings from
states S to actions A, one mapping for each time t = 0, . . . , H.

The expected sum of rewards when acting according to a
policy p is given by: . The optimal policy p*
for an MDP (S, A, T, H, s0, R) is the policy that maximizes the
expected sum of rewards. In particular, the optimal policy
is given by

The linear quadratic regulator (LQR) control problem is
a special class of MDP, for which the optimal policy can be
computed efficiently. In LQR the set of states S = ℝn, the set
of actions/inputs A = ℝp

, the dynamics model is given by

where for all t = 0, . . . , H we have that At ∈ ℝn × n, Bt ∈ ℝn × p and wt is
a mean zero random variable (with finite variance). The reward
for being in state st and taking action/input ut is given by

Here Qt, Rt are positive semidefinite matrices which param-
eterize the reward function. It is well known that the opti-
mal policy for the LQR control problem is a time-varying
linear feedback controller, which can be efficiently com-
puted using dynamic programming. (See, e.g., Anderson7
for details on linear quadratic methods.)

The linear quadratic methods, which in their stan-
dard form as given above drive the state to zero, are easily
extended to the task of tracking the desired trajectory s*0, . . . , s*H
learned in Section 4. The standard formulation (which we
use) expresses the dynamics and reward function as a func-
tion of the error state et = st - s*t rather than the actual state st.
(See, e.g., Anderson.7)

DDP approximately solves general continuous state-space
MDP’s by iteratively approximating them by LQR problems.
In particular, DDP solves an optimal control problem by iter-
ating the following steps:

1.	 Around the trajectory obtained from running the cur-
rent policy, compute: (i) a linear approximation to the

Figure 2: Example of graphical model when t is known. (Shaded
nodes are observed.)

z0

y0
k y1

k y2
k

t0
k t1

k t2
k

z1 z2 z3 z4 ...

...

...

f  Fixing z means the dynamic time warping step only approximately opti-
mizes the original objective. Unfortunately, without fixing z, the indepen-
dencies required to obtain an efficient dynamic programming algorithm do
not hold. In practice we find our approximation works very well.

102 communications of the acm | july 2009 | vol. 52 | no. 7

research highlights

(nonlinear) error state dynamics and (ii) a quadratic
approximation to the reward function.

2.	 Compute the optimal policy for the LQR problem
obtained in Step 2 and set the current policy equal to
the optimal policy for the LQR problem.

3.	 Simulate a trial starting from, s0, under the current
policy and store the resulting trajectory.

In our experiments, we have a quadratic reward function,
thus the only approximation made in the algorithm is the
linearization of the dynamics. To bootstrap the process (i.e.,
to obtain an initial trajectory), we linearize around the target
trajectory in the first iteration.

The result of DDP is a sequence of linear feedback con-
trollers that are executed in order. Since these controllers
were computed under the assumption of linear dynamics,
they will generally fail if executed from a state that is far from
the linearization point. For aerobatic maneuvers that involve
large changes in orientation, it is often difficult to remain
sufficiently close to the linearization point throughout the
maneuver. Our system, thus, uses DDP in a “receding hori-
zon” fashion. Specifically, we rerun DDP online, beginning
from the current state of the helicopter, over a horizon that
extends 2 s into the future.g The resulting feedback control-
ler obtained from this process is always linearized around
the current state and, thus, allows the control system to
continue flying even when it ventures briefly away from the
intended trajectory.

5.2. Learning reward function parameters
Our quadratic reward is a function of 21 features (which
are functions of the state and controls), consisting of the
squared error state variables, the squared inputs, and
squared change in inputs. Choosing the parameters for the
reward function (i.e., choosing the entries of the matrices
Qt, Rt used by DDP) is difficult and tedious to do by hand.
Intuitively, the reward parameters tell DDP how to “trade off”
between the various errors. Selecting this trade-off improp-
erly can result in some errors becoming too large (allowing
the helicopter to veer off into poorly modeled parts of the
state space), or other errors being regulated too aggressively
(resulting in large, unsafe control outputs).

This problem is more troublesome when using infeasible
target trajectories. For instance, for the aerobatic flips and
rolls performed previously in Abbeel,2 a hand-coded target
trajectory was used. That trajectory was not feasible, since
it assumed that the helicopter could remain exactly fixed
in space during the flip. Thus, there is always a (large) non-
zero error during the maneuver. In this case, the particular
choice of reward parameters becomes critical, since they
specify how the controller should balance errors throughout
the flight.

Trajectories learned from demonstration using the meth-
ods presented in Section 4, however, are generally quite close
to feasible for the real helicopter. Thus, in contrast to our
prior work, the choice of trade-offs is less crucial when using

these learned trajectories. Indeed, in our recent experiments
it appears that a wide range of parameters work well with tra-
jectories learned from demonstration.h Nonetheless, when
the need to make adjustments to these parameters arises, it
is useful to be able to learn the necessary parameters, rather
than tune them by mere trial and error.

Since we have expert demonstrations of the desired behav
ior (namely, following the trajectory) we can alleviate the tun-
ing problem by employing the apprenticeship learning via
inverse reinforcement learning algorithm4 to select appro-
priate parameters for our quadratic reward function. In prac-
tice, in early iterations (before convergence) this algorithm
tends to generate parameters that are dangerous to use on
the real helicopter. Instead, we adjust the reward weights by
hand following the philosophy, but not the strict formula-
tion of the inverse RL algorithm. In particular: we select the
feature (state error) that differed most between our auton-
omous flights and the expert demonstrations, and then
increase or decrease the corresponding quadratic penalties
to bring the autonomous performance closer to that of the
expert with each iteration.i Using this procedure, we obtain a
good reward function in a small number of trials in practice.

We used this methodology to successfully select reward
parameters to perform the flips and rolls in Abbeel,2 and
continue to use this methodology as a guide in selecting
reward parameters.

6. EXPERIMENTAL RESULTS

6.1. Experimental setup
For our experiments we have used two different autono-
mous helicopters. The experiments presented here were
performed with an XCell Tempest helicopter (Figure 3), but
we have also conducted autonomous aerobatic flights using
a Synergy N9. Both of these helicopters are capable of profes-
sional, competition-level maneuvers. We instrumented our
helicopters with a Microstrain 3DM-GX1 orientation sensor.
A ground-based camera system measures the helicopter’s
position. A Kalman filter uses these measurements to track
the helicopter’s position, velocity, orientation, and angular
rate.

We collected multiple demonstrations from our expert for
a variety of aerobatic trajectories: continuous in-place flips
and rolls, a continuous tail-down “tic toc,” and an airshow,
which consists of the following maneuvers in rapid sequence:
split-S, snap roll, stall-turn, loop, loop with pirouette, stall-
turn with pirouette, “hurricane” (fast backward funnel), knife-
edge, flips and rolls, tic-toc, and inverted hover.

We use a large, previously collected corpus of hovering,
horizontal flight, and mixed aerobatic flight data to build a
crude dynamics model using the method of Section 3. This
model and the pilot demonstrations are then provided to
the trajectory learning algorithm of Section 4. Our trajectory

g  The 2 s horizon is a limitation imposed by available computing power. Our
receding horizon DDP controller executes at 20 Hz.

h  It is often sufficient to simply choose parameters that rescale the various
reward features to have approximately the same magnitude.
i  For example, if our controller consistently uses larger controls than the ex-
pert but achieves lower position error, we would increase the control penalty
and decrease the position penalty.

july 2009 | vol. 52 | no. 7 | communications of the acm 103

learning algorithm includes bias terms, b*t , for each of the pre-
dicted accelerations, and hence will learn a time-dependent
acceleration that is added to the crude base model. We also
include terms to model position drift in the pilot demonstra-
tions, and incorporate our prior knowledge that flips and
rolls should remain roughly in place, and that maneuvers
like loops should be flown in a plane (i.e., they should look
flat when viewed from the top).12

6.2. Trajectory learning results
Figure 4(a) shows the horizontal and vertical position of the
helicopter during the two loops flown during the airshow
performed by our pilot. The colored lines show the expert
pilot’s demonstrations. The black dotted line shows the
inferred ideal path produced by our algorithm. The loops
are more rounded and more consistent in the inferred ideal
path. We did not incorporate any prior knowledge to this
effect. Figure 4(b) shows a top-down view of the same dem-
onstrations and inferred trajectory. This view shows that the
algorithm successfully inferred a trajectory that lies in a ver-
tical plane, while obeying the system dynamics, as a result of
the included prior knowledge.

Figure 4(c) shows one of the bias terms, namely the pre-
diction errors made by our crude model for the z-axis accel-
eration of the helicopter for each of the demonstrations
(plotted as a function of time). Figure 4(d) shows the result
after alignment (in color) as well as the inferred acceleration
error (black dotted). We see that the bias measurements

allude to errors approximately in the −1G to −2G range for
the first 40 s of the airshow (a period that involves high-G
maneuvering that is not predicted accurately by the “crude”
model). However, only the aligned biases precisely show the
magnitudes and locations of these errors along the trajec-
tory. The alignment allows us to build our ideal trajectory
based upon a much more accurate model that is tailored to
match the dynamics observed in the demonstrations.

6.3. Flight results
After constructing the idealized trajectories and models
using our algorithms, we attempted to fly the trajectories
on the actual helicopter. As described in Section 5, we use
a receding-horizon DDP controller.15 Our trajectory learn-
ing algorithm provides us with desired state and control
trajectories, as well as an accurate, time-varying dynamics
model tailored to the trajectory. These are provided to our
DDP implementation along with quadratic reward weights
chosen previously using the method described in Section
5.2. The quadratic reward function penalizes deviation from
the target trajectory, s*t , as well as deviation from the desired
controls, u*t , and the desired control velocities, u*t + 1 - u*t  .

We compare the result of this procedure first with the
former state of the art in aerobatic helicopter flight, namely
the in-place rolls and flips of Abbeel.2 That work used a sin-
gle crude model, developed using the method of Section 3,
along with hand-specified target trajectories, and reward
weights tuned using the methodology in Section 5.2.

Figure 5(a) shows the Y–Z positionj and the collective
(thrust) control inputs for the in-place rolls performed by
the controller in Abbeel2 and our controller using reced-
ing-horizon DDP and the outputs of our trajectory learning
algorithm. Our new controller achieves (i) better position
performance and (ii) lower overall collective control values
(which roughly represents the amount of energy being used
to fly the maneuver).

Similarly, Figure 5(b) shows the X–Z position and the col-
lective control inputs for the in-place flips for both control-
lers. Like for the rolls, we see that our controller significantly
outperforms the previous approach, both in position accu-
racy and in control energy expended.

Figure 3: Our XCell Tempest autonomous helicopter.

Figure 4: Colored lines: demonstrations. Black dotted line: trajectory inferred by our algorithm. (See text for details.)

−5 0 5 10 15
10

20

30

40
15

10

5

A
lt

it
ud

e
(m

)

0

10 20 30 40 50
North (m)

−5

East (m)

N
or

th
 (

m
)

(a) (b) (c) (d)

−30
0

Z
A

cc
el

er
at

io
n

er
ro

r
(m

/s
2)

Z
A

cc
el

er
at

io
n

er
ro

r
(m

/s
2)

10 20 30 40
Time (s) Time (s)

−20

−10

0

10

20

−30
0 10 20 30 40

−20

−10

0

10

20

j  These are the position coordinates projected into a plane orthogonal to the
axis of rotation.

104 communications of the acm | july 2009 | vol. 52 | no. 7

research highlights

Besides flips and rolls, we also performed autonomous
“tic tocs”—widely considered to be an even more chal-
lenging aerobatic maneuver. During the (tail-down) tic-toc
maneuver the helicopter pitches quickly backward and
forward in place with the tail pointed toward the ground
(resembling an inverted clock pendulum). The complex
relationship between pitch angle, horizontal motion, ver-
tical motion, and thrust makes it extremely difficult to
create a feasible tic-toc trajectory by hand. Our attempts
to use such a hand-coded trajectory, following the previ-
ous approach in Abbeel,2 failed repeatedly. By contrast,
the trajectory learning algorithm readily yields an excel-
lent feasible trajectory that was successfully flown on the
first attempt. Figure 5(c) shows the expert trajectories (in
color), and the autonomously flown tic-toc (black dot-
ted). Our controller significantly outperforms the expert’s
demonstrations.

We also applied our algorithm to successfully fly a com-
plete aerobatic airshow, as described in Section 6.1.

The trajectory-specific models typically capture the
dynamics well enough to fly all the aforementioned maneu-
vers reliably. Since our computer controller flies the trajec-
tory very consistently, however, this allows us to repeatedly
acquire data from the same vicinity of the target trajectory
on the real helicopter. Thus, we can incorporate this flight
data into our model, allowing us to improve flight accuracy
even further. For example, during the first autonomous
airshow our controller achieves an RMS position error
of 3.29 m, and this procedure improved performance to
1.75 m RMS position error.

Videos of all our flights are available at: http://heli.
stanford.edu

7. CONCLUSION
We have presented learning algorithms that take advan-
tage of expert demonstrations to successfully fly autono-
mous helicopters at the level of an expert human pilot.
In particular, we have shown how to (i) build a rough
global model from demonstration data, (ii) approxi-
mately infer the expert’s ideal desired trajectory, (iii) learn

Figure 5: Flight results. (a, b) Solid black: results with trajectory learning algorithm. Dashed red: results with hand-coded trajectory from
Abbeel.2 (c) Dotted black: autonomous tic-toc. Solid colored: expert demonstrations.

−15 −10 −5 0 5 10 15 20

0

5

10

A
lt

it
ud

e
(m

)

North position (m)

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

C
ol

le
ct

iv
e

in
pu

t

Time (s)

−20 −15 −10 −5 0 5 10 15

0

5

10

A
lt

it
ud

e
(m

)

East position (m)

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

C
ol

le
ct

iv
e

in
pu

t

Time (s)
−10 −5 0 5

−6

−4

−2

0

2

4

6

8

10

12

14

North position (m)

A
lt

it
ud

e
(m

)

(a) (b) (c)

accurate, trajectory-specific local models suitable for high-
performance control, and (iv) build control systems using
the outputs of our trajectory learning algorithm. Our exper-
iments demonstrated that this design pipeline enables
our controllers to fly extreme aerobatic maneuvers. Our
results have shown that our system not only significantly
outperforms the previous state of the art, but even outper-
forms our own expert pilot on a wide variety of difficult
maneuvers.

Acknowledgments
We thank Garett Oku for piloting and building our heli-
copters. Adam Coates is supported by a Stanford Graduate
Fellowship. This work was also supported in part by the
DARPA Learning Locomotion program under contract
number FA8650-05-C-7261.�

References

	 1.	 Abbeel, P., Coates, A., Hunter, T., Ng,
A.Y. Autonomous autorotation of an
RC helicopter. ISER 11 (2008).

	 2.	 Abbeel, P., Coates, A., Quigley, M., Ng,
A.Y. An application of reinforcement
learning to aerobatic helicopter flight.
NIPS 19 (2007), 1–8.

	 3.	 Abbeel, P., Ganapathi, V., Ng, A.
Learning vehicular dynamics, with
application to modeling helicopters.
NIPS 18 (2006), 1–8.

	 4.	 Abbeel, P., Ng, A.Y. Apprenticeship
learning via inverse reinforcement
learning. In Proceedings of ICML
(2004).

	 5.	 Abbeel, P., Quigley, M., Ng, A.Y. Using
inaccurate models in reinforcement
learning. In Proceedings of ICML
(2006), ACM, NY, 1–8.

	 6.	 An, C.H., Atkeson, C.G., Hollerbach, J.M.
Model-Based Control of a Robot
Manipulator. MIT Press,
1988.

	 7.	 Anderson, B., Moore, J. Optimal
Control: Linear Quadratic Methods.
Prentice-Hall, 1989.

	 8.	 Atkeson, C., Schaal, S. Robot learning
from demonstration. In Proceedings
of ICML (1997).

	 9.	 Bagnell, J., Schneider, J.
Autonomous helicopter control using
reinforcement learning policy search
methods. In IEEE International
Conference on Robotics and
Automation (2001).

	10.	 Boutilier, C., Friedman, N.,
Goldszmidt, M., Koller, D. Context-
specific independence in Bayesian
networks. In Proceedings of UAI
(1996).

	11.	 Calinon, S., Guenter, F., Billard, A.
On learning, representing and
generalizing a task in a humanoid
robot. In IEEE Transactions on
Systems, Man and Cybernetics, Part
B, volume 37, 2007.

	12.	 Coates, A., Abbeel, P., Ng, A.Y.
Learning for control from multiple
demonstrations. In Proceedings of
ICML (2008), 144–151.

	13.	 Dempster, A.P., Laird, N.M., Rubin, D.B.
Maximum likelihood from incomplete
data via the EM algorithm. J. Roy.
Stat. Soc. (1977).

	14.	 Gavrilets, V., Martinos, I., Mettler, B.,
Feron, E. Control logic for automated
aerobatic flight of miniature
helicopter. In AIAA Guidance,

http://heli.stanford.edu
http://heli.stanford.edu

july 2009 | vol. 52 | no. 7 | communications of the acm 105

© 2009 ACM 0001-0782/09/0600 $10.00

Navigation and Control Conference
(2002).

	15.	 Jacobson, D.H., Mayne, D.Q.
Differential Dynamic Programming.
Elsevier, 1970.

	16.	 La Civita, M. Integrated Modeling
and Robust Control for Full-Envelope
Flight of Robotic Helicopters. PhD
thesis, Carnegie Mellon University,
2003.

	17.	 La Civita, M., Papageorgiou, G.,
Messner, W.C., Kanade, T. Design
and flight testing of a high-bandwidth
H∞∞ loop shaping controller for a
robotic helicopter. J. Guid. Control.
Dynam., 29, 2 (Mar.–Apr. 2006),
485–494.

	18.	 Leishman, J. Principles of Helicopter
Aerodynamics. Cambridge University
Press, 2000.

	19.	 Listgarten, J. Analysis of Sibling Time
Series Data: Alignment and Difference
Detection. PhD thesis, University of
Toronto, 2006.

	20.	 Listgarten, J., Neal, R.M., Roweis,
S.T., Emili, A. Multiple alignment of
continuous time series. In NIPS 17

(2005).
	21.	 Needleman, S., Wunsch, C. A general

method applicable to the search
for similarities in the amino acid
sequence of two proteins. J. Mol. Biol.,
1970.

	22.	 Neu, G., Szepesvari, C. Apprenticeship
learning using inverse reinforcement
learning and gradient methods.
In Proceedings of UAI (2007).

	23.	 Ng, A.Y., Coates, A., Diel, M.,
Ganapathi, V., Schulte, J., Tse, B.,
Berger, E., Liang, E. Autonomous
inverted helicopter flight via
reinforcement learning. In ISER
(2004).

	24.	 Ng, A.Y., Kim, H.J., Jordan, M., Sastry, S.
Autnonomous helicopter flight via
reinforcement learning. In NIPS 16
(2004).

	25.	 Ng, A.Y., Russell, S. Algorithms for
inverse reinforcement learning.
In Proceedings of ICML (2000).

	26.	 Ramachandran, D., Amir, E. Bayesian
inverse reinforcement learning.
In Proceedings of IJCAI (2007).

	27.	 Ratliff, N., Bagnell, J., Zinkevich,

M. Maximum margin planning.
In Proceedings of ICML (2006).

	28.	 Roberts, J.M., Corke, P.I., Buskey,
G. Low-cost flight control system
for a small autonomous helicopter.
In IEEE International Conference
on Robotics and Automation
(2003).

	29.	 Sakoe, H., Chiba, S. Dynamic
programming algorithm
optimization for spoken word
recognition. IEEE Transactions
on Acoustics, Speech, and Signal

Processing (1978).
	30.	 Saripalli, S., Montgomery, J.,

Sukhatme, G. Visually-guided
landing of an unmanned aerial
vehicle, 2003.

	31.	 Seddon, J. Basic Helicopter
Aerodynamics. AIAA Education
Series, American Institute of
Aeronautics and Astronautics,
1990.

	32.	 Syed, U., Schapire, R.E. A game-
theoretic approach to apprenticeship
learning. In NIPS 20 (2008).

Adam Coates (acoates@cs.stanford.edu),
Computer Science Department,
Stanford University, Stanford, CA.

Pieter Abbeel (pabbeel@eecs.berkeley.edu),
Computer Science Division,
University of California, Berkeley, CA.

Andrew Y. Ng (ang@cs.stanford.edu),
Computer Science Deparment,
Stanford University, Stanford, CA.

�ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACMMember, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

�ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

�Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s LifetimeMembership Plan!

mailto:acoates@cs.stanford.edu
mailto:pabbeel@eecs.berkeley.edu
mailto:ang@cs.stanford.edu
http://www.acm.org/life

106 communications of the acm | july 2009 | vol. 52 | no. 7

I n t h e e a r ly 1970s, pioneers like
Floyd, Dijkstra, and Hoare argued that
programs should be formally specified
and proven correct. But for the past
40 years, most of the computer sci-
ence community has discounted this
vision as an unrealistic goal. Perhaps
the most important reason has been
simple economics: Throughout the
1980s and 1990s, the industry tended
to be more interested in factors such
as time-to-market than issues involv-
ing correctness.

But the context has changed dra-
matically over the intervening years:
Security and reliability have become
key concerns in the fastest growing
sectors like embedded systems where
lives may be at stake. Even in non-crit-
ical domains, developers must worry
about bugs, including buffer overruns
and race conditions that can lead to
security exploits. Researchers have
developed a variety of tools, including
strong static type checkers, software
model checkers, and abstract inter-
preters, all of which can (and are) used
to help enforce a range of safety prop-
erties. Consequently, formal methods
are in wide use today, albeit disguised
within tools.

However, these tools typically op-
erate at the source-level (or, at best,
a VM bytecode level), and not at ma-
chine code level. To scale, they must
make assumptions about how a com-
piler will refine the source code to ma-
chine code. For example, even though
the C language specification does not
specify an order of evaluation for func-
tion arguments, most analysis tools
assume the compiler will use a left-
to-right strategy, since analyzing all
possible evaluation strategies would
take too much time. This mismatch of
assumptions, or a bug in the compiler
itself, can easily render the analysis
tool useless.

In the following paper, Xavier Le-
roy addresses these problems by de-
scribing a compiler he built and veri-
fied using the Coq proof development
system. Although he is not the first

to build a verified translator, Leroy’s
compiler is notable and exciting for
three key reasons: First, it maps a use-
ful source language (a significant sub-
set of C) to PowerPC assembly, making
it directly usable for a range of embed-
ded applications. Second, his compil-
er includes a number of analyses and
optimizations, such as liveness analy-
sis and graph-coloring register allo-
cation, that makes the resulting code
competitive with gcc -0. Third, the
proof of correctness is mechanically
checked, yielding the highest level of
assurance we can hope to achieve. In
short, developers can be assured that,
in spite of optimization, the output of
Leroy’s compiler will behave the same
as the source code input.

There are a number of hidden con-
tributions to this work, beyond the
construction of a fully verified, opti-
mizing compiler: The compiler was
built in a modular, pipelined fashion
as a series of translations between
well-specified intermediate languag-
es, making it possible to add new op-
timizations or reuse components for
other projects. For example, the speci-
fication for the C-subset can be reused
to build new verified tools, such as a
source-level analysis.

The compiler also demonstrates
judicious use of translation validation
in lieu of full verification. With trans-
lation validation, we can use unveri-
fied components to compute some-
thing (for example, an assignment of
variables to registers) and need only
check the output is valid (no interfer-
ing variables are assigned to the same
register). Only the checker must be
verified to ensure soundness, and this
is often much easier than validating
a full analysis and transformation.
Translation validation is one engi-
neering technique that can drastically
reduce the burden of building verified
systems.

This paper also shows how far we
must go before verification becomes
routinely feasible for production com-
pilers or any other setting. Foremost is

the cost of constructing and maintain-
ing the proof as the code evolves. Le-
roy’s proof of correctness is about five
to six times as big as the compiler it-
self, making it difficult to significantly
change the code without breaking the
proof. However, the proof was con-
structed largely by hand, and for the
most part, does not take advantage of
semi-automated decision procedures
or proof search, a research area that
has seen tremendous progress over
the past decade. Indeed, work by oth-
er researchers following Leroy’s lead
suggests we can potentially cut the
size of the proofs by up to an order of
magnitude.

Perhaps the biggest challenge we
face is specification. Compilers have
a fairly clean notion of “correctness”
(the output code should behave the
same as the input code), but most
software systems do not. For exam-
ple, what does it mean for an operat-
ing system or Web browser to be cor-
rect? At best we can hope to formalize
some safety and security properties
that these systems should obey, and
be willing to adapt these properties
as our understanding of failures and
attacks improves. In turn, this de-
mands a verification architecture that
allows specifications to be modified
and adapted almost as frequently as
the code. Fortunately, verified compil-
ers make it possible to do this sort of
adaptation using high-level languages
without sacrificing assurance for the
generated machine code.

Consequently, I think we are on
the verge of a new engineering para-
digm for safety- and security-critical
software systems, where we rely upon
formal, machine-checked verification
for certification, instead of human au-
dits. Leroy’s compiler is an impressive
step toward this goal.	

Greg Morrisett is the Allen B. Cutting Professor of
Computer Science and associate dean for Computer
Science and Engineering at Harvard University.

© 2009 ACM 0001-0782/09/0700 $10.00

Technical Perspective
A Compiler’s Story
By Greg Morrisett

research highlights

doi:10.1145/1538788.1538813

july 2009 | vol. 52 | no. 7 | communications of the acm 107

Formal Verification
of a Realistic Compiler
By  Xavier Leroy

doi:10.1145/1538788.1538814

Abstract
This paper reports on the development and formal veri-
fication (proof of semantic preservation) of CompCert, a
compiler from Clight (a large subset of the C programming
language) to PowerPC assembly code, using the Coq proof
assistant both for programming the compiler and for prov-
ing its correctness. Such a verified compiler is useful in the
context of critical software and its formal verification: the
verification of the compiler guarantees that the safety prop-
erties proved on the source code hold for the executable
compiled code as well.

1. INTRODUCTION
Can you trust your compiler? Compilers are generally
assumed to be semantically transparent: the compiled
code should behave as prescribed by the semantics of the
source program. Yet, compilers—and especially optimizing
compilers—are complex programs that perform compli-
cated symbolic transformations. Despite intensive testing,
bugs in compilers do occur, causing the compilers to crash
at compile-time or—much worse—to silently generate an
incorrect executable for a correct source program.

For low-assurance software, validated only by testing,
the impact of compiler bugs is low: what is tested is the
executable code produced by the compiler; rigorous testing
should expose compiler-introduced errors along with errors
already present in the source program. Note, however, that
compiler-introduced bugs are notoriously difficult to expose
and track down. The picture changes dramatically for safety-
critical, high-assurance software. Here, validation by test-
ing reaches its limits and needs to be complemented or
even replaced by the use of formal methods such as model
checking, static analysis, and program proof. Almost univer-
sally, these formal verification tools are applied to the source
code of a program. Bugs in the compiler used to turn this
formally verified source code into an executable can poten-
tially invalidate all the guarantees so painfully obtained by
the use of formal methods. In future, where formal methods
are routinely applied to source programs, the compiler could
appear as a weak link in the chain that goes from specifica-
tions to executables. The safety-critical software industry is
aware of these issues and uses a variety of techniques to alle-
viate them, such as conducting manual code reviews of the
generated assembly code after having turned all compiler
optimizations off. These techniques do not fully address the
issues, and are costly in terms of development time and pro-
gram performance.

An obviously better approach is to apply formal meth-
ods to the compiler itself in order to gain assurance that it

preserves the semantics of the source programs. For the last
5 years, we have been working on the development of a real-
istic, verified compiler called CompCert. By verified, we mean
a compiler that is accompanied by a machine-checked proof
of a semantic preservation property: the generated machine
code behaves as prescribed by the semantics of the source
program. By realistic, we mean a compiler that could realisti-
cally be used in the context of production of critical software.
Namely, it compiles a language commonly used for critical
embedded software: neither Java nor ML nor assembly code,
but a large subset of the C language. It produces code for a
processor commonly used in embedded systems: we chose
the PowerPC because it is popular in avionics. Finally, the
compiler must generate code that is efficient enough and
compact enough to fit the requirements of critical embed-
ded systems. This implies a multipass compiler that features
good register allocation and some basic optimizations.

Proving the correctness of a compiler is by no ways a
new idea: the first such proof was published in 196716 (for
the compilation of arithmetic expressions down to stack
machine code) and mechanically verified in 1972.17 Since
then, many other proofs have been conducted, ranging from
single-pass compilers for toy languages to sophisticated
code optimizations.8 In the CompCert experiment, we carry
this line of work all the way to end-to-end verification of a
complete compilation chain from a structured imperative
language down to assembly code through eight intermediate
languages. While conducting the verification of CompCert,
we found that many of the nonoptimizing translations per-
formed, while often considered obvious in the compiler lit-
erature, are surprisingly tricky to formally prove correct.

This paper gives a high-level overview of the CompCert
compiler and its mechanized verification, which uses the
Coq proof assistant.3, 7 This compiler, classically, consists of
two parts: a front-end translating the Clight subset of C to a
low-level, structured intermediate language called Cminor,
and a lightly optimizing back-end generating PowerPC
assembly code from Cminor. A detailed description of Clight
can be found in Blazy and Leroy5; of the compiler front-end
in Blazy et al.4; and of the compiler back-end in Leroy.11, 13
The complete source code of the Coq development, exten-
sively commented, is available on the Web.12

The remainder of this paper is organized as follows.
Section 2 compares and formalizes several approaches to
establishing trust in the results of compilation. Section 3

A previous version of this paper was published in
Proceedings of the 33rd Symposium on the Principles of
Programming Languages. ACM, NY, 2006.

108 communications of the acm | july 2009 | vol. 52 | no. 7

research highlights

exists exactly one behavior B such that S ⇓ B, and similarly
for C. In this case, it is easy to prove that property (2) is equiv-
alent to

	 ∀B ∉Wrong, S ⇓ B ⇒ C ⇓ B	 (3)

(Here, Wrong is the set of “going wrong” behaviors.) Property
(3) is generally much easier to prove than property (2), since
the proof can proceed by induction on the execution of S.
This is the approach that we take in this work.

From a formal methods perspective, what we are really
interested in is whether the compiled code satisfies the func-
tional specifications of the application. Assume that these
specifications are given as a predicate Spec(B) of the observ-
able behavior. We say that C satisfies the specifications, and
write C Spec, if C cannot go wrong (C safe) and all behav-
iors of B satisfy Spec (∀B, C ⇓ B ⇒ Spec(B) ). The expected cor-
rectness property of the compiler is that it preserves the fact
that the source code S satisfies the specification, a fact that
has been established separately by formal verification of S:

	 S Spec ⇒ C Spec	 (4)

It is easy to show that property (2) implies property (4) for
all specifications Spec. Therefore, establishing property (2)
once and for all spares us from establishing property (4) for
every specification of interest.

A special case of property (4), of considerable historical
importance, is the preservation of type and memory safety,
which we can summarize as “if S does not go wrong, neither
does C”:

	 S safe ⇒ C safe	 (5)

Combined with a separate check that S is well-typed in a
sound type system, property (5) implies that C executes
without memory violations. Type-preserving compila-
tion18 obtains this guarantee by different means: under the
assumption that S is well typed, C is proved to be well typed
in a sound type system, ensuring that it cannot go wrong.
Having proved properties (2) or (3) provides the same guar-
antee without having to equip the target and intermediate
languages with sound type systems and to prove type preser-
vation for the compiler.

2.2. Verified, validated, certifying compilers
We now discuss several approaches to establishing that a
compiler preserves semantics of the compiled programs,
in the sense of Section 2.1. In the following, we write S ≈ C,
where S is a source program and C is compiled code, to
denote one of the semantic preservation properties (1) to (5)
of Section 2.1.
Verified Compilers. We model the compiler as a total func-
tion Comp from source programs to either compiled code
(written Comp(S) = OK(C)) or a compile-time error (written
Comp(S) = Error). Compile-time errors correspond to cases
where the compiler is unable to produce code, for instance
if the source program is incorrect (syntax error, type error,

describes the structure of the CompCert compiler, its per-
formance, and how the Coq proof assistant was used not
only to prove its correctness but also to program most of it.
By lack of space, we will not detail the formal verification of
every compilation pass. However, Section 4 provides a tech-
nical overview of such a verification for one crucial pass of
the compiler: register allocation. Finally, Section 5 presents
preliminary conclusions and directions for future work.

2. APPROACHES TO TRUSTED COMPILATION

2.1. Notions of semantic preservation
Consider a source program S and a compiled program C
produced by a compiler. Our aim is to prove that the seman-
tics of S was preserved during compilation. To make this
notion of semantic preservation precise, we assume given
semantics for the source and target languages that asso-
ciate observable behaviors B to S and C. We write S ⇓ B
to mean that program S executes with observable behavior
B. The behaviors we observe in CompCert include termina-
tion, divergence, and “going wrong” (invoking an undefined
operation that could crash, such as accessing an array out
of bounds). In all cases, behaviors also include a trace of the
input–output operations (system calls) performed during
the execution of the program. Behaviors therefore reflect
accurately what the user of the program, or more generally
the outside world the program interacts with, can observe.

The strongest notion of semantic preservation during
compilation is that the source program S and the compiled
code C have exactly the same observable behaviors:

	 ∀B, S ⇓ B ⇔ C ⇓ B	 (1)

Notion (1) is too strong to be usable. If the source lan-
guage is not deterministic, compilers are allowed to select
one of the possible behaviors of the source program. (For
instance, C compilers choose one particular evaluation
order for expressions among the several orders allowed by
the C specifications.) In this case, C will have fewer behav-
iors than S. Additionally, compiler optimizations can opti-
mize away “going wrong” behaviors. For example, if S can go
wrong on an integer division by zero but the compiler elimi-
nated this computation because its result is unused, C will
not go wrong. To account for these degrees of freedom in the
compiler, we relax definition (1) as follows:

	 S safe ⇒ (∀B, C ⇓ B ⇒ S ⇓ B)	 (2)

(Here, S safe means that none of the possible behaviors of S
is a “going wrong” behavior.) In other words, if S does not go
wrong, then neither does C; moreover, all observable behav-
iors of C are acceptable behaviors of S.

In the CompCert experiment and the remainder of this
paper, we focus on source and target languages that are deter-
ministic (programs change their behaviors only in response
to different inputs but not because of internal choices) and
on execution environments that are deterministic as well
(the inputs given to the programs are uniquely determined
by their previous outputs). Under these conditions, there

july 2009 | vol. 52 | no. 7 | communications of the acm 109

carrying code (PCC) approach1, 19 does not attempt to estab-
lish semantic preservation between a source program and
some compiled code. Instead, PCC focuses on the genera-
tion of independently checkable evidence that the compiled
code C satisfies a behavioral specification Spec such as type
and memory safety. PCC makes use of a certifying compiler,
which is a function CComp that either fails or returns both
a compiled code C and a proof π of the property C Spec.
The proof π, also called a certificate, can be checked inde-
pendently by the code user; there is no need to trust the code
producer, nor to formally verify the compiler itself. The only
part of the infrastructure that needs to be trusted is the cli-
ent-side checker: the program that checks whether π entails
the property C Spec.

As in the case of translation validation, it suffices to for-
mally verify the client-side checker to obtain guarantees
as strong as those obtained from compiler verification of
property (4). Symmetrically, a certifying compiler can be
constructed, at least theoretically, from a verified compiler,
provided that the verification was conducted in a logic that
follows the “propositions as types, proofs as programs” par-
adigm. The construction is detailed in Leroy.11, section 2

2.3. Composition of compilation passes
Compilers are naturally decomposed into several passes that
communicate through intermediate languages. It is fortu-
nate that verified compilers can also be decomposed in this
manner. Consider two verified compilers Comp1 and Comp2
from languages L1 to L2 and L2 to L3, respectively. Assume
that the semantic preservation property ≈ is transitive. (This
is true for properties (1) to (5) of Section 2.1.) Consider the
error-propagating composition of Comp1 and Comp2:

Comp(S) = match Comp1 (S) with
	 | Error → Error
	 | OK (I)  → Comp2 (I)

It is trivial to show that this function is a verified compiler
from L1 to L3.

2.4. Summary
The conclusions of this discussion are simple and define
the methodology we have followed to verify the CompCert
compiler back-end. First, provided the target language of
the compiler has deterministic semantics, an appropriate
specification for the correctness proof of the compiler is the
combination of definitions (3) and (6):

∀S, C, B ∉ Wrong, Comp(S) = OK(C) ∧ S ⇓ B ⇒ C ⇓ B

Second, a verified compiler can be structured as a com-
position of compilation passes, following common practice.
However, all intermediate languages must be given appro-
priate formal semantics.

Finally, for each pass, we have a choice between prov-
ing the code that implements this pass or performing the
transformation via untrusted code, then verifying its results
using a verified validator. The latter approach can reduce the
amount of code that needs to be verified.

etc.), but also if it exceeds the capacities of the compiler. A
compiler Comp is said to be verified if it is accompanied with
a formal proof of the following property:

	 ∀S, C, Comp(S) = OK (C) ⇒ S ≈ C	 (6)

In other words, a verified compiler either reports an error or
produces code that satisfies the desired correctness property.
Notice that a compiler that always fails (Comp(S) = Error
for all S) is indeed verified, although useless. Whether the
compiler succeeds to compile the source programs of inter-
est is not a correctness issue, but a quality of implementa-
tion issue, which is addressed by nonformal methods such
as testing. The important feature, from a formal verification
standpoint, is that the compiler never silently produces
incorrect code.

Verifying a compiler in the sense of definition (6) amounts
to applying program proof technology to the compiler
sources, using one of the properties defined in Section 2.1
as the high-level specification of the compiler.
Translation Validation with Verified Validators. In the
translation validation approach20, 22 the compiler does not
need to be verified. Instead, the compiler is complemented
by a validator: a boolean-valued function Validate(S, C) that
verifies the property S ≈ C a posteriori. If Comp(S) = OK(C)
and Validate(S, C) = true, the compiled code C is deemed
trustworthy. Validation can be performed in several ways,
ranging from symbolic interpretation and static analysis of
S and C to the generation of verification conditions followed
by model checking or automatic theorem proving. The prop-
erty S ≈ C being undecidable in general, validators are nec-
essarily incomplete and should reply false if they cannot
establish S ≈ C.

Translation validation generates additional confidence
in the correctness of the compiled code, but by itself does
not provide formal guarantees as strong as those provided
by a verified compiler: the validator could itself be incorrect.
To rule out this possibility, we say that a validator Validate is
verified if it is accompanied with a formal proof of the fol-
lowing property:

	 ∀S, C, Validate(S, C) = true ⇒ S ≈ C	 (7)

The combination of a verified validator Validate with an
unverified compiler Comp does provide formal guarantees
as strong as those provided by a verified compiler. Indeed,
consider the following function:

Comp′(S) =
  match Comp (S) with
  | Error → Error
  | OK (C)  → if Validate (S, C) then OK(C) else Error

This function is a verified compiler in the sense of defini-
tion (6). Verification of a translation validator is therefore
an attractive alternative to the verification of a compiler,
provided the validator is smaller and simpler than the
compiler.
Proof-Carrying Code and Certifying Compilers. The proof-

110 communications of the acm | july 2009 | vol. 52 | no. 7

research highlights

research highlights

being a subset of PowerPC assembly language. As depicted
in Figure 1, the compiler is composed of 14 passes that
go through eight intermediate languages. Not detailed in
Figure 1 are the parts of the compiler that are not verified
yet: upstream, a parser, type-checker and simplifier that gen-
erates Clight abstract syntax from C source files and is based
on the CIL library21; downstream, a printer for PPC abstract
syntax trees in concrete assembly syntax, followed by gen-
eration of executable binary using the system’s assembler
and linker.

The front-end of the compiler translates away C-specific
features in two passes, going through the C#minor and
Cminor intermediate languages. C#minor is a simplified,
typeless variant of Clight where distinct arithmetic operators
are provided for integers, pointers and floats, and C loops
are replaced by infinite loops plus blocks and multilevel
exits from enclosing blocks. The first pass translates C loops
accordingly and eliminates all type-dependent behaviors:
operator overloading is resolved; memory loads and stores,
as well as address computations, are made explicit. The
next intermediate language, Cminor, is similar to C#minor
with the omission of the & (address-of) operator. Cminor
function-local variables do not reside in memory, and their
address cannot be taken. However, Cminor supports explicit
stack allocation of data in the activation records of func-
tions. The translation from C#minor to Cminor therefore
recognizes scalar local variables whose addresses are never
taken, assigning them to Cminor local variables and mak-
ing them candidates for register allocation later; other local
variables are stack-allocated in the activation record.

The compiler back-end starts with an instruction selec-
tion pass, which recognizes opportunities for using com-
bined arithmetic instructions (add-immediate, not-and,
rotate-and-mask, etc.) and addressing modes provided
by the target processor. This pass proceeds by bottom-up
rewriting of Cminor expressions. The target language is
CminorSel, a processor-dependent variant of Cminor that
offers additional operators, addressing modes, and a class

3. OVERVIEW OF THE COMPCERT COMPILER

3.1. The source language
The source language of the CompCert compiler, called
Clight,5 is a large subset of the C programming language,
comparable to the subsets commonly recommended for
writing critical embedded software. It supports almost
all C data types, including pointers, arrays, struct and
union types; all structured control (if/then, loops,
break, continue, Java-style switch); and the full power
of functions, including recursive functions and function
pointers. The main omissions are extended-precision arith-
metic (long long and long double); the goto statement;
nonstructured forms of switch such as Duff’s device; pass-
ing struct and union parameters and results by value;
and functions with variable numbers of arguments. Other
features of C are missing from Clight but are supported
through code expansion (de-sugaring) during parsing: side
effects within expressions (Clight expressions are side-effect
free) and block-scoped variables (Clight has only global and
function-local variables).

The semantics of Clight is formally defined in big-step
operational style. The semantics is deterministic and makes
precise a number of behaviors left unspecified or undefined
in the ISO C standard, such as the sizes of data types, the
results of signed arithmetic operations in case of overflow,
and the evaluation order. Other undefined C behaviors are
consistently turned into “going wrong” behaviors, such
as dereferencing the null pointer or accessing arrays out
of bounds. Memory is modeled as a collection of disjoint
blocks, each block being accessed through byte offsets;
pointer values are pairs of a block identifier and a byte offset.
This way, pointer arithmetic is modeled accurately, even in
the presence of casts between incompatible pointer types.

3.2. Compilation passes and intermediate languages
The formally verified part of the CompCert compiler trans-
lates from Clight abstract syntax to PPC abstract syntax, PPC

Clight C#minor Cminor

CminorSelRTLLTLLTLin

Linear Mach PPC

Spilling, reloading
calling conventions

CSELCM

Constant propagation

Branch tunneling

Instr. scheduling

Parsing, elaboration

(not verified)

Code

linearization

Layout of

stack frames

Simplifications

type elimination

Stack pre-allocation

Assembling, linking

(not verified)

PowerPC code

generation

CFG

construction

Register

allocation

Instruction

selection

Figure 1: Compilation passes and intermediate languages.

july 2009 | vol. 52 | no. 7 | communications of the acm 111

sense of Section 2.4.
These semantic preservation proofs are mechanized

using the Coq proof assistant. Coq implements the
Calculus of Inductive and Coinductive Constructions, a
powerful constructive, higher-order logic which supports
equally well three familiar styles of writing specifications:
by functions and pattern-matching, by inductive or coin-
ductive predicates representing inference rules, and by
ordinary predicates in first-order logic. All three styles are
used in the CompCert development, resulting in specifica-
tions and statements of theorems that remain quite close
to what can be found in programming language research
papers. In particular, compilation algorithms are natu-
rally presented as functions, and operational semantics
use mostly inductive predicates (inference rules). Coq also
features more advanced logical features such as higher-
order logic, dependent types and an ML-style module sys-
tem, which we use occasionally in our development. For
example, dependent types let us attach logical invariants to
data structures, and parameterized modules enable us to
reuse a generic dataflow equation solver for several static
analyses.

Proving theorems in Coq is an interactive process: some
decision procedures automate equational reasoning or
Presburger arithmetic, for example, but most of the proofs
consist in sequences of “tactics” (elementary proof steps)
entered by the user to guide Coq in resolving proof obli-
gations. Internally, Coq builds proof terms that are later
rechecked by a small kernel verifier, thus generating very
high confidence in the validity of proofs. While developed
interactively, proof scripts can be rechecked a posteriori in
batch mode.

The whole Coq formalization and proof represents 42,000
lines of Coq (excluding comments and blank lines) and
approximately three person-years of work. Of these 42,000
lines, 14% define the compilation algorithms implemented
in CompCert, and 10% specify the semantics of the languages
involved. The remaining 76% correspond to the correctness
proof itself. Each compilation pass takes between 1,500 and
3,000 lines of Coq for its specification and correctness proof.
Likewise, each intermediate language is specified in 300 to
600 lines of Coq, while the source language Clight requires
1,100 lines. Additional 10,000 lines correspond to infra-
structure shared between all languages and passes, such as
the formalization of machine integer arithmetic and of the
memory model.

3.4. Programming and running the compiler
We use Coq not only as a prover to conduct semantic preser-
vation proofs, but also as a programming language to write
all verified parts of the CompCert compiler. The specification
language of Coq includes a small, pure functional language,
featuring recursive functions operating by pattern-matching
over inductive types (ML- or Haskell-style tree-shaped data
types). With some ingenuity, this language suffices to write
a compiler. The highly imperative algorithms found in com-
piler textbooks need to be rewritten in pure functional style.
We use persistent data structures based on balanced trees,
which support efficient updates without modifying data

of condition expressions (expressions evaluated for their
truth value only).

The next pass translates CminorSel to RTL, a classic reg-
ister transfer language where control is represented as a
control-flow graph (CFG). Each node of the graph carries
a machine-level instruction operating over temporaries
(pseudo-registers). RTL is a convenient representation to
conduct optimizations based on dataflow analyses. Two
such optimizations are currently implemented: constant
propagation and common subexpression elimination, the
latter being performed via value numbering over extended
basic blocks. A third optimization, lazy code motion, was
developed separately and will be integrated soon. Unlike the
other two optimizations, lazy code motion is implemented
following the verified validator approach.24

After these optimizations, register allocation is per-
formed via coloring of an interference graph.6 The output
of this pass is LTL, a language similar to RTL where tempo-
raries are replaced by hardware registers or abstract stack
locations. The CFG is then “linearized,” producing a list of
instructions with explicit labels, conditional and uncondi-
tional branches. Next, spills and reloads are inserted around
instructions that reference temporaries that were allocated
to stack locations, and moves are inserted around function
calls, prologues and epilogues to enforce calling conven-
tions. Finally, the “stacking” pass lays out the activation
records of functions, assigning offsets within this record
to abstract stack locations and to saved callee-save regis-
ters, and replacing references to abstract stack locations
by explicit memory loads and stores relative to the stack
pointer.

This brings us to the Mach intermediate language,
which is semantically close to PowerPC assembly lan-
guage. Instruction scheduling by list or trace scheduling
can be performed at this point, following the verified vali-
dator approach again.23 The final compilation pass expands
Mach instructions into canned sequences of PowerPC
instructions, dealing with special registers such as the
condition registers and with irregularities in the PowerPC
instruction set. The target language, PPC, accurately mod-
els a large subset of PowerPC assembly language, omitting
instructions and special registers that CompCert does not
generate.

From a compilation standpoint, CompCert is unremark-
able: the various passes and intermediate representations
are textbook compiler technology from the early 1990s.
Perhaps the only surprise is the relatively high number of
intermediate languages, but many are small variations on
one another: for verification purposes, it was more conve-
nient to identify each variation as a distinct language than
as different subsets of a few, more general-purpose interme-
diate representations.

3.3. Proving the compiler
The added value of CompCert lies not in the compilation
technology implemented, but in the fact that each of the
source, intermediate and target languages has formally
defined semantics, and that each of the transformation and
optimization passes is proved to preserve semantics in the

112 communications of the acm | july 2009 | vol. 52 | no. 7

research highlights

research highlights

these results strongly suggest that while CompCert is not
going to win a prize in high performance computing, its per-
formance is adequate for critical embedded code.

Compilation times of CompCert are within a factor of
2 of those of gcc−01, which is reasonable and shows that
the overheads introduced to facilitate verification (many
small passes, no imperative data structures, etc.) are
acceptable.

4. REGISTER ALLOCATION
To provide a more detailed example of a verified compila-
tion pass, we now present the register allocation pass of
CompCert and outline its correctness proof.

4.1. The RTL intermediate language
Register allocation is performed over the RTL intermedi-
ate representation, which represents functions as a CFG of
abstract instructions, corresponding roughly to machine
instructions but operating over pseudo-registers (also
called “temporaries”). Every function has an unlimited
supply of pseudo-registers, and their values are preserved
across function call. In the following, r ranges over pseudo-
registers and l over labels of CFG nodes.

Instructions:
i ::= nop (l)	 no operation (go to l)
	 | op(op, r→, r, l)	 arithmetic operation
	 | load (k, mode, r→, r, l)	 memory load
	 | store(k, mode, r→, r, l)	 memory store
	 | call(sig, (r | id), r→, r, l)	 function call
	 | tailcall(sig,(r | id), r→)	 function tail call
	 | cond(cond, r→, ltrue, lfalse)	 conditional branch
	 | return | return(r)	 function return

Control-flow graphs:
g ::= l → i	 finite map

in-place. Likewise, a monadic programming style enables us
to encode exceptions and state in a legible, compositional
manner.

The main advantage of this unconventional approach,
compared with implementing the compiler in a conven-
tional imperative language, is that we do not need a program
logic (such as Hoare logic) to connect the compiler’s code
with its logical specifications. The Coq functions imple-
menting the compiler are first-class citizens of Coq’s logic
and can be reasoned on directly by induction, simplifica-
tions, and equational reasoning.

To obtain an executable compiler, we rely on Coq’s
extraction facility,15 which automatically generates Caml
code from Coq functional specifications. Combining the
extracted code with hand-written Caml implementations
of the unverified parts of the compiler (such as the parser),
and running all this through the Caml compiler, we obtain a
compiler that has a standard, cc-style command-line inter-
face, runs on any platform supported by Caml, and gener-
ates PowerPC code that runs under MacOS X. (Other target
platforms are being worked on.)

3.5. Performance
To assess the quality of the code generated by CompCert, we
benchmarked it against the GCC 4.0.1 compiler at optimiza-
tion levels 0, 1, and 2. Since standard benchmark suites use
features of C not supported by CompCert, we had to roll our
own small suite, which contains some computational ker-
nels, cryptographic primitives, text compressors, a virtual
machine interpreter and a ray tracer. The tests were run on a
2 GHz PowerPC 970 “G5” processor.

As the timings in Figure 2 show, CompCert generates
code that is more than twice as fast as that generated by
GCC without optimizations, and competitive with GCC at
optimization levels 1 and 2. On average, CompCert code is
only 7% slower than gcc −01 and 12% slower than gcc −02.
The test suite is too small to draw definitive conclusions, but

0

1

gcc -00 CompCert gcc -01 gcc -02

AES cipher

Almabench

Arith
metic coding

Binary tre
es

Fannkuch FFT

K-nucleotide

Lempel-Ziv

Lempel-Ziv-Welch

Mandelbrot
N-body

Number sieve

Quicksort

Ray tra
cer

SHA1 hash

Spectral te
st

Virtu
al m

achine

Figure 2: Relative execution times of compiled code.

july 2009 | vol. 52 | no. 7 | communications of the acm 113

  l′ = ltrue if eval_cond(cond, R(r→)) = true
  lfalse if eval_cond(cond, R(r→)) = false

  G  

⊥

S(S, g, s, l, R, M) →e  S(S, g, s,l′, R, M)

4.2. The register allocation algorithm
The goal of the register allocation pass is to replace the
pseudo-registers r that appear in unbounded quantity in
the original RTL code by locations l, which are either hard-
ware registers (available in small, fixed quantity) or abstract
stack slots in the activation record (available in unbounded
quantity). Since accessing a hardware register is much
faster than accessing a stack slot, the use of hardware reg-
isters must be maximized. Other aspects of register alloca-
tion, such as insertion of reload and spill instructions to
access stack slots, are left to subsequent passes.

Register allocation starts with a standard liveness analy-
sis performed by backward dataflow analysis. The dataflow
equations for liveness are of the form

	 LV(l) = ∪ {T (s, LV(s)) | s successor of l}	 (8)

The transfer function T(s, LV(s) ) computes the set of
pseudo-registers live “before” a program point s as a func-
tion of the pseudo-registers LV(s) live “after” that point. For
instance, if the instruction at s is op(op, r→, r, s′), the result
r becomes dead because it is redefined at this point, but
the arguments r→ become live. because they are used at
this point: T(s, LV(s) ) = (LV(s){r}) ∪ r→. However, if r is dead
“after” (r ∉ L(s) ), the instruction is dead code that will be
eliminated later, so we can take T(s, LV(s) ) = LV (s) instead.

The dataflow equations are solved iteratively using
Kildall’s worklist algorithm. CompCert provides a generic
implementation of Kildall’s algorithm and of its correct-
ness proof, which is also used for other optimization passes.
The result of this algorithm is a mapping LV from program
points to sets of live registers that is proved to satisfy the
correctness condition LV(l) ⊇ T(s, LV(s) ) for all s successor
of l. We only prove an inequation rather than the standard
dataflow equation (8) because we are interested only in the
correctness of the solution, not in its optimality.

An interference graph having pseudo-registers as nodes
is then built following Chaitin’s rules,6 and proved to con-
tain all the necessary interference edges. Typically, if two
pseudo-registers r and r′ are simultaneously live at a pro-
gram point, the graph must contain an edge between r and
r′. Interferences are of the form “these two pseudo-registers
interfere” or “this pseudo-register and this hardware regis-
ter interfere,” the latter being used to ensure that pseudo-
registers live across a function call are not allocated to
caller-save registers. Preference edges (“these two pseudo-
registers should preferably be allocated the same location”
or “this pseudo-register should preferably be allocated this
location”) are also recorded, although they do not affect
correctness of the register allocation, just its quality.

The central step of register allocation consists in col-
oring the interference graph, assigning to each node r
a “color” j(r) that is either a hardware register or a stack
slot, under the constraint that two nodes connected by an

Internal functions:
F ::= {name = id; sig = sig;	
	 params = r→;	 parameters
	 stacksize = n;	 size of stack data block
	 entrypoint = l;	 label of first instruction
	 code = g}	 control-flow graph

External functions:
Fe ::= {name = id; sig = sig}

Each instruction takes its arguments in a list of pseudo-
registers r→ and stores its result, if any, in a pseudo-register
r. Additionally, it carries the labels l of its possible succes-
sors. Instructions include arithmetic operations op (with
an important special case op(move, r, r′, l) representing
a register-to-register copy), memory loads and stores (of a
quantity κ at the address obtained by applying addressing
mode mode to registers r→), conditional branches (with two
successors), and function calls, tail-calls, and returns.

An RTL program is composed of a set of named func-
tions, either internal or external. Internal functions are
defined within RTL by their CFG, entry point in the CFG,
and parameter registers. External functions are not defined
but merely declared: they model input/output operations
and similar system calls. Functions and call instructions
carry signatures sig specifying the number and register
classes (int or float) of their arguments and results.

The dynamic semantics of RTL is specified in small-step
operational style, as a labeled transition system. The predi-
cate G

⊥

S →t   S′ denotes one step of execution from state S
to state S′. The global environment G maps function point-
ers and names to function definitions. The trace t records
the input–output events performed by this execution step:
it is empty (t = e) for all instructions except calls to exter-
nal functions, in which case t records the function name,
parameters, and results of the call.

Execution states S are of the form S(Σ, g, s, l, R, M)
where g is the CFG of the function currently executing, l
the current program point within this function, and s a
memory block containing its activation record. The regis-
ter state R maps pseudo-registers to their current values
(discriminated union of 32-bit integers, 64-bit floats, and
pointers). Likewise, the memory state M maps (pointer,
memory quantity) pairs to values, taking overlap between
multi-byte quantities into account.14 Finally, Σ mod-
els the call stack: it records pending function calls with
their (g, s, l, R) components. Two slightly different forms
of execution states, call states and return states, appear
when modeling function calls and returns, but will not be
described here.

To give a flavor of RTL’s semantics, here are two of the
rules defining the one-step transition relation, for arithme-
tic operations and conditional branches, respectively:

g (l) = op(op, r→, r, l′) eval_op(G, s, op, R(r→)) = u

G  

⊥

S(S, g, s, l, R, M) →e  S(S, g, s,  l′, R{r ← u}, M)

  g(l) = cond(cond, r→, ltrue, lfalse)

114 communications of the acm | july 2009 | vol. 52 | no. 7

research highlights

control flows, the control points l and l′ must be identical,
and the CFG g ′ must be the result of transforming g accord-
ing to some register allocation j as described in Section
4.2. Likewise, since register allocation preserves memory
stores and allocations, the memory states and stack point-
ers must be identical: M′ = M and s ′ = s.

The nonobvious relation is between the register state
R of the original program and the location state R′ of the
transformed program. Given that each pseudo-register r is
mapped to the location j (r), we could naively require that
R(r) = R′(j(r) ) for all r. However, this requirement is much
too strong, as it essentially precludes any sharing of a loca-
tion between two pseudo-registers whose live ranges are
disjoint. To obtain the correct requirement, we need to con-
sider what it means, semantically, for a pseudo-register to
be live or dead at a program point l. A dead pseudo-register
r is such that its value at point l has no influence on the
program execution, because either r is never read later, or
it is always redefined before being read. Therefore, in set-
ting up the correspondence between register and location
values, we can safely ignore those registers that are dead
at the current point l. It suffices to require the following
condition:

R(r) = R′(j (r) ) for all pseudo-registers r live at point l.

Once the relation between states is set up, proving the
simulation diagram above is a routine case inspection on
the various transition rules of the RTL semantics. In doing
so, one comes to the pleasant realization that the dataflow
inequations defining liveness, as well as Chaitin’s rules for
constructing the interference graph, are the minimal suf-
ficient conditions for the invariant between register states
R, R′ to be preserved in all cases.

5. CONCLUSIONS AND PERSPECTIVES
The CompCert experiment described in this paper is
still ongoing, and much work remains to be done: han-
dle a larger subset of C (e.g. including goto); deploy and
prove correct more optimizations; target other processors
beyond PowerPC; extend the semantic preservation proofs
to shared-memory concurrency, etc. However, the prelimi-
nary results obtained so far provide strong evidence that
the initial goal of formally verifying a realistic compiler can
be achieved, within the limitations of today’s proof assis-
tants, and using only elementary semantic and algorithmic
approaches. The techniques and tools we used are very far
from perfect—more proof automation, higher-level seman-
tics and more modern intermediate representations all
have the potential to significantly reduce the proof effort—
but good enough to achieve the goal.

Looking back at the results obtained, we did not com-
pletely rule out all uncertainty concerning the correctness
of the compiler, but reduced the problem of trusting the
whole compiler down to trusting the following parts:

1.	 The formal semantics for the source (Clight) and tar-
get (PPC) languages.

2.	 The parts of the compiler that are not verified yet: the

interference edge are assigned different colors. We use the
coloring heuristic of George and Appel.9 Since this heuris-
tic is difficult to prove correct directly, we implement it as
unverified Caml code, then validate its results a posteriori
using a simple verifier written and proved correct in Coq.
Like many NP-hard problems, graph coloring is a paradig-
matic example of an algorithm that is easier to validate a
posteriori than to directly prove correct. The correctness
conditions for the result j of the coloring are:

1.	 j(r) ≠ j(r′) if r and r′ interfere
2.	 j(r) ≠ l if r and l interfere
3.	 j(r) and r have the same register class (int or

float)

These conditions are checked by boolean-valued functions
written in Coq and proved to be decision procedures for
the three conditions. Compilation is aborted if the checks
fail, which denotes a bug in the external graph coloring
routine.

Finally, the original RTL code is rewritten. Each reference
to pseudo-register r is replaced by a reference to its location
j(r). Additionally, coalescing and dead code elimination are
performed. A side-effect-free instruction l : op(op, r→, r, l′) or
l: load(k, mode, r→, r, l′) is replaced by a no-op l: nop(l′) if the
result r is not live after l (dead code elimination). Likewise, a
move instruction l : op(move, rs, rd, l′) is replaced by a no-op
l : nop(l′) if j (rd) = j(rs) (coalescing).

4.3. Proving semantic preservation
To prove that a program transformation preserves seman-
tics, a standard technique used throughout the CompCert
project is to show a simulation diagram: each transition
in the original program must correspond to a sequence of
transitions in the transformed program that have the same
observable effects (same traces of input–output operations,
in our case) and preserve as an invariant a given binary rela-
tion ∼ between execution states of the original and trans-
formed programs. In the case of register allocation, each
original transition corresponds to exactly one transformed
transition, resulting in the following “lock-step” simula-
tion diagram:

∼

t

∼

t

S1

S2

S1
�

S2
�

(Solid lines represent hypotheses; dotted lines represent
conclusions.) If, in addition, the invariant ∼ relates ini-
tial states as well as final states, such a simulation dia-
gram implies that any execution of the original program
corresponds to an execution of the transformed program
that produces exactly the same trace of observable events.
Semantic preservation therefore follows.

The gist of a proof by simulation is the definition of the
∼ relation. What are the conditions for two states S(Σ, g, s,
l, R, M) and S(Σ′, g ′, s ′, l′, R′, M′) to be related? Intuitively,
since register allocation preserves program structure and

july 2009 | vol. 52 | no. 7 | communications of the acm 115

CIL-based parser, the assembler, and the linker.
3.	 The compilation chain used to produce the executable

for the compiler: Coq’s extraction facility and the Caml
compiler and run-time system. (A bug in this compila-
tion chain could invalidate the guarantees obtained by
the correctness proof.)

4.	 The Coq proof assistant itself. (A bug in Coq’s imple-
mentation or an inconsistency in Coq’s logic could fal-
sify the proof.)

Issue (4) is probably the least concern: as Hales argues,10
proofs mechanically checked by a proof assistant that gen-
erates proof terms are orders of magnitude more trust-
worthy than even carefully hand-checked mathematical
proofs.

To address concern (3), ongoing work within the
CompCert project studies the feasibility of formally veri-
fying Coq’s extraction mechanism as well as a compiler
from Mini-ML (the simple functional language targeted by
this extraction) to Cminor. Composed with the CompCert
back-end, these efforts could eventually result in a trusted
execution path for programs written and verified in Coq,
like CompCert itself, therefore increasing confidence fur-
ther through a form of bootstrapping.

Issue (2) with the unverified components of CompCert
can obviously be addressed by reimplementing and prov-
ing the corresponding passes. Semantic preservation for
a parser is difficult to define, let alone prove: what is the
semantics of the concrete syntax of a program, if not the
semantics of the abstract syntax tree produced by pars-
ing? However, several of the post-parsing elaboration steps
performed by CIL are amenable to formal proof. Likewise,
proving the correctness of an assembler and linker is fea-
sible, if unexciting.

Perhaps the most delicate issue is (1): how can we
make sure that a formal semantics agrees with language
standards and common programming practice? Since
the semantics in question are small relative to the whole
compiler, manual reviews by experts, as well as testing con-
ducted on executable forms of the semantics, could provide
reasonable (but not formal) confidence. Another approach
is to prove connections with alternate formal semantics
independently developed, such as the axiomatic semantics
that underline tools for deductive verification of programs
(see Appel and Blazy2 for an example). Additionally, this
approach constitutes a first step towards a more ambitious,
long-term goal: the certification, using formal methods, of
the verification tools, code generators, compilers and run-
time systems that participate in the development, valida-
tion and execution of critical software.

Acknowledgments
The author thanks S. Blazy, Z. Dargaye, D. Doligez,
B. Grégoire, T. Moniot, L. Rideau, and B. Serpette for their
contributions to the CompCert development, and A. Appel,
Y. Bertot, E. Ledinot, P. Letouzey, and G. Necula for their
suggestions, feedback, and help. This work was supported
by Agence Nationale de la Recherche, grant number ANR-
05-SSIA-0019.�

References
	 1.	 Appel, A.W. Foundational proof-

carrying code. In Logic in Computer
Science 2001 (2001), IEEE, 247–258.

	 2.	 Appel, A.W., Blazy, S. Separation
logic for small-step Cminor. In
Theorem Proving in Higher Order
Logics, TPHOLs 2007, volume 4732
of LNCS (2007), Springer, 5–21.

	 3.	 Bertot, Y., Castéran, P. Interactive
Theorem Proving and Program
Development—Coq’Art: The Calculus
of Inductive Constructions (2004),
Springer.

	 4.	 Blazy, S., Dargaye, Z., Leroy, X.
Formal verification of a C compiler
front-end. In FM 2006: International
Symposium on Formal Methods,
volume 4085 of LNCS (2006),
Springer, 460–475.

	 5.	 Blazy, S., Leroy, X. Mechanized
semantics for the Clight subset of
the C language. J. Autom. Reasoning
(2009). Accepted for publication, to
appear.

	 6.	 Chaitin, G.J. Register allocation and
spilling via graph coloring. In 1982
SIGPLAN Symposium on Compiler
Construction (1982), ACM, 98–105.

	 7.	 Coq development team. The Coq
proof assistant. Available at http://
coq.inria.fr/, 1989–2009.

	 8.	 Dave, M.A. Compiler verification: a
bibliography. SIGSOFT Softw. Eng.
Notes 28, 6 (2003), 2.

	 9.	 George, L., Appel, A.W. Iterated
register coalescing. ACM Trans. Prog.
Lang. Syst. 18, 3 (1996), 300–324.

	10.	H ales, T.C. Formal proof. Notices
AMS 55, 11 (2008), 1370–1380.

	11.	 Leroy, X. Formal certification of a
compiler back-end, or: programming
a compiler with a proof assistant. In
33rd Symposium on the Principles
of Programming Languages (2006),
ACM, 42–54.

	12.	 Leroy, X. The CompCert verified
compiler, software and commented
proof. Available at http://compcert.
inria.fr/, Aug. 2008.

	13.	 Leroy, X. A formally verified compiler
back-end. arXiv:0902.2137 [cs].
Submitted, July 2008.

	14.	 Leroy, X., Blazy, S. Formal
verification of a C-like memory
model and its uses for verifying
program transformations. J. Autom.
Reasoning 41, 1 (2008), 1–31.

	15.	 Letouzey, P. Extraction in Coq: An
overview. In Logic and Theory of
Algorithms, Computability in Europe,
CiE 2008, volume 5028 of LNCS
(2008), Springer, 359–369.

	16.	 McCarthy, J., Painter, J. Correctness
of a compiler for arithmetical
expressions. In Mathematical
Aspects of Computer Science,
volume 19 of Proceedings of
Symposia in Applied Mathematics
(1967), AMS, 33–41.

	17.	 Milner, R., Weyhrauch, R. Proving
compiler correctness in a
mechanized logic. In Proceedings
of 7th Annual Machine Intelligence
Workshop, volume 7 of Machine
Intelligence (1972), Edinburgh
University Press, 51–72.

	18.	 Morrisett, G., Walker, D., Crary, K.,
Glew, N. From System F to typed
assembly language. ACM Trans.
Prog. Lang. Syst. 21, 3 (1999),
528–569.

	19.	 Necula, G.C. Proof-carrying code. In
24th Symposium on the Principles
of Programming Languages (1997),
ACM, 106–119.

	20.	 Necula, G.C. Translation validation
for an optimizing compiler. In
Programming Language Design and
Implementation 2000 (2000), ACM,
83–95.

	21.	 Necula, G.C., McPeak, S., Rahul,
S.P., Weimer, W. CIL: Intermediate
language and tools for analysis and
transformation of C programs. In
Compiler Construction, volume 2304
of LNCS (2002), Springer, 213–228.

	22.	 Pnueli, A., Siegel, M., Singerman,
E. Translation validation. In Tools
and Algorithms for Construction
and Analysis of Systems, TACAS
‘98, volume 1384 of LNCS (1998),
Springer, 151–166.

	23.	 Tristan, J.-B., Leroy, X. Formal
verification of translation validators:
A case study on instruction
scheduling optimizations. In 35th
Symposium of the Principles of
Programming Languages (2008),
ACM, 17–27.

	24.	 Tristan, J.-B., Leroy, X. Verified
validation of lazy code motion.
In Programming Language
Design and Implementation
2009 (2009), ACM.
To appear.

© 2009 ACM 0001-0782/09/0700 $10.00

Xavier Leroy (xavier.leroy@inria.fr) INRIA
Paris-Rocquencourt, France

http://coq.inria.fr/
http://compcert.inria.fr/
mailto:xavier.leroy@inria.fr
http://coq.inria.fr/
http://compcert.inria.fr/

116 communications of the acm | july 2009 | vol. 52 | no. 7

careers

OxFORD Asset Management
Software Engineer - Central Oxford, England

OxFORD ASSET MANAGEMENT is seeking
outstanding software engineers to develop
automated trading strategies and systems to
support them. Candidates should have a high
quality degree in computer science or related
discipline, several years C++/STL experience,
and the ability to write high performance code
without sacrificing correctness, stability or
maintainability. Excellent compensation &
benefits package offered.

No financial industry experience neces-
sary. For more information see www.oxam.com/
softwareengineer.pdf

University of Puerto Rico - Río Piedras
Computer Science Tenure-track position

The Department of Computer Science at the Uni-
versity of Puerto Rico, Río Piedras Campus, in-
vites applications for a tenure-track position be-
ginning August 2009. While priority will be given
to applicants specializing in Algorithms, Theory

obtained in the other language.
Screening will begin June 30, 2009, and will

continue until the position is filled. Details about
the Department are available at http://ccom.
uprrp.edu/. Please submit a letter of interest, a
current curriculum vita, a statement of teaching
and research experience/interests, a copy of one
recent representative research manuscripts, and
the names and contact information of at least
three references to:

Personnel Committee
Department of Computer Science
PO Box 23328
San Juan, PR 00931-3328

Ursinus College
Visiting Assistant Professor
of Computer Science

Ursinus College seeks to fill a FT one-year position
in Computer Science beginning Fall 2009. PhD in
Computer Science and teaching experience pre-
ferred, but not required. More info: http://www.
ursinus.edu/NetCommunity/Page.aspx?pid=2093.

and Bioinformatics, applicants from all areas of
Computer Science are encouraged to apply.

The Río Piedras Campus at the University of
Puerto Rico is a Doctoral Research Intensive Uni-
versity (according to the Carnegie classification)
and the Department of Computer Science is a
growing department that emphasizes a strong
commitment to both teaching and research. The
Department is currently developing a doctoral
program, therefore, Faculty are expected to create
and teach undergraduate and graduate courses
and to develop a visible research program capable
of attracting external funding. Applicants must
hold a Ph.D. in Computer Science (preferred) or
a closely related field by the starting date. They
must also display a commitment to excellence in
teaching and a demonstrable potential for excel-
lence in research. Applications from women and
persons with diverse backgrounds and cultures
are encouraged.

The main language of teaching is Spanish
but English is accepted. However, research is ex-
pected to be disseminated in English. Therefore,
it is required that candidates are fluent in one
of the two languages at the time of appointment
and that after three years, working knowledge is

College of Engineering
University of Miami, Coral Gables, Florida
Faculty Openings at All Professorial Levels

The College of Engineering at the University of Miami (UM) invites applications and nominations for several tenure-track
positions at all professorial levels. The College is seeking candidates with a strong record of scholarship with a focus on
obtaining external funding, a demonstrated excellence in graduate and undergraduate teaching, interest in developing
and implementing curricula that address multicultural issues, and a thoughtful commitment to university and professional
service. For senior-level appointments, a proven record of extramural funding support is required. The College includes five
academic departments (Biomedical Engineering; Civil, Architectural and Environmental Engineering; Electrical and Computer
Engineering; Mechanical and Aerospace Engineering; and Industrial and Systems Engineering), 750 undergraduates, 250
graduate students, and 80 dedicated faculty, who have garnered national and international awards including election to the
National Academy of Engineering. Our current recruitment effort is focused on the following areas of research and education:
Electrical and Computer Engineering (multimedia, bioinformatics, sensors, imaging, computing, computer networks, signal
processing, integrated electronics, power electronics, photonics), and Industrial and Systems Engineering (manufacturing
engineering, automation and control, robotics, supply chain, health care, service systems, and risk and decisions).
At UM, collaboration is a hallmark of the faculty’s activities, including joint research with colleagues in the Miller School of
Medicine, the Rosenstiel School of Marine and Atmospheric Science, the School of Architecture, the College of Arts and
Sciences, the School of Business Administration, the Frost School of Music, the School of Communication, the School of
Education, the School of Law and the School of Nursing and Health Sciences.
A Ph.D. in engineering, science or a related discipline is required prior to the appointment. Qualified applicants should mail
(a) a letter of interest, (b) a resume and (c) at least three (3) references to

Dr. Shihab Asfour, Associate Dean for Academics
Faculty Search Committee

College of Engineering
University of Miami

1251 Memorial Drive,
McArthur Engineering Bldg., Room 268

Coral Gables, FL 33146
The University of Miami, a private university, offers competitive salaries and a comprehensive benefits package including medical and dental
benefits, tuition remission, vacation, paid holidays and much more. The University is an Equal Opportunity/Affirmative Action Employer.

http://www.oxam.com/softwareengineer.pdf
http://ccom.uprrp.edu/
http://www.ursinus.edu/NetCommunity/Page.aspx?pid=2093
http://www.oxam.com/softwareengineer.pdf
http://ccom.uprrp.edu/
http://www.ursinus.edu/NetCommunity/Page.aspx?pid=2093

july 2009 | vol. 52 | no. 7 | communications of the acm 117

Windows Kernel Source and Curriculum Materials for
Academic Teaching and Research.
The Windows® Academic Program from Microsoft® provides the materials you
need to integrate Windows kernel technology into the teaching and research
of operating systems.

The program includes:

• Windows Research Kernel (WRK): Sources to build and experiment with a
fully-functional version of the Windows kernel for x86 and x64 platforms, as
well as the original design documents for Windows NT.

• Curriculum Resource Kit (CRK): PowerPoint® slides presenting the details
of the design and implementation of the Windows kernel, following the
ACM/IEEE-CS OS Body of Knowledge, and including labs, exercises, quiz
questions, and links to the relevant sources.

• ProjectOZ: An OS project environment based on the SPACE kernel-less OS
project at UC Santa Barbara, allowing students to develop OS kernel projects
in user-mode.

These materials are available at no cost, but only for non-commercial use by universities.

For more information, visit www.microsoft.com/WindowsAcademic
or e-mail compsci@microsoft.com.

PROGRAM OFFICER,
INFORMATION SCIENCE FOR C4ISR

(Computer Scientist/Electrical Engineer/
Mathematician/Physicist/Statistician)

The Office of Naval Research is seeking a qualified individual to plan,
initiate, manage and coordinate sponsored basic/applied research,
and advanced development programs and projects in the broad area
of information science for C4ISR (Command, Control, Communications,
Computers, Intelligence, Surveillance and Reconnaissance). This is a
Civil Service position at the GS-13/14/15 level ($86,927 - $153,200)
depending on individual qualifications.

The position requires knowledge and experience in the fundamental
theories, concepts, and applications of research and technology
development in the broad areas of information processing, integration,
analysis and management for information and decision systems.
Specific technical fields and applications include, but are not limited to,
information science, computer science and engineering, computational
sciences, decision science, network-centric information management,
information infrastructure for command and control, all-source data fusion,
computational decision making under uncertainty, and interoperable data
structures for information/data analysis for decision systems.

This is a future vacancy to be announced. Interested parties should
send resumes to bernadette.sterling.ctr@navy.mil. When the formal
announcement is posted interested parties will be notified and advised
how to apply.

U.S. CITIZENSHIP REQUIRED AN EQUAL OPPORTUNITY EMPLOYER

Advertising in Career
Opportunities

How to Submit a Classified Line Ad: Send an e-mail to
acmmediasales@acm.org. Please include text, and indicate
the issue/or issues where the ad will appear, and a contact
name and number.

Estimates: An insertion order will then be e-mailed back to
you. The ad will by typeset according to CACM guidelines.
NO PROOFS can be sent. Classified line ads are NOT
commissionable.

Rates: $325.00 for six lines of text, 40 characters per line.
$32.50 for each additional line after the first six. The MINIMUM
is six lines.

Deadlines: Five weeks prior to the publication date of the
issue (which is the first of every month). Latest deadlines:

http://www.acm.org/publications

Career Opportunities Online: Classified and recruitment
display ads receive a free duplicate listing on our website at:

http://campus.acm.org/careercenter

Ads are listed for a period of 30 days.
For More Information Contact:

ACM Media Sales
at 212-626-0686 or

acmmediasales@acm.org

One in six children lives like this.
Right here in America. In a family that’s

barely hanging on. Coming home to too little

to eat. Losing hope. And too many people

are doing nothing to help. You could change

that. Join the numbers who care.

Go to www.povertyusa.org and get involved.

Catholic Campaign
for Human Development

For a three person household,
the poverty line is $15,577.

mailto:acmmediasales@acm.org
http://www.acm.org/publications
http://campus.acm.org/careercenter
mailto:acmmediasales@acm.org
mailto:bernadette.sterling.ctr@navy.mil
http://www.povertyusa.org
http://www.microsoft.com/WindowsAcademic
mailto:compsci@microsoft.com

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring
network in engineering, science and mathematics. MentorNet’s award-winning
One-on-One Mentoring Programs pair ACM student members with mentors
from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20 minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.

Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet

MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals,
Bechtel Group Foundation, Cisco Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed
Martin Space Systems, National Science Foundation, Naval Research Laboratory, NVIDIA, Sandia National Laboratories,
Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

CM Ad:Layout 1 3/3/09 3:08 PM Page 1

http://www.mentornet.net
http://www.acm.org/mentornet

july 2009 | vol. 52 | no. 7 | communications of the acm 119

last byte

and how it
was accomplished, whereas a lot of pa-
pers in the early days were more about
an implementation technique.

You’ve since focused your
attention on distributed computing.
Can you tell me about your
work on fault tolerance?
As you move to a distributed environ-
ment, where you have your storage on a
different machine than the one you’re
running on, you can end up with a sys-
tem that is less reliable than before be-
cause now there are two machines, and
either one of them might fail.

But there’s also an opportunity for
enhanced reliability. By replicating the
places where you store things, you can
not only guarantee they won’t be lost
with a much higher probability, you
can also guarantee they will be avail-
able when you need them, because
they’re in many different places.

Tell me about Viewstamped
replication, the protocol you
developed for replicating
data in a benign environment.
The basic idea is that, at any moment,
one of the nodes is acting as what we
called the primary, which means it’s
bossing everybody else around. If you
have several different nodes, each rep-
licating data, you need a way of coor-
dinating them, or else you’re going to
wind up with an inconsistent state. The
idea of the primary was that it would
decide the order in which the opera-
tions should be carried out.

What happens if the primary fails?
Well, you also need a protocol—we
called it the view change protocol—
that allows the other replicas to elect
a new leader, and you have to do that
carefully to make sure everything that
happened before the primary failed
makes it into the next view. The nodes
are constantly communicating, and
they’ve got timers, and they can decide
that a replica has failed.

Did this work lead to the protocol
you subsequently developed for
coping with Byzantine failures?
It did, about 10 years later. It’s much
harder to deal with Byzantine failures,
because nodes lie, and you have to have
a protocol that manages to do the right

[continued from p. 120]

thing. My student, Miguel Castro, and
I made a protocol that I can now see is
sort of an extension of the original—of
course, hindsight is very nice. But the
primary is the boss, the other replicas
are watching it, and if they feel there’s
a problem, they go through a view
change protocol.

Recently, you’ve worked on the
confidentiality of online storage.
If you put your data online, you want to
be sure that it won’t be lost. Addition-
ally, you want to know that it isn’t being
leaked to third parties and that what’s
there is actually what you put there.

How did you get interested
in the subject?
In the nineties, I did some work with my
student, Andrew Meyers, on information
flow control, which is a method of con-
trolling data not by having rules about
who can access it, but by having rules
about what you can do with the data after
you’ve accessed it. That’s what I’ve been
looking at recently, but the work with An-
drew was programming language work,
and then we just extended it.	

Leah Hoffmann is Brooklyn-based science and technology
writer.

© 2009 ACM 0001-0782/09/0700 $10.00

“By replicating
the places where
you store things,
you can not only
guarantee they won’t
be lost with a much
higher probability,
you can also
guarantee they will
be available when you
need them, because
they’re in many
different places.”

ACM
Transactions on
Reconfigurable
Technology and

Systems

� � � � �

This quarterly publication is a peer-
reviewed and archival journal that
covers reconfigurable technology,
systems, and applications on recon-
figurable computers. Topics include
all levels of reconfigurable system
abstractionsandall aspectsof recon-
figurable technology including plat-
forms, programming environments
and application successes.

� � � � �

www.acm.org/trets
www.acm.org/subscribe

http://www.acm.org/trets
http://www.acm.org/subscribe

120 communications of the acm | july 2009 | vol. 52 | no. 7

last byte

related work that was going on at [Carn-
egie Mellon University]. The other influ-
ence was Smalltalk. Both of these were
sort of getting at the same idea in slight-
ly different ways, but the big difference
between my work and the Smalltalk
work was that I focused on making a
very strong distinction between what
a module did [continued on p. 119]

DOI:10.1145/1538788.1538815		 Leah Hoffmann

Q&A
Liskov on Liskov
Barbara Liskov talks about her groundbreaking work
in data abstraction and distributed computing.

implement it and later re-implement
it however you wanted.

Eventually, object-oriented
programming evolved from
your work on CLU.
Object-oriented programming evolved
from two different strands. There was
my work on data abstraction and some

Barbara Liskov, a professor at the Mas-
sachusetts Institute of Technology
(MIT) and winner of the 2008 ACM A.M.
Turing Award, has worked throughout
her career to make software systems
more accessible, reliable, and secure.
We caught up with her recently to dis-
cuss a few of her most important ac-
complishments—and to find out what
she’s working on now.

Let’s talk about CLU, the
programming language you
developed in the 1970s to
handle abstract data types.
Before I came to MIT, I was working on
the VENUS system, and I got some ideas
about a different way of modularizing
programs around what I called multi-
operation modules. When I came to
MIT, I started to think of that in terms
of data types. And then I decided the
best way to continue the research was
to develop a programming language.

How did your ideas differ
from the research that was
going on at the time?
When I started, the main way people
thought about modularization was
in terms of subroutines—of abstract-
ing from how you wrote a procedure
to calling that procedure, say, a sort
routine, or a lookup routine. But they
didn’t have any way of linking a bunch
of procedures together.

And that’s what CLU’s
clusters accomplish.
Yes. A cluster would have all the op-
erations you needed to interact with
a data object, and inside you could P

H
O

T
O

G
R

A
P

H
 B

Y
 J

A
R

E
D

 L
E

E
D

S



        
             

2009 IEEE International Conference

on Cloud Computing (CLOUD 2009)
http://tab.computer.org/tcsc and http://thecloudcomputing.org











































     

The Technical Committee on Services Computing

(TC-SVC) of IEEE Computer Society Sponsors

                 
Co-located with IEEE SCC 2009

September 21-25, 2009, Bangalore, India

        

CLOUD-I 2009:

thecloudcomputing.org/2009/1

CLOUD-II 2009:

thecloudcomputing.org/2009/2

ICWS 2009: icws.org

SCC 2009:

conferences.computer.org/scc

SERVICES 2009:
servicescongress.org

                 
Co-located with IEEE ICWS 2009

July 6-10, 2009, Los Angeles, CA, USA
        
         

      
        

      
        

      
      

         
        

         
          
        

Contact the program chair Dr. Liang-Jie Zhang (LJ) at zhanglj@ieee.org

http://tab.computer.org/tcsc
http://thecloudcomputing.org
http://thecloudcomputing.org/2009/1
http://thecloudcomputing.org/2009/2
http://icws.org
http://conferences.computer.org/scc
http://servicescongress.org
mailto:zhanglj@ieee.org
http://www.icws.org
http://conferences.computer.org/scc/2009

acmqueue is guided and written by
distinguished and widely known industry

experts. The newly expanded site also offers

more content and unique features such as

planetqueue blogs by queue authors who

“unlock”important content from the ACMDigital

Library and provide commentary; videos;

downloadable audio; roundtable discussions;

plus unique acmqueue case studies.

acmqueue provides a critical perspective
on current and emerging technologies by

bridging the worlds of journalism and peer

review journals. Its distinguished Editorial Board of experts makes sure that acmqueue's high

quality content dives deep into the technical challenges and critical questions software engineers

should be thinking about.

Visit today!

http://queue.acm.org/

BLOGS ARTICLES COMMENTARY CASE STUDIES MULTIMEDIA RSSCTO ROUNDTABLES

acmqueue has nowmoved completely online!

http://queue.acm.org/

	Table of Contents
	Departments
	Editor's Letter
	Publisher's Corner
	Letters To The Editor
	blog@CACM
	CACM Online
	Calendar
	Careers

	Last Byte
	Q&A

	News
	Contemporary Approaches to Fault Tolerance
	Toward Native Web Execution
	Are We Losing Our Ability to Think Critically?
	Liskov's Creative Joy
	Master of Connections
	ACM Award Winners

	Viewpoints
	Legally Speaking
	Technology Strategy and Management
	The Business of Software
	Viewpoint
	Point/Counterpoint

	Practice
	The Five-Minute Rule 20 Years Later (and How Flash Memory Changes the Rules)
	Fighting Physics: A Tough Battle

	Contributed Articles
	Steps Toward Self-Aware Networks
	The Metropolis Model: A New Logic for Development of Crowdsourced Systems

	Review Articles
	Probabilistic Databases: Diamonds in the Dirt

	Research Highlights
	Technical Perspective
	Apprenticeship Learning for Helicopter Control
	Technical Perspective
	Formal Verification of a Realistic Compiler

